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Abstract: Fucoidan is a heterogeneous group of polysaccharides isolated from marine organisms,
including brown algae and marine invertebrates. The physicochemical characteristics and potential
bioactivities of fucoidan have attracted substantial interest in pharmaceutical industries in the past
few decades. These polysaccharides are characterized by possessing sulfate ester groups that impart
negatively charged surfaces, low/high molecular weight, and water solubility. In addition, various
promising bioactivities have been reported, such as antitumor, immunomodulatory, and antiviral
effects. Hence, the formulation of fucoidan has been investigated in the past few years in diverse
pharmaceutical dosage forms to be able to reach their site of action effectively. Moreover, they
can act as carriers for various drugs in value-added drug delivery systems. The current work
highlights the attractive biopharmaceutical properties of fucoidan being formulated in oral, inhalable,
topical, injectable, and other advanced formulations treating life-quality-affecting diseases. Therefore,
the present work points out the current status of fucoidan pharmaceutical formulations for future
research transferring their application from in vitro and in vivo studies to clinical application and
market availability.
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1. Introduction

Fucoidan encompasses a heterogenous class of polysaccharides found in the extra-
cellular matrix and cell wall of brown seaweeds (Phaeophyta) and marine invertebrates
with potential physiological functions. It acts as cellulose and hemicellulose cross-linkers,
playing a crucial role in cell wall integrity, in addition to preventing algae dryness during
summer and low tide periods, among others [1,2]. Chemically, fucoidan is composed
of a sulfated backbone of diverse sugar monomers, mainly L-fucose, as well as galac-
tose, glucose, xylose, mannose, and uronic acids. However, some proteins and minerals
such as calcium, magnesium, manganese, copper, potassium, selenium, sodium, and zinc
can be also found [3]. The heterogeneity in fucoidan’s chemical composition regarding
monomeric composition, glycosidic linkages, sulfation pattern and content, presence of
other constituents, and molecular weight has been investigated extensively in the past
few years. These variations are mostly associated with different factors, including algae
species, season of harvesting, extraction processes, geographical origin, and vegetative
phase [4–7]. The diversity in fucoidan’s biochemical composition has enriched various
scientific fields with investigations of potential bioactivities and applications. For instance,
fucoidan either with low, intermediate, or high molecular weight has gained much interest
recently due to its promising biological and pharmacological properties such as heparin-like
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anticoagulant, antitumor, anti-angiogenic, anti-inflammatory, anti-hyperglycemic, antiviral,
and immunomodulatory bioactivities [8–11]. As a result, fucoidan-containing products
are consumed widely for nutraceutical and health-promoting benefits based on unique
molecular mechanisms. Liu et al. reported that fucoidan can be beneficial as a nutraceutical
product against obesity and abnormal lipid accumulation within cells through regulating
cellular glucose consumption as it reduces glycerol-3-phosphate dehydrogenase (GPDH)
functionality. Furthermore, high-molecular-weight fucoidan extracted from Fucus vesiculo-
sus has also been found to have antioxidant, antihyperglycemic, anti-inflammatory, and
anticoagulant effects which are attributed to multiple mechanisms, including the inhibition
of dipeptidyl peptidase-IV enzyme as one of the possible mechanisms involved in the
anti-hyperglycemic activity of fucoidan, and its selective inhibition of the cyclooxygenase-2
(COX-2) enzyme, responsible for its anti-inflammatory effect [12]. Other reported mecha-
nisms include the role of fucoidan in modulating oxidative stress and gut microbiota [13,14].
Further investigations have confirmed this activity in perfluorooctanoic acid-associated
obesity in an animal model [15]. These fucoidan products used the dried fucoidan extract
derived from Undaria pinnatifida (a type of brown seaweed) for the preparation of func-
tional foods in the form of cookies and noodles [16]. Edible films are another formulation
technique for incorporating fucoidan into alginate-chitosan gel films as nutraceuticals with
antioxidant and anti-inflammatory effects [17]. Other cosmeceutical applications (e.g.,
anti-photoaging and skin protective activity) were shown for fucoidan products against
UVB irradiation via its antioxidant effect and its inhibition of oxidative stress markers and
matrix metallopeptidase-9 (MMP-9) expressions [18].

Fucoidan also offers some attractive physical properties enabling its use in diverse
pharmaceutical formulation techniques (Figure 1). These physical characteristics include,
for instance, mucoadhesion, pH, temperature, and enzyme response. In addition, fucoidan
has a strong ability to bind to numerous compounds and macromolecules. The binding
affinity is mainly resulting from the negatively charged surface, the degree of sulfation,
and molecular weight. Additionally, fucoidan has low apparent viscosity with a pseudo-
plastic flow, preventing its use as a gelling or thickening agent. On the other hand, upon
mixing fucoidan with oppositely charged polymers, gel, matrices, and films can be formed.
Moreover, fucoidan is known for its high stability under acidic and alkaline conditions [19].
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In the past few decades, considerable progress has been achieved in designing suitable
formulations of fucoidan as a therapeutic agent, polymeric drug carrier, excipient, and
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matrix-forming system. However, there is still a need for additional well-established clinical
investigations to evaluate its safety and efficacy on humans.

To write down this review, we used the following keywords in our literature search:
fucoidan formulations, drug delivery, fucoidan dosage forms, biological and pharmaco-
logical properties of fucoidan, scaling-up marine drugs, and advanced formulations. We
included articles related to pharmaceutical formulation and pharmacological properties of
fucoidan and excluded articles discussing marine drugs other than fucoidan. The PubMed
database was used with a time frame of publications indexed at the time period between
2005 and 2022. The limitations of our review are reported pharmaceutical formulation of
fucoidan, their possible dosage forms, advanced drug delivery systems, biological activity,
and pharmaceutical applications. We highlight the latest advances in biomedical and phar-
maceutical applications of fucoidan as a carrier for drug delivery and tissue engineering
scaffolds or as a therapeutic agent on its own. Firstly, the established biopharmaceutical
properties of fucoidan such as mucoadhesion, pH, thermal, and enzymatic response, as
well as targeting ability, are discussed. Then, the possible dosage forms, routes of adminis-
tration, and advanced formulation approaches are explained. Finally, the possibilities and
challenges of scaling up fucoidan-based products are investigated.

2. Biopharmaceutical Properties of Fucoidan

In contrast with other polymers, fucoidan exhibits potentially desirable biopharma-
ceutical properties. Such properties have facilitated fucoidan’s involvement recently in
pharmaceutical formulations for more effective disease treatment. These biopharmaceutical
properties are discussed in the following subsections and are summarized in Figure 2.
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2.1. Mucoadhesive Properties

Mucoadhesive pharmaceutical formulations are designed to ensure intimate contact
between the formulation and the human mucosal membranes and the extended release of
the drug in the desirable tissue. The mucoadhesion mechanism occurs in three successive
stages. Firstly, the mucoadhesive polymer becomes wet and swollen by engulfing an aque-
ous proportion from the surrounding environment. Secondly, the swollen polymer exposes
more relaxed polymer chains. Lastly, these relaxed polymer chains form van der Waals
attractions or hydrogen bonds with mucin protein and the mucus layer. Mucoadhesive
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drug delivery systems can be used for targeting different mucus membranes in the body
(e.g., conjunctiva, nasal cavity, buccal cavity, esophagus, upper and lower gastrointestinal
tract, rectum, and vagina) [20]. Based on the mucoadhesive properties of fucoidan when
mixed with chitosan at pH above 6 to allow the interaction with the acid glycoproteins
of mucus (as fucoidan itself does not have mucoadhesive properties), some researchers
started to prepare mucoadhesive fucoidan-containing formulations [21].

Recently, researchers have studied the potential mucoadhesive properties of fucoidan/
chitosan nanoparticles for the treatment of lung cancer via oral delivery using fucoidan
obtained from F. vesiculosus with molecular weight (M.W)= 20–190 kDa, fucose content of
44.1%, and sulfate content of 26.3%. These nanoparticles were found to be mucoadhesive to
enhance the oral bioavailability of methotrexate as a chemotherapeutic drug. Methotrexate
(MTX)-loaded fucoidan/chitosan nanoparticles were 7-fold more effective in inhibiting
lung cancer cell proliferation compared to the free drug [12]. Szekalska et al. prepared
single-step spray-dried fucoidan/gelatin microspheres containing posaconazole (class II
BCS) for the treatment of fungal infections using fucoidan isolated from Laminaria japonica
with M.W of 10.5 kDa [22]. These posaconazole-loaded fucoidan/gelatin microspheres
were tested in simulated vaginal fluid at a pH of 4.2. The results showed that the presence of
gelatin increased swelling ability in FUC/GEL microspheres compared to bare fucospheres.
However, mucoadhesion studies showed that increasing fucoidan concentration leads to
increased detachment force and work of adhesion, with the formulation composed of 0.75%
FUC and 2% chitosan giving the highest adhesion values [22].

2.2. pH Response

Among all the explored advanced drug delivery systems (DDS), stimuli-responsive
DDS is considered a promising strategy for delivering a drug right to the site of action
through targeted delivery. Stimuli applied in this form of drug delivery may be endogenous
or exogenous triggers. Endogenous triggers depend on physiological differences between
unhealthy and normal tissue. These physiological differences include pH, hypoxia, redox
state, enzymes, and regional difference in pressure. On the other side, exogenous triggers
include light, magnetic field, ultrasound waves, and electrical and mechanical stimuli.
The pH sensitivity is one of the promising and easily applied stimuli-based drug delivery
approaches. The physiological pH varies along the gastrointestinal tract and, most impor-
tantly, it varies distinctly between healthy cells and tumor cells. Tumor cells possess acidic
pH compared to normal cells due to their poor lymphatic drainage and high accumulation
of waste product [23,24]. For any polymer to have a pH response, it should have ionizable
functional groups interacting with the surrounding medium. Fucoidan is reported to have
pH sensitivity owing to its high total number of negatively charged sulfonic acidic groups.
However, for pH-responsive tumor targeting, it is crucial to incorporate a basic positively
charged polymer (i.e., chitosan) that undergoes ionization upon encountering the tumor’s
acidic micro-environment, leading to repulsion among similar charges freeing the core
drug content [21].

Chitosan itself has poor aqueous solubility at physiological pH. Therefore, to achieve
an optimum pH-sensitive polymer coat composition, chitosan is incorporated with fu-
coidan, taking advantage of its anti-tumor, antioxidant, and immunomodulatory effects.
It is important to note that a pH-responsive formula targeted to the tumor site should be
injected intravenously to prevent premature release of the drug in the acidic environment
of the stomach [25,26].

Recently, researchers used an immunomodulatory soluble eggshell protein loaded
into fucoidan/chitosan NPs for the management of intestine-related auto-immune diseases
using fucoidan isolated from Laminaria japonica with M.W of 192 kDa [27]. This study aimed
to deliver a peptide therapeutic agent into the intestine, avoiding degradation by gastric
enzymes as well as increasing its intestinal absorption. The prepared pH-sensitive chi-
tosan/fucoidan NPs were designed to protect against protein instability, provide sustained
release, give synergistic immunomodulatory effects, and enhance the intestinal absorp-
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tion of the immunomodulator protein [27]. Lu et al. prepared multi-stimuli-responsive
DOX-loaded polyelectrolyte complex NPs composed of fucoidan extracted from Lami-
naria japonica (M.W = 80 kDa and sulfate ester content = 34%) and positively charged
protamine [28]. This complex proved to provide stability and a long circulation half-life
within the blood (pH = 7.4). In this study, the presence of fucoidan enabled electrostatic
interaction with protamine, forming a pH-responsive polymer coat. This coat acted as a
targeting ligand for p-selectin-expressing metastatic cancer cells. Meanwhile, protamine,
as a source of amino acids, can trigger enzyme-responsive drug release. Cancer cells bear
protein-digestive enzymes (i.e., trypsin) which hydrolyzed the peptide chains of protamine,
leading to the volume extension of NPs with subsequent DOX release [28].

Oral sustained-release fucoidan–chitosan NPs were prepared via the ionic gelation
method with a high encapsulation efficiency of curcumin as an anti-tumor drug [29]. The
pH-responsive polymer carrier prevented the premature release of curcumin at pH 1.2,
while the release was significantly increased upon increasing the pH value to 7. Moreover,
at pH = 7, chitosan can enhance the opening of the intestinal tight junctions and thus
facilitate paracellular transport of the drug, despite its hydrophobic nature [29].

2.3. Temperature Response

Most natural polysaccharides exhibit thermo-responsive properties on their own or
after synthetic modification. Many thermo-responsive polymers can respond to thermal
change differently. Some polymers have a physical characteristic called lower critical solu-
tion temperature (LCST), while others have upper critical solution temperature (UCST).
The difference here is that polymers with LCST are present in the form of a solution at
room temperature and form chemical cross-linking upon increasing temperature (physio-
logical temperature). On the contrary, polymers with UCST liquefy at high physiological
temperatures and form gels below it. Polymers with a transition temperature (~20–40 ◦C)
resembling room and physiological temperature are of immense importance in the biomed-
ical field. This behavior enables researchers to utilize thermo-responsive hydrogels in
various biomedical applications, including “smart” stimuli-responsive drug delivery sys-
tems, tissue engineering scaffolds (regenerative medicine), and gene therapy [30,31].

Fucoidan has a non-gelling nature due to its low viscosity. The rheological behavior of
fucoidan is greatly dependent on multiple variables such as seaweed species, molecular
weight, number of sulfate groups, and uronic acid positions [3]. Unfortunately, no studies
have reported whether fucoidan itself exhibits upper or lower critical solution tempera-
ture. However, previous studies indicated that fucoidan, when mixed with other natural
polysaccharides, can form synergistic interaction either via hydrogen bonds, van der Waals
forces, and electrostatic interactions by the presence of charged sulfate and hydroxyl groups.
Analogously, xanthan polysaccharides cannot form a gel on their own, but gel formation
occurs after its synergistic incorporation with another gelling agent such as gelatin and
glucomannan [32]. For instance, chitosan and other gel-forming materials are incorporated
with fucoidan to form a hydrogel formulation.

Researchers used this idea to prepare a hydrogel for improving the proliferation of
mesenchymal stem cells and endothelial cells. The study aimed to use fucoidan hydrogel for
stimulating blood vasculature for engineered tissues [33]. The researchers prepared stromal
cell-derived factor-1 (SDF-1)/vascular endothelial growth factor (VEGF) encapsulated
in chitosan/fucoidan nanoparticles. The aforementioned nanoparticles were impeded
into a hydrogel-forming matrix composed of chitosan, gelatin, and β-glycerophosphate.
The gelling temperature was 35 ◦C, suggesting the convenient injection process of the
formulation, while the hydrogel phase was formed only after entering the body [33]. It is
worthwhile to note that chitosan polymer does not show thermo-response unless mixed
with β-glycerophosphate solution, and it forms H-bonds with fucoidan in a temperature
above 35 ◦C [34,35].
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2.4. Enzymatic Response

Fucoidan is a non-starchy polysaccharide at which the sugar monomers composed
mainly of fucose are linked via α-(1,3) glycosidic linkage. Nevertheless, some other gly-
cosidic linkages occasionally contribute, such as α-(1,4), α-(1,2), or α-(1,6). In addition,
trace amounts of galactose, xylose, and glucuronic acid have been reported, and hence,
it shows little to no degradation by digestive glycosidase enzymes [36]. The presence of
glycosidic bonds in polysaccharides makes them labile to degradation by enzymes such as
hyaluronidase and matrix metalloproteinases (MMPs), which act on the dissociation of the
cells’ extracellular matrix [37,38]. On the other hand, like most polysaccharides, fucoidan
may be labile to degradation by some other enzymes and in analogy to its interaction
with MMPs abundant at tumor sites, where fucoidan is reported to inhibit their over-
expression [39]. However, this theory needs further investigation in the future to determine
whether fucoidan could show an enzymatic response that could be exploited in site-specific
drug targeting based on the biocatalytic action of enzymes [37]. Furthermore, the enzy-
matic response not only facilitates targeted drug delivery but also enables the design of
ultrasensitive diagnostic and theranostic tools for the detection of these diseases [40,41].
Unfortunately, no published studies have tried to use the enzyme-responsive properties for
targeting different drugs in cancerous tissues.

2.5. Targeting Ligand

Ligand-mediated endocytosis is a promising mechanism for achieving targeted drug
delivery. The endocytosis process is important to concentrate the highest possible effective
concentration of chemotherapeutic agent into cancer cells, avoiding its cytotoxic adverse
effect on normal cells [30]. Previous studies have reported that multiple sulfated oligosac-
charides and polysaccharides (i.e., fucoidan, heparin, and dextran sulfate) can effectively
bind to lectin receptors such as p-selectin [42]. The p-selectin receptor is overexpressed on
activated platelets and is responsible for leukocyte rolling and trapping on platelet aggre-
gates and the extravasation process. Additionally, p-selectin is found to be overexpressed
by tumor cells and is responsible for promoting the adhesion process of cancer cells to
endothelium and hence facilitating metastasis [43]. Liu et al. prepared chitosan/fucoidan
NPs using fucoidan extracted from F. vesiculosus and showed their high binding efficiency
to p-selectin and human endothelial growth factor receptor EGFR [44]. Rouzet et al. pre-
pared radiolabeled (Technetium 99mTc) LMW fucoidan with the composition of L-fucose
45%, D-glucuronic acid 25%, and 27% ester sulfate for in vivo imaging to detect platelet-
rich arterial thrombi and acute myocardial ischemic events [45]. The idea of this research
was based on the high affinity of fucoidan to p-selectin, which was found to be 10,000
times greater than other polysaccharides with the lowest possible off-target binding [45].
Novoyatleva et al. utilized fucoidan as a targeting therapeutic agent for pulmonary ar-
terial hypertension-related hypoxia that is associated with p-selectin overexpression and
upregulation [46]. Based on fucoidan/p-selectin affinity, fucoidan significantly reduced
pH-induced hypoxia in mice, detected by restoring right ventricular performance and
decreased vascular pulmonary remodeling [46].

3. Pharmaceutical Dosage Forms of Fucoidan and Their Different Routes
of Administration

Fucoidan-containing pharmaceutical formulations are classified and summarized in
Figure 3 based on the route of administration. In addition, they are discussed in detail
in the following subsections. Previous literature reported that fucoidan exerts many
interesting biological, pharmacological, and antimicrobial characteristics; for instance,
Krylova et al. studied the antiviral activity of naïve and an enzymatically modified fucoidan
derivative of high molecular weight isolated from Fucus evanescens against herpes viruses
(HSV-1, HSV-2), and the results showed that the introduction of both types to the tested
cells in vitro produced the highest antiviral activity as a protective effect before infection,
while the in vivo tests using HSV-2 vaginally infected mice treated with intraperitoneal
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fucoidan at a dose of 10 mg/kg/d showed a significant reduction in virus replication
(HSV-2 titer was decreased by 2 to 3 lg TCID50/mL) and significantly prevented lethal
infection outcomes [47].
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Furthermore, fucoidan from different species is proven effective against different
bacterial strains; for instance, fucoidan extracted from Sargassum polycystum demonstrated
significant inhibition of the in vitro bacterial growth of E. coli, S. aureus, and S. mutans, with
the highest inhibitory effect observed with Pseudomonas aeruginosa (21 ± 1.0 mm at the
concentration of 50 µg/mL). The in vivo tests performed on P. aeruginosa-infected zebrafish
treated with 15 mg/0.1 kg fucoidan pre- and post-exposure to the pathogen revealed that
the fucoidan-pretreated fish showed lower mortality (10%) than fucoidan-post-treated fish
(16.6%), while the control group showed total mortality within 20 days [48].

Antifungal activity of fucoidan extracted from Undaria pinnatifida was investigated by
testing fucoidan against three fungal species, namely Aspergillus flavus, Aspergillus fumiga-
tus, and Mucor species, and showed a larger diameter of inhibition zone for A. fumigatus
(11.83 ± 1.0 mm) followed by A. flavus (8.5 ± 0.87 mm), with mucor species showing the
least response, indicating its resistance to fucoidan treatment [49].

Interestingly, fucoidan as a marine polysaccharide possesses a prebiotic activity on
gut microbiota as it can enhance the growth of beneficial gut flora and modulate gut
dysbiosis resulting from the transformation of beneficial bacteria into harmful pathogens.
Furthermore, fucoidan was reported to modulate cellular immunity, support the intestinal
epithelial barrier, and reduce the expression of inflammatory mediators such as TNF-α and
IL-6, and it can also directly promote the growth of the beneficial Lactobacillus species [50].

Zhu et al. investigated the prebiotic effect of fucoidan (from Undaria pinnatifida,
M.W = 276 kDa with sulfate content = 29.65%) on Lactobacillus rhamnosus (gut probiotic
bacteria with antimicrobial effect against intestinal pathogens) and reported that fucoidan
enhanced the growth and metabolic functions of probiotics and thus, fucoidan-treated probi-
otics showed significant antibacterial effects against pathogens such as E. coli, S. aureus, and
E. faecalis, detected by an increase in the diameter of the inhibition zone in a concentration-
dependent manner [51].

Based on previous studies suggesting that fucoidan could be used as a supplementary
therapy for cancer patients to improve their chemotherapeutic response, a double-blind
randomized case control study was performed on 54 patients with metastatic colorectal
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cancer. Tsai et al. studied the effect of low-molecular-weight fucoidan (extracted from
Sargassum hemiphyllum, M.W 0.8 kDa and fucose content of 210.9 ± 3.3 mmol/g, and sulfate
content of 38.9% ± 0.4% (w/w)) as a dietary supplement within a period of 11.5 months, and
the results showed that the disease control rate was significantly greater (by 23.6%) in the
study group compared the control group; the two groups were not significantly different in
terms of quality of life and reported adverse effects [52].

3.1. Oral Fucoidan Formulations

Although fucoidan has high solubility in water, it has poor gastric solubility and
limited absorption from the stomach and upper gastrointestinal tract. In addition, it
experiences degradation by normal flora in the lower gastrointestinal tract, producing
oligosaccharides and short-chain fatty acids which are rapidly eliminated from the blood-
stream by reticuloendothelial clearance. Taking advantage of the poor solubility and low
gastric absorption of orally administered fucoidan from the stomach, it can be used as a
gastro-protective dietary supplement. Fucoidan can be used orally as a physical barrier
and as an anti-inflammatory and oxidative stress suppressor for managing gastric ulcers.
In addition to the gastro-protective effect, fucoidan is useful for maintaining the chemical
stability of acid-labile drugs in the stomach. In addition, fucoidan can control the release of
active pharmaceutical ingredients via pH-sensitive behavior, allowing the release of the
drug only in the slightly basic medium of lower GIT [27,53,54].

The formulation of fucoidan powder in oral tablet dosage form has some challenges
based on fucoidan’s physicochemical properties [38]. For example, fucoidan powder
is hygroscopic with low flowability due to its irregular particle surfaces and wide size
distribution ranging from 10 to 500 µm. The other formulation challenge is the long dis-
integration time associated with tablets with high dry powder extract content. Therefore,
researchers used some tablet excipients such as sodium croscarmellose, crospovidone,
lactose monohydrate, and microcrystalline cellulose to improve the disintegration and
flowability, engaging the wet granulation technique [55]. The physical properties of fu-
coidan powder are reported in Table 1.

Zhao et al. investigated the effect of fucoidan molecular weight on its oral bioavail-
ability and antithrombotic activity in electricity-induced arterial thrombosis in rats. Plasma
and urine levels of low-molecular-weight (LMW) and medium-molecular-weight (MMW)
fucoidan extracted from Laminaria japonica were analyzed. LMW showed higher absorption
and better oral bioavailability compared to MMW fucoidan [56].

Oral administration of fucoidan from Saccharina japonica has been reported to reduce
allergic symptoms (degranulation of mast cells) in a murine model [57]. Oral fucoidan is
responsible for inducing the secretion of the immune-modulatory factor (galectin-9) by
intestinal epithelial cells. In addition, oral administration showed a significant reduction
in mice’s rectal temperature as a sign of allergic reaction compared to intraperitoneal
injection [57].

As mentioned before, oral delivery of fucoidan is limited by its low solubility in gastric
fluid and poor intestinal absorption. This poor absorption was attributed to the negatively
charged sulfate ester groups of fucoidan. Therefore, capping these negative charges using
an oppositely charged compound or adding an intestinal tight junction opening agent (i.e.,
berberine) are among the strategies adopted to enhance its oral bioavailability [26,58]. Oral
delivery of fucoidan/chitosan-coated MTX nanoparticles was investigated in vitro. The
stability of the tested formulations was assessed in a simulated gastric fluid at a lower
stomach pH of 1.6 and 2.7. The amino groups (NH2

+) on chitosan and sulfate groups (SO3
−)

on fucoidan were ionized, indicating a strong electrostatic interaction between polymers
and high encapsulation efficiency of MTX. On the other hand, upon increasing the pH
value to 6–7.4, representing the environment in the duodenum, the chitosan amino groups
became deprotonated, resulting in the reduction in the electrostatic interaction between the
polymers and subsequent drug release [21].
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Table 1. Physical properties of fucoidan powder.

Tablets Spray-Dried Microspheres

Appearance Brown fine powder [55] Microspheres [59]

Taste Bitter [55] N/A

Solubility Soluble in water [55] Soluble in water [59]

Mass loss on drying ≤5% [55] N/A

Mass moisture gain after 1 day ~4% [55] N/A

Mass moisture gain after 4 days ~10% [55] N/A

The number of sulfate groups determined
by turbidimetry ≥25% [55] N/A

Bulk density before compression 0.54 ± 0.06 g/cm3 [55] 0.45 ± 0.06 [59]

Bulk density after compression 0.80 ± 0.05 g/cm3 [55] N/A

Tapped density 0.79 ± 0.06 [55] 0.77 ± 0.19 [59]

Compressibility coefficient 0.05 [55] N/A

Carr index 32.5 ± 0.8% [55] N/A

Angle of repose 55 ± 1◦ [55] N/A

Hausner ratio 1.48 ± 0.07 [55] 1.71 ± 0.12 [59]

Morphology Irregular particles [55]
Unloaded microparticles showed smooth surfaces
while drug-loaded microparticles showed irregular

surfaces [60]

Particle diameter 10 to 500 µm [55] 1.62 ± 0.8 µm [58]

Tran et al. developed fucoidan-based oral sustained-release tablets composed of
hydroxypropyl methylcellulose (HPMC) and polyethylene oxide (PEO) as a hydrophilic
release rate-controlling polymer matrix [61]. The fucoidan release profile from PEO and
HPMC-containing tablets revealed a sustained release of fucoidan for 24 h. The PEO
polymer was superior to extend the release of fucoidan compared to HPMC-composed
tablets [61].

Tsai et al. studied a self-assembled nanosystem from trimethyl chitosan (TMC) and
fucoidan (from F. vesiculosus) for oral delivery of insulin [62]. The selection of TMC was
based on its mucoadhesive and intestinal permeation-enhancing effect via paracellular
transport owing to its quaternary ammonium groups. Fucoidan was selected due to its
hypoglycemic effect, attributed to the inhibition of α-amylase and α-glucosidase activity
and induction of insulin secretion. The in vitro release study of TMC/fucoidan-coated
insulin showed a reduction in insulin release in simulated gastric fluid at pH 2.0. These
results were attributed to the shielding effect of polymeric nanoparticles against insulin
degradation in gastric fluid. Interestingly, upon replacing TMC with chitosan, the release
rate of insulin was faster as chitosan undergoes deprotonation at low pH of the stomach,
while TMC bears more positive electrical charges, which increased its stability [62].

Da Silva et al. studied the effect of glutaraldehyde cross-linking to circumvent burst
drug release on chitosan/fucoidan NPs for oral delivery of fucoidan (extracted from
F. vesiculosus with M.W = 20–200 kDa) as an antithrombotic agent [63]. The chemical reac-
tion between glutaraldehyde and chitosan yielded imine bond formation. This chemical
bond decreased NPs’ dissolution in gastric acidic fluid and improved fucoidan encapsula-
tion efficiency [63].

An enteric-coated fucoidan was formulated for targeted delivery to human colon
cancer [64]. Enteric-coated fucoidan tablets were composed of Kollicoat MAE 100P as an
enteric film-forming polymer, polyethylene oxide (PEO) as a swellable matrix-forming
polymer, and fucoidan as an anticancer agent with citric acid as an acidifier. This unique
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fucoidan formulation aims to guard against the premature release of fucoidan into the
stomach to sustain its release [64]. Further investigations including in vivo absorption
and release studies are still required to fully address the efficiency of fucoidan-based
oral formulations.

3.2. Inhalable Fucoidan Formulations

The pulmonary route of administration has gained much attention as a non-invasive
administration route for deep local alveolar delivery of different drugs. Pulmonary drug
delivery can also be used for systemic absorption due to the high alveolar absorptive
surface area (∼100 m2). This route of administration is characterized by the presence
of a thin absorptive layer, rich blood supply, and minimal degradation enzyme activity.
Furthermore, pulmonary drug delivery offers the advantages of bypassing proteolytic
gastrointestinal degradation and hepatic first-pass metabolism. Therefore, the pulmonary
route is more suitable for the systemic delivery of proteins and/or peptides [65].

Natural polysaccharides can act as a carrier for micro/nano aerodynamic particles and
aerogels intended for pulmonary delivery [66]. The sulfated fucose polysaccharides can be
easily docked in the surface receptors of alveolar macrophages, which host mycobacterium
tuberculosis (TB). Researchers investigated the use of spray-dried fucoidan microparticles
using fucoidan from Laminaria japonica as an inhalable formulation containing both isoni-
azid (INH) and rifabutin (RFB) [60]. This dosage form containing combined therapy for TB
improved the patient compliance with treatment due to targeted drug delivery [60]. The
aerodynamic properties of this formula were evaluated, and the erratic surface morphology
of the microparticles showed favorable flowability and dispersibility, indicated by low
tapped density. The aerodynamic diameter of these microparticles was around 2–4 µm,
producing favorable deposition into alveoli [59].

Huang et al. developed self-assembled fucoidan/chitosan nanoparticles for intra-
tracheal instillation of gentamycin to treat pulmonary infections using fucoidan isolated
from F. vesiculosus [67]. This study aimed to reduce ototoxicity and nephrotoxicity associ-
ated with systemic gentamycin administration. This model exhibited a biphasic release
pattern where hydrophilic gentamycin particles present on the surface of the nano-system
give initial burst release, followed by the extended release of the entrapped drug over
72 h [67].

Dutot et al. investigated the immunomodulatory effect of fucoidan solution extracted
from Ascophyllum nodosum algae. Incubating bronchial epithelial cells with fucoidan solu-
tion for 1 h reduced the cytokine/chemokine mRNA expression, while incubating cells
with fucoidan for 24 h reduced COX-2 and PGE2 production [68].

3.3. Topical Fucoidan Formulations

The topical drug delivery systems include ointments, creams [69], nanogels and hydro-
gels [70], wound dressings [71], thin films [72], and smart stimuli-responsive systems [73].
There is a growing tendency by the Food and Drug Administration (FDA) to reformulate
different drugs such as anti-inflammatories, analgesics, wound healing enhancers, etc., to
be in topical dosage forms. The reason for this is to improve these drugs’ efficacy at the site
of action while reducing their possible side effects. The incorporation of active pharmaceu-
tical ingredients (APIs) into a carrier for the topical application provides substantial merits,
for instance, enhanced transdermal permeation, protection against first-pass metabolism,
ease and convenience of administration, non-invasive drug delivery, and localization of
therapeutic effects at the target site of action [69,70].

Fucoidan, as a fucose-rich polysaccharide, is known to exert anti-inflammatory, immune-
modulatory, and heparin-like anticoagulant action. Furthermore, it has been proven to
mediate fast skin regeneration and re-epithelialization by enhancing the migration and
build-up of fibroblasts. Fucoidan is used for inhibiting enzymes responsible for the hy-
drolysis of dermal elastic fibers (elastase, tyrosinase, and collagenase) and the suppression
of IgE associated with allergic and inflammatory reactions [71,72]. As a result of the
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relatively high molecular weight, negatively charged sulfate groups, and hydrophilicity,
fucoidans generally have a low skin permeation coefficient. It was also found that the
anti-inflammatory effect of fucoidan, especially that based on the inhibition of protein
denaturation, is dependent on the fucose and sulfate content of the extract obtained from
five different brown seaweed species, which are Saccharina japonica, F. vesiculosus, Fucus
distichus, Fucus serratus, and Ascophyllum nodosum [74].

The pharmacokinetic behavior of fucoidan ointment after topical application was
studied using carrageenan-induced paw inflammation in a rat model compared to intra-
venous administration [73]. The tested formulation contained fucoidan, transcutol as a
penetration enhancer, and polyethylene glycol (PEG 400) as a surfactant. The plasma levels
of topical fucoidan (100 mg/kg) exhibited a longer half-life of 20.75 ± 9.43 h compared
to 9.47 ± 2.34 h after IV administration. This prolonged half-life is attributed to the quick
drug penetration and retention of the formula in the form of skin and striated muscle
reservoirs [73].

The effect of topical application of fucoidan extracted from two different sources
(Undaria pinnatifida extract, containing 85% fucoidan, and a F. vesiculosus co-extract, con-
taining 60% fucoidan and 30% polyphenol) on the skin was evaluated [75]. Both extracts
showed inhibition of enzymes responsible for the hydrolysis of dermal elastic fibers (elas-
tase, tyrosinase, and collagenase). In addition, both extracts increased the expression of
the human Sirtuin 1SIRT1 protein, counteracting the effect of UV radiation and oxidative
stress. Furthermore, both extracts activated Toll-like receptors 2 and 3 with the expression
of antimicrobial peptides and wound healing signals by 387% and 229%, respectively [75].

Barbosa et al. prepared methotrexate (MTX)-loaded chitosan/fucoidan nanoparticles
as a topical drug delivery system for the management of skin inflammatory conditions using
fucoidan extracted from F. vesiculosus with M.W 50–190 kDa [76]. This study aimed to avoid
the systemic side effects associated with MTX. In vitro skin permeation assay using a pig
ear model showed that chitosan/fucoidan NPs increased the drug flux rate and apparent
permeability coefficient of MTX, and hence, its anti-inflammatory activity compared to free
MTX [76]. A mixture containing fucoidan (0.3% w/w) and dexamethasone was topically
applied in vivo for mice with induced atopic dermatitis [77]. The fucoidan/dexamethasone-
treated group showed markedly less redness and erythema compared to the control group
after 2 weeks of topical application [77]. The different topical fucoidan preparations and
their rheological properties are summarized in Table 2.

Aside from local transdermal therapeutic effects, fucoidan from Sargassum sp. was in-
corporated into a nano transdermal patch as a bioactive anti-cancer agent against metastatic
breast cancer cells, as it interferes with the Bcl-2, Bcl-xL, Bcl-w, and Bad pathways involved
in cancer cells’ transformation and malignancy, as well as its chemoprotective effect exem-
plified by the ability of fucoidan at lower doses to selectively produce apoptosis to cancer
cells without causing any toxicity to normal cells in vitro [78].

3.3.1. Fucoidan Creams

Obluchinskaya et al. prepared a fucoidan-based cream with anti-inflammatory ac-
tion [79]. Formulations contained fucoidan (from F. vesiculosus with M.W of 735 kDa),
olive oil, hydrogenated castor oil, and a surfactant such as poloxamer 407, geleol, gelucire,
lanolin, or cremophor®. The highest fucoidan release in vitro was observed with the for-
mulation containing poloxamer 407 as a surfactant. Moreover, poloxamer 407 increased the
colloidal stability and enhanced the rheological properties of the formulation. In the same
context, the effect of several penetration enhancers, such as dimethyl sulfoxide DMSO,
transcutol P, and polysorbate 80, on fucoidan release was assessed. The use of transcutol P
increased the diffusion of fucoidan into the agar plate with superior spreadability of the
formulation containing transcutol P over polysorbate 80. On the contrary, the formulation
containing DMSO showed the slowest release and the poorest spreadability [79].
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3.3.2. Fucoidan Wound Dressing Films

Wound dressing films are a simple, low-cost, and non-invasive choice for the manage-
ment of wounds and promotion of healing. These films should include some major features
such as flexibility, mechanical strength, and a physical barrier. These topical films show the
ability to absorb wound exudates and evaporate moisture content. Furthermore, wound
dressing films can act as a drug delivery system for antibacterial and tissue regeneration
promoter genes [80–82].

Sezer et al. prepared chitosan/fucoidan wound dressing film for dermal burn healing
in male New Zealand rabbits using fucoidan (from F. vesiculosus with M.W = 80 kDa) [83].
The prepared formulations with varying chitosan/fucoidan ratios were studied concerning
water vapor permeability, exudate absorption capacity, mechanical strength, and film thick-
ness. Increasing the concentration of chitosan led to an increase in mechanical strength as
well as film thickness. On the other hand, with an increasing concentration of fucoidan, the
water absorption capacity was optimized, leading to efficient wound exudates’ absorption
by the thin film. The in vivo wound healing study showed wound contraction and scar for-
mation with subsequent re-epithelialization after 14 days of treatment by chitosan/fucoidan
wound dressing film [83].

3.3.3. Fucoidan Topical Hydrogels

Hydrogels are materials that have the ability to absorb water and swell upon embed-
ding in an aqueous environment. Pharmaceutical hydrogels are composed of physically or
chemically cross-linked water-insoluble polymers with hydrophilic functional groups and
incorporated high water content of 90% w/w. Hydrogels provide a variety of physically
and biologically interesting characteristics that simulate the physiology of natural tissues.
These hydrogels are characterized by softness, flexibility, and a high surface area, along
with swelling behavior and high loading capacity of drugs [3,84].

Fucoidan is a hydrophilic polysaccharide having some interesting physical charac-
teristics needed for dermal burns and wound treatment. These characteristics are high
exudate absorption capacity (high swelling index), mucoadhesion, adequate hygroscopicity,
and oxygen permeability. In addition, its pharmacological activity includes heparin-like
anti-coagulant, anti-thrombotic, and anti-inflammatory effects [85].

Karami, et al. prepared a sun-protective hydrogel to guard against solar ultraviolet ra-
diation (UVB), composed of silibinin (a silymarin derivative), which inhibits UVB-induced
apoptosis and DNA damage [86]. Silibinin has low systemic bioavailability due to its low
solubility and instability. Silibinin was loaded into a fucoidan/chitosan hydrogel matrix.
The choice of fucoidan was based on its photo-protective effect against UVB. Fucoidan in-
hibits UVB-induced matrix metalloproteinase 1 (MMP-1) expression in human skin, which
is responsible for mediating the degradation of different keratinocyte components. The
results showed that UVB-irradiated skin treated with silibinin hydrogel displayed lower
oxidative stress and significantly lower levels of H2O2 compared to untreated irradiated
skin [86].

Rao et al. developed a polyelectrolyte complex matrix composed of chitosan and
fucoidan (from F. vesiculosus M.W = 46.4 kDa) as a cell-based therapy for the management
of diabetic wounds [87]. In this study, the researchers used the chitosan and fucoidan
hydrogel matrix to deliver platelet-rich plasma (PRP) as a source of growth factors and
cytokines. The hydrogel formulation helped to overcome the poor shelf-life of PRP and
sustain the release of its contained proteins. Sustained release of PRP was obtained for up
to 72 h at 37 ◦C, with in vivo and in vitro studies reporting significant cell proliferation and
collagen deposition [87].

For achieving wound healing associated with skin cancer conditions, Shanmugapriya
et al. prepared a laser-mediated photodynamic therapy system [71]. The formulated
hydrogel matrix was composed of fucoidan, chitosan, alginate, carboxymethyl cellulose
(CMC), and gellan. Gellan gum was added to maintain hydrogel stability in the presence
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of metallic ions while CMC was added to enhance the mechanical strength of the hydrogel
matrix [88].

3.4. Injectable Fucoidan Formulations

Injectable hydrogels should have the ability to undergo a phase transition in response
to temperature changes, particularly from ambient temperature to physiological tempera-
ture. These systems permit in situ hydrogel injection in a convenient minimally invasive
solution form with subsequent solidification inside the body. Hydrogel formation occurs
immediately after temperature change without the need for chemical initiators [31]. As
previously mentioned, fucoidan cannot form an injectable thermo-responsive gel matrix
unless mixed with another thermo-responsive polymer, i.e., chitosan, hyaluronic acid (HA),
gelatin, xyloglucan, etc. [89].

Lu et al. prepared an intra-articular platelet-rich plasma (PRP) hydrogel system based
on low-molecular-weight fucoidan extracted from Laminaria japonica [90]. Gel formation
was achieved by the incorporation of fucoidan with several gelling agents (i.e., hyaluronic
acid, gelatin, genipin) to ensure the formation of a randomly distributed cross-linked gel
matrix with high mechanical strength and viscoelasticity. The results of this study showed
that fucoidan provided a sustained release of growth factors and enhanced the role of PRP
in suppressing inflammatory responses [90].

Methacrylated fucoidan was cross-linked with polyvinyl alcohol to form a cell-loaded
hydrogel formulation for tissue engineering. The problem reported with previous hydrogel-
based formulations is the permeation of inflammatory mediators such as IL-1β and TNF-α,
which cause apoptosis in the implanted cells. The addition of fucoidan (from F. vesiculo-
susas), a natural polysaccharide, into PVA hydrogel provided biological functionality as it
has cell-binding properties as well as an immune-modulatory effect. The permeation of
inflammatory mediators was tested using a side-by-side diffusion chamber, and perme-
ation data revealed minimal diffusion of IL-1β while maintaining the beneficial diffusion
of bovine serum albumin [91]

3.5. Advanced Fucoidan Formulations

Advanced fucoidan formulations include liposomes, nanoparticles, fucospheres, and
scaffolds, as illustrated in Figure 4.
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3.5.1. Liposomes

Liposomes have several beneficial properties, especially in cancer treatment, when
compared to other nanosystems. These properties include improving drug solubility,
stability, and delivery to specific target sites [92].

Fucoidan extracted from F. vesiculosus was encapsulated into a nano-sized liposo-
mal carrier composed of lecithin (phosphatidylcholine) and tested for anticancer and
immunomodulatory effects. The results of this study showed increased anticancer activity
as well as a reduction in the levels of interleukin-6 and tumor necrosis factor-α compared
to fucoidan nanoparticles [93].
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Salviano et al. synthesized a fucoidan derivative (cholesteryl–fucoidan) loaded with
usnic acid as a liposomal drug delivery system for the treatment of Mycobacterium tuberculo-
sis infection. Fucoidan-coated liposomes showed significantly lower IC50 (8.26 ± 1.11 µM)
compared to blank liposomes due to the higher cellular uptake and cellular internalization
of the hydrophobic fucoidan derivative liposomal formulation [94].

Zhang et al. proposed that liposomes dispersed in a fucoidan matrix can be a
promising delivery system for bioactive nutraceutical compounds. Fucoidan can pro-
tect drug-loaded liposomes against leakage and burst release and hence improve their
overall bioavailability [95].

3.5.2. Nanoparticles

Nanotechnology-based drug carriers are highly prominent in the area of targeted drug
delivery for the treatment of various diseases [96–99]. Targeted delivery of chemothera-
peutics is greatly beneficial because these drugs suffer from low aqueous solubility, rapid
clearance, and high toxicity. All these delivery limitations can be overcome by the use of
biocompatible and biodegradable polymeric nanocarriers [100–102].

Recently, fucoidan has played a key role in nanotechnology-based medicine for differ-
ent biomedical applications. Fucoidan in nanomedicine can be used as a nanocarrier for
many drugs or it can be combined with different cationic polymers to encapsulate different
cargos, besides being used as an effective therapeutic agent on its own [10,103].

Fucoidan is a promising carrier for nanoparticle formulation. The formulation of
fucoidan nanoparticles by the self-assembly technique enables fucoidan particles to arrange
themselves into a capsule structure that is ready for drug entrapment. The ionotropic cross-
linking of fucoidan with polymers having opposite net charge (e.g., chitosan, Polyallyamine
hydrochloride, Polyethyleneimine, Hexadecylamine, isobutyl cyanoacrylate) is a common
technique for the preparation of drug-loaded nanoparticles [25].

Choi et al. synthesized chitosan–fucoidan polymeric nanoparticles via ionic gelation
cross-linking as a drug delivery vehicle for Piperlongumine (PL) [104]. The prepared
nanoparticles improved the aqueous solubility and bioavailability of (PL) as a pro-oxidant
anti-cancer drug. These NPs showed sustained release over 24 h without displaying any
burst effects. The results showed a remarkable increase in intracellular ROS (oxidative
stress) of the tested cancer cells, indicating that the polymeric carrier system facilitated the
intracellular uptake of PL [104].

A quaternary ammonium chitosan (QCS)/depolymerized fucoidan nanosystem was
prepared and tested for its GIT stability using LMW fucoidan extracted from F. vesiculosus
with M.W of 58.3 kDa and composed of 44% fucose and 26% sulfate [105]. These NPs
showed antihyperglycemic, antioxidant, and anti-bacterial properties and a protective
effect against degradation by GIT fluids after oral administration. The results of this
study showed that upon the interaction between tea catechins and GIT aqueous fluids,
the negative charges liberated from polyphenols interact with the positively charged
chitosan. On the other hand, enhanced stability and high encapsulation efficiency were
observed at acidic pH of the stomach conditions, which prevented gastric degradation of
the components [105].

Fucoidan NPs prepared by the coacervation method showed higher anticoagulant
activity than unprocessed fucoidan solution [106]. The results showed a twofold increase in
activated partial thromboplastin time (aPTT) after fucoidan NPs administration compared
to the unprocessed fucoidan solution which showed a 1.6-fold increase in aPTT [106].

Etman et al. investigated the anticancer effect of fucoidan nanoparticles (extracted
from Undaria Pinnatifida, M.W= 47.9 kDa, and composition of sulfate content = 26%)
against pancreatic cancer [107]. These NPs were prepared via polyelectrolyte complex.
Ionic interaction between fucoidan and the positively charged, active targeting ligand
lactoferrin (FUC/LF NPs) showed a biphasic release pattern in the form of initial burst
release followed by a sustained release for 48 h. The results of the in vitro cytotoxicity
study on pancreatic cancer cells showed that FUC/LF NPs possessed 2.3-fold lower IC50
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compared to unprocessed fucoidan solution. This was attributed to enhanced cellular
uptake by NPs through ligand-based endocytosis mediated by lactoferrin as a targeting for
lactoferrin receptors and fucoidan as a targeting ligand for p-selectin receptors [107].

3.5.3. Fucospheres

A conventional way of processing fucoidan and chitosan polymers for the construction
of microsphere-based drug delivery systems is by cross-linking fucoidan and chitosan
to form “fucospheres” [108,109]. The drug loading and encapsulation efficiency inside
fucospheres are mainly affected by the concentrations and molecular weights of fucoidan
and chitosan, as well as drug properties [110].

Sezer et al. prepared bovine serum albumin (BSA)-loaded fucospheres composed
of cross-linked chitosan and fucoidan with particle sizes ranging from 0.61 to 1.28 µm
and smooth, poreless, spherical morphology [111]. The particle size depended on the
concentration of fucoidan, chitosan, and BSA. The encapsulation efficiency of BSA varied
between 51.8% and 89.5%. Increasing the concentration of fucoidan was directly correlated
to the highest BSA encapsulation efficiency [111].

Fucospheres were used to improve the solubility and reduce the frequency of adminis-
tration of the ofloxacin antibiotic using fucoidan (from F. vesiculosus with M.W = 80 kDa)
cross-linked with chitosan [112]. Ofloxacin-loaded fucospheres showed an extended drug
release over 8 h. The amount of ofloxacin released was decreased by increasing the concen-
tration of fucoidan, and the overall drug release from fucospheres was slower than chitosan
particles [112].

Fucospheres of the same origin and composition can also be applied topically for the
treatment of dermal burns in vivo [113]. In this study, the formulation with the highest
concentrations of fucoidan and chitosan showed the highest mucoadhesion, optimized
surface charge, and particle size distribution. The macroscopical and histopathological ex-
amination revealed increased fibroblast migration, collagen accumulation, and accelerated
re-epithelialization on days 7 and 14 of treatment by fucospheres [113].

3.5.4. Scaffolds for Tissue Engineering

Fucoidan as a biomacromolecule can be used as a building block to produce self-
assembling biomaterials, which can resemble the natural extracellular matrix necessary for
cell culture and tissue engineering. Protein–polysaccharide hybrid hydrogels arranged via
co-assembly or conjugation between peptides and polysaccharides provide a promising
approach to tissue engineering [114]. This hybrid hydrogel can overcome the formerly
reported problems such as lack of mechanical strength and low biological functionality
associated with applying self-assembling polymers and synthetic peptides separately [114].

A thermodynamically driven hydrogel based on co-assembly between fucoidan and
self-assembled peptide (SAP) was applied as a scaffold for skeletal muscle progenitor
cells [115]. The myoblasts cultured on fucoidan scaffolds were smaller in size and had less
multinucleated synthetia, with limited spreading and no observed toxicity. The scaffold ma-
trix showed a 10-fold increase in stiffness compared to polysaccharide-free scaffolds [115].

Venkatesan et al. synthesized polymer-based scaffolds for bone tissue engineering,
composed of chitosan, alginate, and fucoidan from F. vesiculosus [116]. The use of fucoidan
was found to enhance the secretion of alkaline phosphatase (ALP), collagen type-1, osteo-
pontin, and osteocalcin by human stem cells of adipose tissue compared to fucoidan-free
chitosan–alginate scaffolds. Three-dimensional scaffolds composed of fucoidan and nano-
hydroxylapatite uniformly dispersed in a chitosan matrix were prepared via a freeze-drying
technique for bone tissue engineering. Fucoidan was selected to trigger the release of alka-
line phosphatase (ALP), bone morphogenetic protein-2 (BMP-2), and osteocalcin, which
is essential for the proliferation of osteoblasts. Additionally, fucoidan was reported to
enhance collagen matrix formation and tissue angiogenesis [116].
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4. Fucoidan Pharmacokinetics

Pharmacokinetics (PK) generally describes the pathway of the drug into the body and
how the body reacts to it in four main processes: absorption, distribution, metabolism, and
elimination (ADME system). Comprehending the pharmacokinetic behavior of fucoidan is
crucial for determining dosage recommendations and the most suitable dosage form for
each condition to achieve effective therapeutic outcomes.

The pharmacokinetic behavior of fucoidan from variable species was evaluated using
experimental animals such as mice, rats, and rabbits after oral, topical, and parenteral ad-
ministration. Recently, a group of researchers investigated the pharmacokinetic parameters
of fucoidan extracted from Laminaria japonica after an intravenous injection of (50 mg/kg) in
rabbits. The PK results showed a maximum plasma concentration (Cmax) of 110.53 µg/mL
after a maximum time (Tmax) of 5 min [117,118]. In another study, IV injection of fluorescein-
labeled fucoidan extracted from F. vesiculosus in mice showed Cmax = 66.37 µg/mg and
AUC = 198.11 µg/g·h [118,119].

Pozharitskaya et al. studied the pharmacokinetics and tissue distribution of an orally
administered (100 mg/kg) dose of high-molecular-weight fucoidan (735 kDa) extracted
from F. vesiculosus in rats. The results of this study showed a superior accumulation of
fucoidan in the kidneys (Cmax of 1.23 µg/g and a T1/2 of 7.26 h) compared to the spleen
(Cmax of 0.78 µg/g and a T1/2 of 9.32 h) and the liver (Cmax of 0.53 µg/g and a T1/2
of 6.44 h). The findings of the previous studies demonstrated that the PK of fucoidan
is strongly correlated with its molecular weight. Low-molecular-weight fucoidan was
rapidly eliminated from blood after intravenous administration while high-molecular-
weight fucoidan showed a prolonged circulation time of approximately 6.79 ± 1.63 h and
high tissue distribution to filtration organs (i.e., kidneys, liver, and spleen) [120].

5. Scaling up Production of Fucoidan-Based Formulations: Possibilities
and Challenges

Fucoidan generally and LMW specifically are associated with promising biological
activity and high bioavailability. The molecular weight of algal extracts is remarkably
influenced by the extraction and processing techniques. The pharmaceutical and nutraceu-
tical processing of fucoidan extract is challenging due to the large molecular mass, viscous
nature, and instability of some diverse components extracted from crude fucoidans. There
are increasing concerns regarding extraction, depolymerization, and purification steps to
maintain the integrity of the native structure and the purity of ingredients. The utilization
of harsh extraction conditions such as acids, high temperatures, and long processing times
should be avoided. Recently, novel delicate, eco-friendly processing technologies have been
rapidly emerging, such as pressurized liquid extraction [121], ultrasound [122], microwave-
assisted extraction [123], and biotechnology-mediated synthesis [124–127]. For instance,
ultrasound-assisted extraction technique can positively affect the phytochemical compo-
sition of fucoidan (total fucoidan content and fucose/sulfate ratio) and it also accelerates
the separation of the pharmacologically active compounds from the crude material, and
hence, the anti-coagulant activity of fucoidan was improved after its topical administration
to male Wistar rats [128].

Chauvierre et al. prepared GMP-grade 99mtechnetium–fucoidan as a diagnostic tool for
cardiovascular diseases overexpressing the p-selectin receptor [129]. Firstly, the crude high-
molecular-weight fucoidan was extracted from Ascophyllum nodosum and then depolymer-
ized by non-selective oxidative reduction (ORD) followed by purification by ultrafiltration
to obtain LMW fucoidan [129].

Regarding the large-scale production of fucoidan products, batch vials containing
freeze-dried powder of fucoidan were obtained via the following steps: (1) dissolution
of fucoidan in saline solution; (2) mixing; (3) 0.22 µm purification membrane filtration;
(4) 0.22 µm sterilization membrane filtration; (5) aseptic filling and pre-stoppering;
(6) freeze-drying (lyophilization); (7) final stoppering, capping, and compressing [129].
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Production of oral fucoidan tablets was previously discussed in Section 3.1. The dried
fucoidan extract can be mixed with excipients such as sodium croscarmellose, crospovi-
done, lactose monohydrate, and microcrystalline cellulose to improve its formulation
parameters [55] (Table 2).

Despite all trials achieved by companies and researchers globally, scaling up algal
products remains a challenging task. The optimum extraction method to achieve the highest
degree of purification of fucoidan extract is crucial in scaling up the production of these
products. In addition, there is a persistent need for a continuous supply of light, proper
heat, nutrients, and hydrodynamic mixing to prevent settling and collapse. Nutrient source
and supply are considered some of the most hampering obstructions as nutrients used at
the laboratory scale are high in cost for mass production. On the other hand, the presence
of nutrients produces impurities that need to be eliminated before proceeding with the
scaling-up process [130,131].

Table 2. Rheological properties of different fucoidan forms.

Pure Fucoidan Extract Fucoidan-Based Hydrogel Fucoidan/Buckwheat
Starch Aqueous Paste

Apparent viscosity Increased at high fucoidan
concentration [132].

Fucoidan has a non-gelling
nature, so viscosity is

influenced by the addition of
another gelling agent, i.e.,

carrageenan [32].

Increased at high fucoidan
concentration [133].

Type of flow

-Non-Newtonian shear-thinning
behavior at low shear rate (1–100 S−1).
-A non-Newtonian shear-thickening

behavior at high shear rate
(100–1000 S−1) [132].

-A Newtonian flow behavior is seen
with fucoidan solution extracted

from Fucus
vesiculosus at concentrations above 2%

(w/v) [134].

Varies according to gelling
agent and temperature

(especially for
thermo-responsive gelling

agents) [135].

-At high a concentration:
linear Newtonian flow.

-At high a concentration:
weak non-Newtonian

shear-thinning
pseudoplastic flow [133].

Factors affecting viscosity

-Algae species.
-Molecular weight.

-Degree of branching.
The proportion of sulphates and

uronic acids.
-Temperature and pH.

-Presence of ions and additional
molecules [25].

Gelling agent concentration
[136].

Fucoidan concentration
[133].

6. Conclusions

The current research demonstrated the potential biopharmaceutical properties of
fucoidan. In comparison with other polymers used, the incorporation of fucoidan into
the pharmaceutical industry has resulted in the development of various smart delivery
systems not only due to improved formulation properties, pharmacokinetic effects, and
pharmacodynamic effects, but also thanks to fucoidan’s pharmacological activities. Con-
sidering these findings, more effective treatments have been developed for diseases such
as lung cancer, fungal infections, and auto-immune disease, and for tissue engineering
and other applications. The major obstacles to oral, topical, or parenteral fucoidan admin-
istration can be overcome by the diverse pharmaceutical formulation approaches based
on the physicochemical properties of fucoidan. As we previously mentioned, the phar-
macokinetic behavior of fucoidan is found to be strongly correlated with its molecular
weight, as low-molecular-weight fucoidan was rapidly eliminated from circulation while
high-molecular-weight fucoidan showed significantly prolonged circulation time. It is also
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noteworthy that LMW fucoidan is a prominent candidate for pharmaceutical formulation
development and hence, recent research focuses on up-scaling production while retain-
ing the native chemical backbone of fucoidan. As concluded in our review, differences
in molecular weight, algal origin, and chemical composition have a great impact on the
physicochemical and pharmacological properties as well as formulation techniques of fu-
coidan. The effect of these variables on fucoidan product outcomes leaves the door open for
further research to assess their impact in the future. Moreover, further studies, particularly
for engaging fucoidan in diagnostic and theranostic purposes, as well as well-established
clinical trials to evaluate its safety and efficacy on humans, are also highly recommended
in the future.
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