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Abstract: Aaptamine, a natural marine compound isolated from the sea sponge, has various biological
activities, including delta-opioid agonist properties. However, the effects of aaptamine in neuropathic
pain remain unclear. In the present study, we used a chronic constriction injury (CCI)-induced periph-
eral neuropathic rat model to explore the analgesic effects of intrathecal aaptamine administration.
We also investigated cellular angiogenesis and lactate dehydrogenase A (LDHA) expression in the
ipsilateral lumbar spinal cord after aaptamine administration in CCI rats by immunohistofluorescence.
The results showed that aaptamine alleviates CCI-induced nociceptive sensitization, allodynia, and
hyperalgesia. Moreover, aaptamine significantly downregulated CCI-induced vascular endothelial
growth factor (VEGF), cluster of differentiation 31 (CD31), and LDHA expression in the spinal cord.
Double immunofluorescent staining showed that the spinal VEGF and LDHA majorly expressed on
astrocytes and neurons, respectively, in CCI rats and inhibited by aaptamine. Collectively, our results
indicate aaptamine’s potential as an analgesic agent for neuropathic pain. Furthermore, inhibition of
astrocyte-derived angiogenesis and neuronal LDHA expression might be beneficial in neuropathy.

Keywords: aaptamine; neuropathic pain; angiogenesis; LDHA

1. Introduction

Aaptamine (Figure 1) is an alkaloid composed of amines and halogenated cyclic
nitrogen. It was first isolated from sponge Aaptos aaptos by Nakamura et al. in the South
China Sea in 1982 [1]. Aaptamine and its derivatives exert anticancer, antioxidant, and
antiviral activity [2,3]. Johnson et al. (2017) found that aaptamine has delta-opioid (DOR)
and mu-opioid receptor (MOR) agonist activities, with EC50 of 5.1 µM and 10.1 µM,
respectively [4]. A previous study demonstrated aaptamine’s antidepressant activity by
decreasing the immobility time of mice in the forced swim test [5]. Moreover, knocking
out DOR increases depression-like behavior [6]. Aaptamine presented antidepressant-like
activity in wide type but not delta-KO mice [4]. The above results indicate that aaptamine
might be a marine natural DOR agonist, and that active DOR have the ability to alleviate
neuropathic pain [7].
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Figure 1. The chemical structure of aaptamine.

Nowadays, neuropathic pain affects approximately 6–7% of the general population
(over 450 million people in the world), and its incidence is still increasing [8,9]. Neuropathic
pain is defined as pain caused by a lesion or disease of the somatosensory system [10].
People with neuropathic pain have allodynia (pain evoked by non-painful stimuli) and
hyperalgesia (increased response to painful stimuli), and they might develop nociceptive
sensitization and resistance to most analgesics [11]. According to previous research, few
current treatments can effectively alleviate the symptoms of neuropathic pain [10].

Glycolysis transforms glucose to pyruvate through multiple cytoplasmic enzymes
producing two molecules of ATP. In stress conditions such as inflammation or hypoxia, cells
prefer to utilize glycolysis as an energy source rather than the oxidative phosphorylation
(OXPHOS) in mitochondria [12–14]. Previously, amelioration of glycolysis processes has
been shown to improve pain [15,16]. Lactate dehydrogenase A (LDHA), a glycolytic
enzyme, converts pyruvate to lactate, which is released to the extracellular space and
leading to acidification [17]. Extracellular lactate accumulation influences the development
of nociception [18]. In addition, LDHA can translocate into the nucleus not only in response
to oxidative stress, but also upregulating vascular endothelial growth factor (VEGF) gene
expression [19,20]. Although oxidative stress and VEGF-induced angiogenesis are known
to contribute to nociception [21,22], the role of spinal LDHA in nociceptive sensitization
remains unclear.

To date, aaptamine and its derivatives have been shown to have anti-HIV, antifungal,
antiphotoaging, anti-infective, antifouling, antidepressant, antiviral, antimalarial, and
cytotoxic activities [2,3]. However, no previous research has investigated the antinociceptive
effects of aaptamine on neuropathic pain. We hypothesized that aaptamine’s analgesic
effects in neuropathic pain are likely associated with its inhibitory effects on activated
angiogenesis and neuronal LDHA expression in the spinal cord.

2. Results
2.1. Acute Analgesic Effect of Aaptamine on CCI-Induced Nociceptive Sensitization

The rats were divided into three groups and intrathecally (i.t.) administered with
specific doses of 5, 30, and 100 µg of aaptamine, respectively. The nociceptive behavior
of thermal hyperalgesia was assessed 30, 60, 90, 120, 150, and 180 min after aaptamine
administration through paw withdrawal latency (PWL). The PWL was then converted to
the percentage of maximum possible effect (%MPE) (Figure 2B). Our evaluation revealed
that the selected doses of 5, 30, and 100 µg presented different durations of analgesic
effect of 90, 150, and 150 min, respectively, on CCI-induced nociception. However, the
variance in the group administered with 100 µg of aaptamine was the largest, and the rats
presented some abnormal motor behavior. The findings provided for a future dose selection
of aaptamine to investigate the preventative effects of aaptamine on antinociception and its
possible mechanism in CCI rats.
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Figure 2. Acute antinociceptive effects of aaptamine in CCI-induced neuropathic rats. Aaptamine
was intrathecally administered in three groups of rats in doses of 5, 30, and 100 µg, respectively.
Thermal hyperalgesia, induced by CCI, was evaluated 30, 60, 90, 120, 150, and 180 min after aaptamine
administration through PWL measured in seconds (A) and then converted to %MPE (B). (CCI, chronic
constriction injury; PWL, paw withdrawal latency; %MPE, maximum possible effect).

2.2. Intrathecal Aaptamine Injection Attenuated CCI-Induced Nociceptive Sensitization

As shown in Figure 3, rats were separated into three groups: control, CCI, and
CCI + aaptamine, respectively. Nociceptive behavior, thermal hyperalgesia (paw with-
drawal latency, PWL) (Figure 3A), and mechanical allodynia (paw withdrawal threshold,
PWT) (Figure 3C) were assessed every two days after CCI surgery. To verify whether
intrathecal (i.t.) aaptamine could attenuate CCI-induced nociceptive pain, we injected
30 µg aaptamine per day in the CCI + aaptamine group by i.t. Compared with the CCI
group, the CCI + aaptamine group showed significant improvement in PWT and PWL
since the day after CCI surgery. In Figure 3B,D, we also demonstrate that aaptamine has
an analgesic effect through the maximum possible effect (MPE) of thermal hyperalgesia
and mechanical allodynia, respectively. These results indicate that aaptamine is effective in
alleviating nociceptive sensitization in CCI rats.
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Figure 3. The preventative analgesic effects of aaptamine on CCI-induced neuropathic rats. Intrathe-
cally administered aaptamine (30 µg/day) after CCI. Thermal hyperalgesia and mechanical allodynia,
induced by CCI, were evaluated by the paw withdrawal latency (PWL, s) (A) and paw withdrawal
threshold (PWT, g) (C), respectively. PWL and PWT were evaluated into maximum possible effect
(MPE), (B,D), respectively. Data are presented as mean ± standard error (SEM) of PWL and PWT.
* and # represent p < 0.05 compared with the control and CCI group, respectively. The post hoc Tukey
test was used to examine the one-way analysis of variance (ANOVA).
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2.3. Aaptamine Decreased CCI-Induced Upregulation of Angiogenesis Factors in the Ipsilateral
Lumbar Spinal Cord Dorsal Horn

VEGF and CD31 were labeled with anti-VEGF and anti-CD31, respectively
(Figure 4A,C). The CCI group expressed significantly more VEGF than the control group.
Further, compared with the CCI group, VEGF expression decreased significantly in the
CCI + aaptamine group (Figure 4B). The effect of aaptamine on CD31 expression was
similar to that of VEGF. The CCI group expressed significantly more CD31 than the control
group (Figure 4D). After aaptamine injection, CD31 expression in the CCI + aaptamine
group decreased compared to the CCI group. These results demonstrate that aaptamine
could decrease the expression of two angiogenesis factors.
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Figure 4. The inhibitory effects of aaptamine on angiogenesis factors in the dorsal lumbar spinal
cord after CCI. Lumbar spinal cords were harvested at postoperative day 14 of CCI after receiving
the last intrathecal aaptamine injection in the control, the CCI, and the CCI + aaptamine groups.
Immunofluorescence images show the vascular endothelial growth factor (VEGF) (red; A) and
the cluster of differentiation 31 (CD31) (red; C) in the ipsilateral spinal cord dorsal horn. The
quantification of VEGF (B) and CD31 (D) immunoreactivity is shown as means ± standard error of
the mean (SEM). Aaptamine administration (30 µg/day) attenuated CCI-induced VEGF and CD31
upregulation on the ipsilateral spinal cord dorsal horn. The dotted line represented the gray/white
matter boundary. * and # represent p < 0.05 compared with the control and the CCI group, respectively.
The post hoc Tukey test was used to examine the one-way analysis of variance (ANOVA). Scale bars:
100 µm for all images.

2.4. Aaptamine Decreased Spinal Astrocytic VEGF Expression after CCI

We then investigated the cellular distribution of VEGF in the ipsilateral lamina I-III of
the lumbar spinal cord dorsal horn by immunofluorescence staining of VEGF (red) and
three cell-specific markers (green): glial fibrillary acidic protein (GFAP) (for astrocytes),
OX42 (for microglia), and NeuN (for neurons), respectively. As shown in Figure 5A, VEGF
co-localized with GFAP (yellow) and was expressed at lower levels on microglia (Figure 5B)
and neurons (Figure 5C). Pearson’s correlation coefficient analysis was employed to mea-
sure quantification (Figure 5D). The Pearson’s coefficient values for VEGF versus GFAP in
the control group, the CCI group, and the CCI + aaptamine group are 0.75, 0.82, and 0.70,
respectively. The Pearson’s coefficient values for VEGF versus OX42 in the control group,
the CCI group, and the CCI + aaptamine group are −0.01, −0.27, and −0.36, respectively.
The Pearson’s coefficient values for VEGF versus NeuN in the control group, the CCI
group, and the CCI + aaptamine group are −0.04, −0.07, and −0.11, respectively. Pearson’s
coefficient values <0.1 were interpreted as no co-localization, and >0.5 were near maximal
co-localization. Furthermore, the co-localization of VEGF and GFAP was increased in
the CCI group but decreased in the CCI + aaptamine group (Figure 5A,D). As a result,
CCI-induced VEGF was mostly expressed in astrocytes in the spinal cord, and aaptamine
attenuated the upregulation of spinal astrocytic VEGF after CCI.
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Figure 5. Aaptamine attenuates CCI-induced VEGF upregulation in spinal astrocytes. Lumbar spinal
cords were harvested at postoperative day 14 of CCI after the last intrathecal aaptamine injection
in the control, the CCI, and the CCI + aaptamine groups. Co-localization of VEGF with cell-specific
markers for astrocytes, neuronal cells, and microglia, including GFAP, neuronal nuclear protein
(NeuN), and OX-42, respectively. Merged images of double-immunofluorescence staining for VEGF
(red) with (A) GFAP (green), (B) OX42 (green), and (C) NeuN (green) in the ipsilateral lumbar spinal
cord dorsal horn in the control, CCI, and CCI plus aaptamine groups. VEGF expression was primarily
restricted to astrocytes and attenuated by i.t. aaptamine. (D) Graphic representation (scatter plot) of
Pearson’s correlation coefficient for quantifying the co-localization between anti-VEGF and GFAP,
NeuN, or OX-42. Scale bars: 25 µm for all images.

2.5. Aaptamine Downregulated CCI-Induced Spinal LDHA Expression

We then investigated LDHA expression in the ipsilateral lumbar spinal cord dorsal
horn by immunofluorescence staining (Figure 6A). As shown in Figure 6B, LDHA showed
low basal expression in the control group. In comparison, LDHA levels increased in the CCI
group. However, LDHA expression decreased in the CCI + aaptamine group. Quantitative
analysis showed that CCI significantly upregulated LDHA expression, an effect inhibited
by i.t. aaptamine administration.
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Figure 6. The inhibitory effects of aaptamine on CCI-induced spinal lactate dehydrogenase A
(LDHA) upregulation in the dorsal lumbar spinal cord. (A) Lumbar spinal cords were harvested at
postoperative day 14 of CCI after receiving the last intrathecal aaptamine injection in the control, the
CCI, and CCI + aaptamine groups. Immunofluorescence images showing cells labeled with LDHA
(red) in the ipsilateral spinal cord dorsal horn. (B) The quantification of LDHA immunoreactivity is
shown as means ± standard error of the mean (SEM). Spinal LDHA expression was upregulated after
CCI and attenuated by i.t. aaptamine administration. The dotted line represented the gray/white
matter boundary. * and # represent p < 0.05 compared with the control and the CCI group, respectively.
A post hoc Tukey test was used to examine the one-way analysis of variance (ANOVA). Scale bars:
100 µm for all images.



Mar. Drugs 2023, 21, 113 6 of 17

2.6. Aaptamine Decreased Spinal Neuronal LDHA Expression after CCI

We investigated the cellular distribution of LDHA in the ipsilateral lamina I-III of
the dorsal horn spinal cord by immunofluorescence staining of LDHA (red) and three
cell-specific markers (green): GFAP, OX42, and NeuN. As shown in Figure 7A,B, LDHA
was expressed at lower levels on GFAP and OX42 but majorly expressed on NeuN (yellow)
(Figure 7C). The quantification was measured through Pearson’s correlation coefficient
(Figure 7D). The Pearson’s coefficient values for LDHA versus GFAP in the control group,
the CCI group, and the CCI + aaptamine group are −0.47, −0.33, and −0.29, respectively.
The Pearson’s coefficient values for LDHA versus OX42 in the control group, the CCI
group, and the CCI + aaptamine group are −0.07, −0.08, and −0.21, respectively. The
Pearson’s coefficient values for VEGF versus NeuN in the control group, the CCI group,
and the CCI + aaptamine group are 0.56, 0.71, and 0.55, respectively. The co-localization of
LDHA and NeuN was increased in the CCI group but decreased in the CCI + aaptamine
group (Figure 7C,D). As a result, CCI-induced LDHA was expressed primarily in neurons
of the spinal cord, and aaptamine attenuated the upregulation of spinal neuronal LDHA
after CCI.
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Figure 7. Aaptamine treatment decreases CCI-induced upregulation of neuronal LDHA in the dorsal
lumbar spinal cord. Lumbar spinal cords were harvested at postoperative day 14 of CCI after the last
intrathecal aaptamine injection in the control, the CCI, and the CCI + aaptamine groups. LDHA co-
localization with cell-specific markers for astrocytes, neuronal cells, and microglia are glial fibrillary
acidic protein (GFAP), neuronal nuclear protein (NeuN), and OX-42, respectively. Merged images
of double-immunofluorescence staining for LDHA (red) with (A) GFAP (green), (B) OX-42 (green),
and (C) NeuN (green) in the ipsilateral lumbar spinal cord dorsal horn of the control, CCI, and
CCI + aaptamine groups. LDHA expression was primarily restricted to neurons and attenuated
by i.t. aaptamine administration. (D) Graphic representation (scatter plot) of Pearson’s correlation
coefficient for quantifying the co-localization between anti-LDHA and GFAP, OX-42, or NeuN. Scale
bars: 25 µm for all images.

2.7. Aaptamine Attenuated Neuronal LDHA Translocation in CCI

A previous study indicated that LDHA could translocate into the nucleus [19]. To
verify whether aaptamine attenuated the CCI-induced neuronal nuclear LDHA by stained
NeuN (neuron, green), LDHA (red), DAPI (nucleus, blue), and DRAQ5 (nucleus, blue)
under immunofluorescent microscopy (Figure 8A) and laser scanning confocal microscopy
(Figure 8C,D) analysis. The co-localization of neuronal LDHA and nucleus is indicated
with white arrows in Figure 8A. Nuclear LDHA expression was quantified by Pearson’s
correlation coefficient analysis (Figure 8B). According to the results of immunofluorescence
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staining and Pearson’s correlation coefficient analysis, we demonstrated that LDHA could
translocate into the neuronal nucleus. Nuclear LDHA expression increased in the CCI group
and decreased in the CCI + aaptamine group. Using confocal microscopy, we observed that
LDHA co-localized with NeuN (yellow; Figure 8C) and DRAQ5 (purple; Figure 8D) in the
CCI group, indicating that CCI-induced upregulation of neuronal nucleus LDHA.
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Figure 8. Aaptamine attenuates CCI-induced upregulation of spinal neuronal nuclear LDHA.
(A) Merged images of triple-immunofluorescence staining for LDHA (red) with NeuN (green) and
DAPI (blue) in the lumbar spinal cord dorsal horn of the control group, the CCI group, and the
CCI + aaptamine group. The white arrow symbol denotes the LDHA+NeuN+DAPI co-localization.
(B) The quantification of neuronal nuclear LDHA through Pearson’s correlation coefficient analysis.
(C) The CCI-induced neuronal LDHA expression image was captured by laser scanning confocal
microscopy. The immunofluorescence staining is LDHA (red) and NeuN (green). The images of
the ipsilateral lumbar spinal cord reveal the immunoreactivity signal of LDHA to be co-localized
with neurons. (D) The CCI-induced nuclear LDHA expression image is captured by laser scanning
confocal microscopy. The immunofluorescence staining is LDHA (red) and DRAQ5 (blue). The
uncropped images of (C,D) are presented in Supplementary Figure S1 (Supplementary Material).
The images of the ipsilateral lumbar spinal cord reveal the immunoreactivity signal of LDHA to be
co-localized with the nucleus. Scale bars: 25 µm.

3. Discussion

In this research, we used thermal hyperalgesia and mechanical allodynia to present
nociceptive sensitization in CCI-induced neuropathy, and i.t. sponge-derived aaptamine
administration significantly alleviated these effects (Figures 2 and 3). Currently, there is no
gold-standard therapy for neuropathic pain [23], and investigation and discovery of new
potential drugs are warranted. Studies have indicated that systemic adverse events are
fewer with intrathecally (i.t.) administration than with systemic therapy because the drug
is directly delivered to the site of action, and smaller doses can be used in the former [24].
Thus, i.t. administration is an appropriate experimental method to explore the analgesic
effects of compounds on neuropathic pain [25–27]. Moreover, we found that aaptamine
attenuated the CCI-induced upregulation of the spinal angiogenic markers, VEGF, and
CD31 (Figure 4). Similar to our previous study [21], we found that VEGF expresses majorly
on astrocytes (Figure 5), and LDHA mainly expresses on neurons in the ipsilateral spinal
cord (Figure 7). Additionally, aaptamine could inhibit LDHA upregulation and nuclear
translocation in neurons in the neuropathic spinal cord (Figures 6 and 8). It has been
known that the gray matter lamina l-lll of the spinal cord dorsal horn primarily involves in
nociceptive sensitization [28–30]. Several previous papers have demonstrated that spinal
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immunofluorescence can describe the changes in target proteins in specific central nervous
system (CNS) regions [26,31–33]. It is very difficult to isolate gray matter of the spinal cord
dorsal horn for Western blot or Q-PCR analysis. The immunofluorescence technique can
focus on lamina I to III of gray matter in the spinal cord dorsal horn and also determine
which cell type is involved in regulating the target protein.

Angiogenesis plays an essential homeostasis role in tissue repair and organ regener-
ation by forming new blood vessels [34]. Previous studies have found the upregulation
of angiogenesis in the neuropathic state [21,35]. VEGF has multiple effects on many cell
types and mainly acts on endothelial cells [36]. CD31, known as PECAM-1, mainly ex-
presses on the cell surface in new blood vessels influencing angiogenesis, platelet function,
and inflammation in blood vessels [37]. VEGF and CD31 are recognized endothelial cell
markers used to identify vascular density and angiogenesis [37–39]. VEGF and CD31
upregulation are crucial in the molecular pathogenesis of tumor growth, metastasis, and
retinopathy [40]. Moreover, recent studies found a significant upregulation of spinal VEGF
protein expression in neuropathological conditions, including neuropathy, experimental
autoimmune encephalomyelitis (EAE), and spinal cord injury [35,41,42]. Increasing CD31
expression in the spinal cord has also been observed in spinal cord injury rats and EAE
mice [35,43]. Similar to previous research, the present findings showed upregulation of
spinal VEGF in neuropathic rats (Figure 3).

Several pro-inflammation cytokines, such as TNF-α, TGF-β, IL-8, and MMP-9, not
only promote angiogenesis but also contribute to neuroinflammation and nociceptive
sensitization [35,44–46]. Croll et al. (2004) found that direct VEGF administration would
induce angiogenesis and inflammation in the CNS [47]. As a result, upregulating VEGF
expression would lead to angiogenesis, inflammation, and pain. An anti-angiogenesis
analog, fumagillin, attenuates angiogenesis and nociception in osteoarthritic animals by
inhibiting VEGF expression [48]. Our previous study found that i.t. fumagillin and
anti-VEGF antibodies inhibit neuropathy-induced nociceptive sensitization, new spinal
vessel formation, and neuroinflammation [21]. Our present findings show that aaptamine
attenuates nociception and downregulates the expression of spinal VEGF and CD31 in
neuropathic rats (Figure 3). Thus, the analgesic effects of aaptamine include regulating
spinal VEGF expression.

In diabetic neuropathic and fibromyalgia patients, cerebral blood flow increases signif-
icantly in the right anterior cingulate cortex and anterior/middle cereal arteries, respec-
tively [49,50]. A possible reason for neuropathy-induced spinal angiogenesis is increasing
oxygen and nutrient delivery to activate nociceptive sensitization and neuroinflammation.
I.t. aaptamine administration might inhibit spinal angiogenesis resulting in attenuation of
nociception by decreasing the energy supply from new vessels. Furthermore, VEGF was
found to be mainly expressed in CNS astrocytes [51–53]. Furthermore, neuropathological
insults upregulate astrocytic VEGF expression in the spinal cord [21]. The present results
are in agreement with previous literature. CCI-induced astrocytic VEGF upregulation but
not on microglia and neuronal cells (Figure 4). We suggest the potential pathway of i.t.
aaptamine might inhibit neuropathy-induced spinal angiogenesis by inhibiting astrocytic
VEGF release.

Under neuropathological circumstances, the metabolic pathway might change to
anaerobic glycolysis in sensitized neurons and activated glial cells for responding to the
CNS disorder and fitting the change of energy demand [12,54,55]. Previous studies have
indicated that neuropathy causes significant differences in metabolic rate and glucose
consumption in CNS [56,57]. LDHA, a glycolytic enzyme, plays a crucial role in fulfilling
the energy requirement, regenerating NAD+ from NADH and transforming pyruvate
into lactate [58,59]. Lactate accumulation is a crucial feature of inflammation [60]. Thus,
enhancing LDHA expression, the lactate would accumulate in extracellular space and
cause acidification, leading to neurodegeneration and nociception [17,61]. We were the first
to find upregulation of spinal LDHA expression in CCI rats. This finding has important
implications as spinal LDHA upregulation would increase spinal extracellular lactate con-
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centration, which would contribute to nociceptive transmission, resulting in hyperalgesia
and allodynia in neuropathic pain [62]. Therefore, since i.t. aaptamine inhibits spinal LDHA
expression (Figure 5), it may decrease lactate production, resulting in nociceptive inhibition.

LDHA exists in two forms, tetramer and dimer are enzymatic active and transcription
factors, respectively [19,63,64]. A number of studies have illustrated that the accumulation
of reactive oxygen species (ROS) in the spinal cord plays an important role in the devel-
opment/maintenance of neuropathic pain [65–67]. Neuropathic pain is also accompanied
by overexpression of HIF1α by ROS, hypoxia, and ischemia stimulation [68–70]. Previous
studies have demonstrated that HIF1α signaling and ROS accumulation would regulate
neuronal LDHA translocation [19,71–73]. Moreover, LDHA, as a transcription factor, can
regulate VEGF gene expression and promote angiogenesis [74]. In the present study, we
found that neuronal LDHA translocated into the nucleus in a neuropathic state (Figure 7).
To our knowledge, this is the first study to report neuropathy-induced LDHA upregulation
in the nucleus of spinal neurons. Reducing LDHA translocation into the nucleus and
regulating its expression could mediate the analgesic effects of aaptamine on neuropathy.
We propose that aaptamine produces anti-nociception through mechanisms other than its
OR-related activities. The marine sponge-derived natural compound aaptamine has an
analgesic effect on neuropathy in rats, possibly by regulating LDHA and angiogenesis.

Three major distinct opioid receptor (OR) types, MOR, DOR, and kappa-opioid recep-
tor (KOR), have been identified. Among these three kinds of OR, MOR activation is most
relevant in anti-nociception [75,76]. Morphine is the most common agonist of MOR, which
has been found for a long time, and its derivates were the major therapeutic drugs for pain
killer in history [77–79]. However, the utility of morphine and its derived drugs showed
the increasing harmful adverse effects clinically [80]. Cooper et al. also demonstrated that
MOR presents low analgesic effects in patients with neuropathic pain [81]. On the other
side, DOR shows an analgesic effect on neuropathy [7]. In DOR knock-out (KO) mice, no
significant changes are found in pain perception after acute noxious, such as stimuli, ther-
mal, mechanical, or chemical stimulation, but sensitivity to thermal and mechanical stimuli
is enhanced in inflammatory and neuropathic pain models [6,82–84]. In the inflammation
model induced by complete Freund’s adjuvant, the activated spinal DOR is able to attenuate
hyperalgesia [85–87]. Previous studies illustrated that the potency and analgesic effect of
DOR agonist in the chronic pain model is more important than in the acute pain model [88].
Johnson et al. (2017) indicated that aaptamine and its derivates, dimethyl (oxy)-aaptamine
and 9-demethyl-aaptamine displayed low micromolar dual DOR and MOR agonist ac-
tivity [4]. Aaptamine showed antidepressant-like activity in wild type but not DOR KO
mice [4,5]. Aaptamine is a full agonist at the DOR and only weak partial agonists at the
MOR (Emax < 10% at 50 µM) and KOR activity [4]. Schoos et al. demonstrated that DOR
could regulate the expression of HIF1α, the upstream of angiogenesis and LDHA [59,89].
The activation of HIF1α also participates in neuropathy-induced nociception [68]. Thus,
we suggest that the potential analgesic pathway of the small molecular marine-derived
natural compound, aaptamine, can activate DOR to downregulate the expression of LDHA
and angiogenesis in CNS. However, the exact mechanism remains unclear and is worth
further investigation.

Over 68% of currently approved small-molecule drugs were originally discovered
in natural sources [90]. In developing new drugs derived from natural sources, a critical
challenge is finding a sustainable supply of compounds, usually present in low amounts
and/or difficult to isolate or synthesize. Aaptamine was first isolated from a marine
sponge, Aaptos aaptos, in the South China Sea in 1982 [1]. Up to the present, aaptamine is
still isolated from the wild type of marine sponge aaptos sp., which is hard to culture in a
tank. Previous studies indicated that aaptamine and its derivatives have anti-HIV, antiviral,
anti-infective, antifungal, antiphotoaging, antifouling, antidepressant, antimalarial, and
cytotoxic activities [2,5,91–95]. Previous studies also indicated that the cytotoxic effect
of aaptamine (IC50 > 88 µM) is lower than its derivatives in three breast cancer cells [96].
Moreover, we preliminary evaluated the cytotoxicity of aaptamine in glioblastoma cell lines
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(GBM 8401, U87 MG, U138 MG, and T98G) and ovarian cancer cell lines (PA-1 and SKOV-3)
through MTT assay. The 24 h cytotoxicity of half-maximal concentration (IC50) values of
aaptamine on the glioblastoma and ovarian cancer cell lines were approximately 50 µM
and >200 µM, respectively. The low toxicity of aaptamine makes itself more suitable for
the future development of a drug for non-cancerous diseases such as neuropathological
disorders. According to our unpublished observation, the concentrations of both aaptamine
and its derivate, isoaaptamine, in the sponge are approximately 2 g/kg in wet weight.
Moreover, Gao et al. established the chemical method to synthesize aaptamine and its
derivates [97]. However, we cannot evaluate the cost of commercial manufactural synthesis
of aaptamine in the chemical method. The aaptamine is worth utilizing cultivation for
future drug development. Leal et al. suggested that aquaculture of marine organisms could
produce the biomass needed to enable the early stages of drug discovery based on marine
natural products [98]. The homogeneous environmental aquaculture system can be used
continuously to produce potential bioactive candidates for further drug development. For
sustainable use and to obtain more aaptamine, the sponges will transplant and culture in
cultivating tanks at the National Museum of Marine Biology and Aquarium in Taiwan, and
they will try to resolve sponge culture dilemmas.

4. Materials and Methods
4.1. Chemical

Freeze-dried and sliced bodies (wet/dry weight = 4.8/2.5 kg) of the sponge specimen
Aaptos sp. were extracted with ethanol (EtOH) to provide a crude extract (108.2 g), which
was then partitioned between EtOH/n-hexane. The EtOH layer (47.5 g) was applied
in a silica gel column chromatography and eluted with gradients of dichloromethane
(DCM)/methanol (MeOH) to furnish fractions A~M. To afford aaptamine (130 mg), fraction
C (0.5 out of 1.8 g) was chromatographed by normal phase silica gel and eluted with
DCM/MeOH (4:1 stepwise to pure MeOH). The structure of aaptamine was elucidated by
comparison with the spectroscopic data reported [1].

4.2. Animals

Adult male Wistar rats (BioLASCO Taiwan Co., Ltd., Taipei, Taiwan) with body
weights ranging between 250 and 285 g were used in this study. Rats were acclimatized for
a minimum of six days prior to any procedures and subjected to 12 h light/ dark cycles
(lights on at 8:00 a.m.) in temperature-controlled cages at 22 ± 1 ◦C with a 70% humidity
level and free access to food and water. The rats were housed in plexiglass cages and
had no restrictions to access food and water. For surgery and drug injection, all rats were
anesthetized under 2–3% isoflurane inhalation and aseptic preparation. The postoperative
period included the topical application of a povidone-iodine 10% solution and cefazolin
(170 mg/kg) intramuscular injection for infection prevention, lidocaine infiltration for pain
reduction, and individual adjustments. All experiments and animal use were approved
by the Institutional Animal Care and Use Committee of National Sun Yat-sen University
(Approval No. IACUC-10447); the use of animals conformed to the Guiding Principles in
the Care and Use of Animals, published by the American Physiological Society. In addition,
rats were sacrificed after the end of nociceptive behavior experiments, and their spinal
cords were examined. Every effort was made to minimize the number and suffering of the
animals used. For behavioral analysis, only rats without hematoma or spinal cord injury
were tested. Hence, we are confident that the observed biological and biochemical effects
were not due to the insertion and treatment of the intrathecal catheter.

4.3. Induction of Peripheral Neuropathic Pain and Intrathecal Catheter Implantation

After catheterization, control or CCI surgery was immediately performed on the right
sciatic nerve of rats. All surgeries were performed under 2.5% isoflurane anesthesia. As
described in Bennett and Xie [99] and our previous studies [32], CCI surgery was performed
on the rat’s right sciatic nerve (at mid-thigh level); a 5 mm nerve segment of the sciatic
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nerve was dissected to place four loosely ligated intestines (4-0 chronic gut). We made a
skin incision around the sciatic nerve (at 1 mm intervals) and sutured the skin incision
at each layer. In sham-operated rats, surgery was performed to expose only the right
sciatic nerve without ligation. We used the i.t. catheter implantation method described
in Yaksh and Rudy [100] and our previous studies [101]. Briefly, an i.t. catheter (PE5
tubes: 9 cm, 0.008-inch inner diameter, 0.014-inch outer diameter) was inserted through
the atlanto-occipital membrane into the i.t. space (lumbar enlargement) of the spinal cord;
externalized and fixed to the cranial aspect of the head. After surgery, rats were replaced in
their home cages for a 5-day recovery period. Rats presenting with signs of severe nerve
damage or hematoma in cerebrospinal fluid were excluded from the study. In the acute
analgesic effect of aaptamine experiment, rats were randomly divided into three groups
with six rats in each group as follows: (i) CCI + aaptamine 5 µg; (ii) CCI + aaptamine 30 µg;
(iii) CCI + aaptamine 100 µg—the rats received intrathecal (i.t.) aaptamine with given
doses. In the preventative analgesic effects of the aaptamine experiment, rats were ran-
domly divided into three groups with six rats in each group, as follows: (i) control group;
(ii) CCI group; (iii) CCI + aaptamine group—the rats received intrathecal (i.t.) aaptamine
(30 µg/day) for 13 days after CCI. Aaptamine was delivered in 10 µL artificial cerebrospinal
fluid, consisting of 2.6 mM K+, 21.0 mM HCO3

−, 151.1 mM Na+, 1.3 mM Ca2+, 3.5 mM
dextrose, 0.9 mM Mg2+, 2.5 mM HPO4

2−, and 122.7 mM Cl−.

4.4. Thermal Hyperalgesia

Rats were placed into a compartment of a transparent plastic cage upon an elevated
glass platform. Then, we measured thermal hyperalgesia with an IITC analgesiometer
(IITC Inc., Woodland Hills, CA, USA) as previously described by Hargreaves et al. [102]
and our previous studies [21,103]. The rats’ middle plantar surface of the right hind paw
was exposed to a radiant heat source with low-intensity heat (active intensity = 25) through
the glass platform. The mean paw withdrawal latency (PWL; in seconds) was averaged
from the latency of three positive tests. Licking or rapid paw withdrawal were considered
positive features of pain behavior. The PWL was set to a cut-off time of 30 s. PWL was
transformed to a percentage of the maximum possible effect (% MPE) using the following
formula: % MPE = (post-drug latency–baseline)/(cutoff–baseline) × 100%.

4.5. Mechanical Allodynia

Rats were placed into a compartment of a transparent plastic cage upon an elevated
metal mesh floor for easily approaching the rats’ hind paws. Then, we measured me-
chanical allodynia with von Frey filaments (Stoelting, Wood Dale, IL, USA), as previously
described by Chaplan et al. [104] and our previous studies [21,103]. The middle of the right
hind paw was perpendicularly subjected to a series of von Frey filaments with logarithmi-
cally incrementing stiffness (0.2–10 g) until the filaments slightly bowed. The mean paw
withdrawal threshold (PWT; in grams) determined using Chaplan’s “up-down” method
was averaged from the threshold of three positive tests. Rapid paw withdrawal or licking
were considered positive features of pain behavior. The PWT was set to a cut-off weight of
10 g. PWT was transformed to a percentage of the maximum possible effect (% MPE) using
the following formula: % MPE = (post-drug threshold–baseline)/(cutoff–baseline) × 100%.

4.6. Immunohistofluorescence Assay

The immunohistochemistry protocol and image quantification were performed as
in our previous studies [21,32,105]. Briefly, after 14 days post-CCI injury, rats were ter-
minally anesthetized with isoflurane and sacrificed by transcardial perfusion with cold
phosphate-buffered saline (PBS) (pH 4.7) containing heparin (200 U/mL) and followed
by 4% paraformaldehyde in PBS. Lumbar regions (L4–L6) of the spinal cord were har-
vested, mounted on a tissue block with OCT (Sakura Finetek, Torrance, CA, USA), cut
into 20 µm-thick sections with cryostat Microm HM550 (Waldorf, Germany), mounted seri-
ally on microscope slides, and processed for immunofluorescence studies. These sections
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were incubated with a blocking buffer (10% BSA, 0.3% TritoX-100, 0.05% Tween 20, 1X
PBS) for 1 h and incubated overnight at 4 ◦C with each primary antibody: mouse mono-
clonal anti-neuronal nuclei Alexa Fluor 488 (NeuN, 1:1000, cat. MAB377X; EMD Millipore,
Temecula, CA, USA), mouse monoclonal anti-glial fibrillary acidic protein antibody (GFAP;
astrocytic marker, 1:1000 dilution, cat. MAB3402; EMD Millipore, Temecula, CA, USA),
mouse monoclonal anti-CD11b antibody (clone OX-42, 1:600 dilution, cat. CBL1512; EMD
Millipore, Temecula, CA, USA), mouse monoclonal anti-VEGF antibody (1:200, cat. 05-443;
EMD Millipore, Temecula, CA, USA), goat polyclonal anti-CD31 antibody (1:200 dilution,
cat. AF3628; R&D Systems, Inc., Minneapolis, MN, USA) and rabbit monoclonal anti-
lactate dehydrogenase A (LDHA, 1:800 dilution, cat. MBP2-67483; Novus Biologicals, LLC,
Centennial, CO, USA). After incubating in blocking buffer, the sections were incubated
with a mixture of Alexa Fluor 488-conjugated anti-mouse IgG antibody (1:1000 dilution),
Alexa Fluor 488-conjugated anti-rabbit IgG antibody (1:1000 dilution), CyTM 3-conjugated
anti-mouse IgG antibody (1:800 dilution), CyTM 3-conjugated anti-rabbit IgG antibody
(1:400 dilution), DAPI (1:200 dilution, Invitrogen D21490.), and DRAQ5 (1:200 dilution,
Abcam ab108410) for 40 min at room temperature.

The sections were examined by a Leica DM-6000B fluorescence microscope (Leica, Wet-
zlar, Germany) fitted with SPOT Xplorer Digital integrating camera (Diagnostic Instruments
Inc., Sterling Heights, MI, USA) and analyzed by SPOT software 4.6 (Diagnostic Instru-
ments Inc., Sterling Heights, MI, USA). The exposure time was the same for all spinal cord
sections on the same slide. Image J software 2.9.0 (National Institutes of Health, Bethesda,
MD, USA) was utilized for pixel measurement and analysis. To quantify the immunofluo-
rescent images from lamina I to lamina III in the spinal cord dorsal horn, we calculated the
mean values for three rats per group. The image size and image acquisition parameters
were maintained constant for all conditions on each side of the spinal cord dorsal horn.
Confocal images were captured by Leica TCS SP5II equipped with Leica HyD (Hybrid
Detector). Representative images of spinal cord immunostaining were taken at 100× and
400× magnification; co-localization images were taken at 400× or 630× magnification.

4.7. Co-Localization Analysis

Co-localization analysis was calculated by Pearson’s correlation coefficient [106], and
the quantification was performed by an intensity correlation coefficient-based method
applying FIJI, an ImageJ program with a plugin [107]. The background was subtracted
from the red and green channels (8 bits each) using Pearson’s correlation plugin [108].
Pearson’s correlation coefficient measures the overlapping ratio between two channels and
is not sensitive to differences in signal intensities caused by variations in fluorophores,
photobleaching, or different amplifier gain settings in an image [106]. Pearson’s correlation
coefficient, also explained by its liner regression with Pearson’s coefficient, values range
from 1, indicating the fluorescence intensities of two images are a completely positive
correlation, to −1, representing the fluorescence intensities of two images are completely
negative correlation, compared to one another [109]. Pearson’s coefficient values <0.1 were
interpreted as no co-localization, and >0.5 were near maximal co-localization [110].

4.8. Statistical Analysis

Data are presented as means ± standard error of the mean (SEM). Changes in protein
levels and immunofluorescence reactivity were shown relative to control levels. For statisti-
cal analyses, we calculated the variation between groups by a one-way analysis of variance
(ANOVA), examined by a post hoc Tukey test. We defined the statistical significance as
p < 0.05. Statistical analyses were performed using SigmaPlot Version 12.0 (Systat Software,
Inc., San Jose, CA, USA).

5. Conclusions

In conclusion, the present studies demonstrated that neuropathy upregulates angio-
genesis and neuronal LDHA expression in the spinal cord. The marine sponge-derived
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natural compound aaptamine has an analgesic effect on neuropathy rats, possibly by regu-
lating LDHA and angiogenesis. The present might help future researchers to understand
the mechanism(s), pathway, and effects of aaptamine on neurological disorders.
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