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Abstract: Microalgae are the richest source of natural carotenoids, which are valuable pigments with
a high share of benefits. Often, carotenoid-producing algae inhabit specific biotopes with unfavorable
or even extremal conditions. Such biotopes, including alpine snow fields and hypersaline ponds,
are widely distributed in Europe. They can serve as a source of new strains for biotechnology. The
number of algal species used for obtaining these compounds on an industrial scale is limited. The data
on them are poor. Moreover, some of them have been reported in non-English local scientific articles
and theses. This review aims to summarize existing data on microalgal species, which are known as
potential carotenoid producers in biotechnology. These include Haematococcus and Dunaliella, both
well-known to the scientific community, as well as less-elucidated representatives. Their distribution
will be covered throughout Europe: from the Greek Mediterranean coast in the south to the snow
valleys in Norway in the north, and from the ponds in Amieiro (Portugal) in the west to the saline
lakes and mountains in Crimea (Ukraine) in the east. A wide spectrum of algal secondary carotenoids
is reviewed: β-carotene, astaxanthin, canthaxanthin, echinenone, adonixanthin, and adonirubin. For
convenience, the main concepts of biology of carotenoid-producing algae are briefly explained.

Keywords: biodiversity; microalgae; carotenoids; astaxanthin; β-carotene; echinenone; adonixanthin;
adonirubin

1. Introduction

Carotenoids are biological pigments from the tetraterpene group. They play a very
important role in our life. These compounds promote a favorable course of the disease
and are vital for normal functioning of the organism. They are antioxidants and pho-
toprotectants. Some of them are precursors of vitamin A [1–11]. In this regard, they
are components of a wide range of drugs, cosmetics, personal skincare and functional
food [2,3,8,11–17]. Carotenoids are used as lipophilic food colorants to give a yellow, orange,
or red color [14,18]. Moreover, they determine the range of colors of the amazing imagina-
tion of the observer, from blue to red, in the kingdom of animals: in crustaceans, cnidarians,
mollusks, vertebrates, etc. [8,19–23]. However, animals cannot synthesize carotenoids de
novo. Hence, these pigments should be presented in their rations. Carotenoid-containing
feeds are needed in fish and poultry farms as well as in zoos.

The global carotenoid market was estimated at USD 2.00 billion in 2022; its increase to
USD 2.7 billion by 2027 has been forecast [24]. Its main driving forces are the increase in the
production of nutraceuticals and the growing demand for natural skincare cosmetics [25].
Europe is the largest market of carotenoids at present. This is mainly because of the
well-developed animal-feeding and cosmetics sectors [25,26]. Many key players of the
carotenoid world market are located in Europe: Allied Biotech Corporation (Germany),
BASF (Germany), Chr. Hansen Holdings A/S (Denmark), DOHLER GmbH (Germany),
DSM (The Netherlands), Dynadis SARL (France), Vidya Europe SAS (France) [25,26]. Build-
ing a climate-neutral, green, fair and social Europe is one of the main priorities of an agenda
for the EU for the next five years formulated by the European Council [27]. In accordance
with this plan, growth of the carotenoid industry contributes to the development of sus-
tainable green technologies. Chemical synthesis is, so far, the main method for producing
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carotenoids. However, synthetic carotenoids do not have the same beneficial properties
due to the difference in isomeric composition. [8,12,13,16]. For example, β-carotene, which
consists of all-trans isomer only, does not have the same beneficial properties as the natural
pigment [8] (which is the mixture of 15-cis, 9-cis and all-trans forms [9,12]). Synthetic astax-
anthin, which is a mixture of three stereoisomers (3R/3′R, 3R/3′S and 3S/ 3′S), is inferior in
performance to the algal pigment [11,16]. In recent years, consumers have also preferred to
use products with natural carotenoids from sustainable sources [8].

Unicellular algae (microalgae) are the richest source of carotenoids [8,11,16,28,29].
Some of them can accumulate a very high amount of these pigments. This phenomenon
is called carotenoigenesis. Algae are cultured on an industrial scale for carotenoid pro-
duction. Two main species of microalgae are used by biotechnological manufactures:
Haematococcus lacustris (Girod-Chantrans) Rostafinski and Dunaliella salina (Dunal) Teodor-
esco (Chlorophyta). Haematococcus lacustris produces red-colored ketocarotenoid astaxan-
thin. Dunaliella salina is a producer of orange β-carotene [1,8,9,12,19]. These pigments are
“leaders” of the market of carotenoids [24,25]. However, there are many less elucidated
species of carotenoid-producing microalgae which could be considered as new sources
of these valuable biological pigments. The selection of such species is an actual task of
biotechnology [8]. Many strains have been isolated in the European region. The review
aims to summarize the data on diversity and distribution of carotenogenic microalgae in
Europe, including continental countries, United Kingdom, Ireland, and Iceland. To cover
existing data on distribution of carotenogenic algae, scientific publications (articles and
chapters in books) were searched via Google Scholar with the following search parameters:
algal species names and (“carotenoids” ∨ “secondary carotenoids” ∨ “Europe”). In some
cases, theses and patents were also considered. Only species that had been reported as
accumulating secondary carotenoids, were considered. Species names and some data on
distribution were taken from AlgaeBase [30]. For convenience, the main concepts and terms
of biology of carotenoid-producing algae are provided.

2. A Historical Note

Blood-red round spots on the snow can be seen on the snowy alpine areas on a bright
sunny day in spring or autumn. At the same times of the year, so-called ‘blood rain’ can
be observed. Blood rain and red (or watermelon) snow have been well-known for a long
time. The earliest notes of blood red water are referred to the Bible: Second Book of Kings
3:22 [10]. Blood rain was mentioned in ancient texts by Plutarch and Cicero [31]. Aristotle
first described watermelon snow in “History of Animals” [31]. Blood rain was mentioned in
medieval sources, in particular, in 582 in Paris and in the IV century in Germany and North
Italy [32]. It was perceived as an omen of the Black Death, the Plague epidemic in 1348–1349,
that claimed the lives of many people [32]. These rains varied by their duration and intensity
of coloration [32]. Nicolas-Claude Fabri de Peiresc, a French astronomer and antiquarian,
hypothesized that blood rains were caused by insects. Although this hypothesis was wrong,
it was the first scientific explanation of this phenomenon. Watermelon snow was described
in the Savoy Mountains, in the Alps, the Pyrenees, the Carpathians, the northeastern part of
the Ural Mountains, and in polar Scandinavia [33]. In 1818, John Ross described red snow
in the Baffin Bay (Figure 1a) and mentioned that it appeared under bright sunlight [33]. It
was established in the XIX century that watermelon snow contains red immotile unicellular
organisms. Their chlorophyll was masked by a “red substance”. During snow melting they
acquired flagella, became motile and started their reproduction (Figure 1b) [33].

The techniques of cultivation of red-colored photosynthetic organisms were developed
in the XIX century [33]. After observation of the cultures in laboratory, it was established
that green motile cells and red resting cells were related to the same species. The or-
ganism from the red snow was defined as Sphaerella nivalis (Baeur) Sommerfelt. The
organism from small freshwater ponds with red water was called Sphaerella pluvialis (Flo-
tow) Wittrock. Then, Sphaerella nivalis and Sphaerella pluvialis were transferred to the species
Haematococcus lacustris and Chloromonas nivalis (Bauer) Wille., respectively [34]. Before the
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1930s, the chemical nature of algal “red substance”, termed haematochrome, had not been
described. The German chemist Richard J. Kuhn, a future Nobel laureate, and colleagues
studied the structure of polyene pigments. They extracted and purified many carotenoids,
including astaxanthin from the shells of the lobster (Astacus gammarus) [35]. Only in 1944
was it shown that haematochrome from algae was the same substance as astaxanthin from
lobsters [19,20]. Droop determined the conditions for the accumulation of astaxanthin in
microalgae: bright light and nutrient-deficient [36].
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Figure 1. (a) Red snow in the Baffin Bay (illustration, XIX century, reprinted from [33] © Verlag
des Bibliographischen Instituts, 1888); (b) stages of the life cycle of algae from snow and water, 1—
motile zoospores, 2—coccoid non-motile cells, 3—reproduction by sporangia (illustration, XIX
century, reprinted from [33] © Verlag des Bibliographischen Instituts, 1888); (c) mass cultivation of
Dunaliella salina in PK “Galit,” Saki, Crimea, Ukraine (reprinted with permission from [37] ©
Springer Nature B.V., 2020).

The first mentions of carotenoid-producing Dunaliella salina are from the XIX
century. In the 1830s, Turpin noted the reddish color of water in saline lakes as
Globularia kermesia Turpin [10]. At the same time, Dunal mentioned this same color in a
salt pond on the Mediterranean coast of France due to Haematococcus salinus Dunal [1].
Since that time, the taxonomy of this species has undergone a series of revisions. Finally,
in 1905, Teodoresco proposed the name Dunaliella salina [1,10]. It was mentioned in
Odesa (Ukraine), Crimea (Ukraine) and Lorraine (France) [1], as well as in saline and
evaporated ponds of Africa, Asia, North and South America, Australia and Antarctica
[10].

Figure 1. (a) Red snow in the Baffin Bay (illustration, XIX century, reprinted from [33] © Verlag
des Bibliographischen Instituts, 1888); (b) stages of the life cycle of algae from snow and water,
1—motile zoospores, 2—coccoid non-motile cells, 3—reproduction by sporangia (illustration, XIX
century, reprinted from [33] © Verlag des Bibliographischen Instituts, 1888); (c) mass cultivation of
Dunaliella salina in PK “Galit,” Saki, Crimea, Ukraine (reprinted with permission from [37] © Springer
Nature B.V., 2020).

The first mentions of carotenoid-producing Dunaliella salina are from the XIX century.
In the 1830s, Turpin noted the reddish color of water in saline lakes as Globularia kermesia
Turpin [10]. At the same time, Dunal mentioned this same color in a salt pond on the
Mediterranean coast of France due to Haematococcus salinus Dunal [1]. Since that time, the
taxonomy of this species has undergone a series of revisions. Finally, in 1905, Teodoresco
proposed the name Dunaliella salina [1,10]. It was mentioned in Odesa (Ukraine), Crimea
(Ukraine) and Lorraine (France) [1], as well as in saline and evaporated ponds of Africa,
Asia, North and South America, Australia and Antarctica [10].

Dunaliella salina is cultured for carotenoid production on an industrial scale in different
countries of the world [1,9,10]. It has been recognized as a β-carotene-producing microalga
since the 1960s [9]. For the first time, it was proposed as a source of carotenoids in
Ukraine. In particular, pilot experiments on their large-scale culturing were carried out in
Crimea [38,39] in open ponds with saline water (Figure 1c).

Nowadays, Haematococcus lacustris and Dunaliella salina are widely studied as natural
sources of carotenoids. However, diversity of carotenoid producing algae is not restricted
by these two species. Study of new potential producers is one the major directions of
current biotechnology.
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3. Main Concepts and Definitions of the Biology of Carotenogenic Microalgae
3.1. The Difference between Primary and Secondary Carotenoids

It is reasonable to divide carotenoids into two groups, i.e., primary and secondary
carotenoids. Primary (or photosynthetic) carotenoids are structurally and functionally con-
nected with photosynthetic apparatus (PSA) [28,40–43]. In PSA pigment–protein complexes
containing carotenoids, a strict stoichiometry should be observed between the different com-
ponents. Hence, the content of primary carotenoids is dictated by the metabolic demands
of the cells and cannot reach high values [40,42–46]. Secondary carotenoids are not con-
nected with PSA. Their content is not limited by stoichiometry with other cell compounds.
Therefore, they can be accumulated in high quantities. The microalgae accumulating them
are called carotenogenic algae [28,43,46–49].

3.2. Where Do Microalgae Store Secondary Carotenoids?

A well-developed non-polar compartment is required to deposit hydrophobic molecules
of carotenoids or their esters with fatty acids [50] or acylated glycosides [51]. Spherical
vegetative Haematococcus cells do not contain significant amounts of secondary carotenoids
(Figure 2a). Almost their whole volume is filled with chloroplasts. After the induction
of secondary carotenogenesis, the size of PSA reduces; massive oil bodies appear in the
cytoplasm. The latter serve as a storage compartment for the accumulated astaxanthin [43,
46,47,52,53]. Astaxanthin accumulation is accompanied by metabolic decline and transition
to the resting state, called aplanospore or haematocyst [52]. In a similar manner, Dunaliella
accumulates β-carotene, but it takes place in chloroplast plastoglobules [54].
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photoreception was studied [55]. The main components of the eyespot are eyespot
globules. They differ from plastoglobules. Eyespot globules are associated with
thylakoids and organized in a certain order. They contain β-carotene as a predominant
pigment [56]. It is not a secondary pigment because its content is limited in the cell and
because these globules are associated with PSA [56].

Figure 2. (a) Accumulation of astaxanthin in vegetative cells of Haematococcus lacustris; (b) zoospore
of Haematococcus lacustris. C—chloroplast, ES—eyespot, F—flagellum, N—nucleus, OB—oil body.

Asexual reproduction of Haematococcus lacustris could be realized through motile
zoospores (Figures 1b and 2b) [47]. It should be noted that zoospores exhibit stigma
(eyespot) localized in the chloroplast on the apical end of the cells (Figure 2b). Notably,
Haematococcus lacustris is one of the first objects on which the role of carotenoids in algal
photoreception was studied [55]. The main components of the eyespot are eyespot globules.
They differ from plastoglobules. Eyespot globules are associated with thylakoids and
organized in a certain order. They contain β-carotene as a predominant pigment [56]. It is
not a secondary pigment because its content is limited in the cell and because these globules
are associated with PSA [56].

3.3. Which Carotenoids Do Microalgae Accumulate?

Based on molecular structure, carotenoids are divided into oxygen-free carotenes
(e.g., β-carotene) and oxygen-containing xanthophylls (e.g., astaxanthin) (Figure 3a). Ke-
tocarotenoids are special types of xanthophylls exhibiting at least one keto group in the
ionone rings. In green microalgae, it is the keto group at the fourth position of the ionone
rings [42,45,46].
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Based on the reported data, it seems that all eukaryotic algae accumulate either β-
carotene or ketocarotenoids, derived from it, as secondary (Figure 3a) [8,11,16,28,45,46].
The spectrum of ketocarotenoids includes astaxanthin (with two hydroxyl groups and
two ketogroups) as well as its precursors with 1-2 keto- and 0-2 hydroxyl groups:
echinenone, canthaxanthin, adonixanthin and adonirubin (Figure 3a). Algae accumulate
either one predominant or a mixture of carotenoids. Botryococcus braunii Kützing
(Chlorophyta) also synthesize tetramethylsqualene-conjugated braunixanthines and
botryoxanthines which can be considered as secondary [57,58]; however, patterns of
their localization are not elucidated. Moreover, they have not been sought for practical
use; thus, they will not be considered here. The composition of secondary carotenoids in
microalgae dictates the color of their cells. The same is true for pigment extracts (Figure
3b).

It should be noted that although in some articles, microalgae are proposed as a
source of lutein, e.g., [29,59–65], no reported microalgae could be considered as lutein-
accumulating. Although the biomass of some algae (e.g., Scenedesmus, Chlorella,
Coccomyxa, Parachlorella, and Tetraselmis) can be enriched by lutein, in all published
studies, lutein content correlates with the content of chlorophylls. It means that it is a
primary carotenoid. Indeed, lutein is a component of pigment–protein complexes of PSA
[40,41,44] and cannot be accumulated in infinitely large amounts. The accumulation of
lutein as a secondary carotenoid has been observed, for example, in petals of plants from
the Tagetes genus, i.e., Tagetes patula L. and Tagetes erecta L. (Asteraceae). They
accumulate 0.17–5.70 mg pigment per g of dry petal mass [66,67]. There, it is esterified

Figure 3. (a) Main secondary carotenoids of carotenogenic microalgae; (b) chloroform
extracts of carotenogenic microalgae after induction of carotenoid accumulation (from
left to right: Deasonia granata, Pseudospongiococcum protococcoides, Haematococcus rubicundus,
Coelastrella aeroterrestrica).

Based on the reported data, it seems that all eukaryotic algae accumulate either
β-carotene or ketocarotenoids, derived from it, as secondary (Figure 3a) [8,11,16,28,45,46].
The spectrum of ketocarotenoids includes astaxanthin (with two hydroxyl groups and two
ketogroups) as well as its precursors with 1-2 keto- and 0-2 hydroxyl groups: echinenone,
canthaxanthin, adonixanthin and adonirubin (Figure 3a). Algae accumulate either one
predominant or a mixture of carotenoids. Botryococcus braunii Kützing (Chlorophyta) also
synthesize tetramethylsqualene-conjugated braunixanthines and botryoxanthines which
can be considered as secondary [57,58]; however, patterns of their localization are not
elucidated. Moreover, they have not been sought for practical use; thus, they will not be
considered here. The composition of secondary carotenoids in microalgae dictates the color
of their cells. The same is true for pigment extracts (Figure 3b).

It should be noted that although in some articles, microalgae are proposed as a
source of lutein, e.g., [29,59–65], no reported microalgae could be considered as lutein-
accumulating. Although the biomass of some algae (e.g., Scenedesmus, Chlorella, Coccomyxa,
Parachlorella, and Tetraselmis) can be enriched by lutein, in all published studies, lutein
content correlates with the content of chlorophylls. It means that it is a primary carotenoid.
Indeed, lutein is a component of pigment–protein complexes of PSA [40,41,44] and cannot
be accumulated in infinitely large amounts. The accumulation of lutein as a secondary
carotenoid has been observed, for example, in petals of plants from the Tagetes genus,
i.e., Tagetes patula L. and Tagetes erecta L. (Asteraceae). They accumulate 0.17–5.70 mg pig-
ment per g of dry petal mass [66,67]. There, it is esterified similar to the secondary xantho-
phylls of microalgae [66]. The presence of lutein esterases has not been shown in microalgae.
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3.4. Why Do Microalgae Accumulate Secondary Carotenoids?

The accumulation of secondary carotenoids in algae is a reaction to different stress
factors: bright light, nutrient insufficience and the generation of reactive oxygen species
(ROS) in the medium, osmotic stress, etc. It is reasonable to assume carotenogenesis as a
protective mechanism against adverse environmental conditions [36,43,46,47,52]. Although
secondary carotenoids are powerful antioxidants, their antioxidant properties have not
been shown in algal cells [43,46,68]. Indeed, secondary carotenoids cannot be involved in
the scavenging of ROS, because the main site of their formation is PSA, whereas secondary
carotenoids are not associated with it. Additionally, secondary pigments are not involved in
the epoxidation/de-epoxidation cycles as primary ones. Most likely, secondary carotenoids
play the role of light filters (sunscreens) decreasing the amount of excessive energy ab-
sorbed by PSA. It should decrease the risk of photodamage [43,68]. Attenuation of the
light absorbed by PSA in the presence of secondary carotenoids has been shown [69,70].
Indeed, they decrease the level of photodestruction under stress [68]. In addition, the
synthesis of carotenoids requires oxidation in the presence of plastid terminal oxidase
and plastoquinone. This process activates an alternative electron transport to decrease
overreduction in the plastid electron transport chain [43].

Understanding the physiological role of secondary carotenogenesis in algae is impor-
tant to explain their distribution. It is an effective protective mechanism, enabling them to
dwell in habitats with adverse or even extreme conditions where all vital activity should be
considered as fading [71–77].

3.5. Where Do Carotenogenic Microalgae Live?

Many species of carotenogenic microalgae are known as aeroterrestrial, i.e., they
live on the border of a solid phase and air. Such an environment is characterized by a
combination of adverse abiotic factors. High levels of solar radiation, sharp temperature
changes and extreme water regime (frequent drying and temporal hydration in the rain) are
among them [78]. These algae can be found as a reddish or orange plaque on the surface
of stones, tree bark or human buildings [78,79]. They are typical for biological soil crusts
(assemblages of living organisms on soil or rock surfaces in arid and semiarid areas) [74].
For example, such crusts were studied in the Alps [74]. Carotenogenic algae are common
in small temporary drying ponds, such as shallow cavities of rock baths on the coasts of
the seas, ponds and ornamental bird baths. There, they can form highly organized biofilms
with other microorganisms [80]. To survive under harsh environmental factors, aeroter-
restrial algae have effective protective mechanisms, such as ROS-neutralizing enzymes,
an ascorbate–glutathione cycle, non-photochemical quenching of the excited chlorophyll
states and systems of reparation of DNA and other cell components [74,78,81,82]. Speaking
about their protective mechanisms, the separately ultrastructural rearrangements of the
cells should be noted as a result of autophagy. This process ensured the utilization of
damaged cell components and reduction in the size of PSA, which is a main site of photo-
damage [82]. By definition all listed mechanisms are aimed at eliminating damage; hence,
they work when ROS generation and photodamage have occurred. By contrast, shielding
by sunscreens, such as carotenoids, is aimed to prevent light absorption and subsequent
destructive processes [81]. Accumulation of carotenoids leads to pronounced orange or red
coloration of algal cells (Figure 4).
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Figure 4. Representatives of carotenogenic algae inhabiting Europe. (a) Haematococcus lacustris,
scale bar = 10 μm, adapted with permission from [69] © Springer Nature B.V., 2020; (b) Ettlia
carotinosa, scale bar = 5 μm (unpublished); (c) Dunaliella salina, scale bar—not provided, adapted
from [1] © Springer Nature B.V., 2005; (d) Chromochloris zofingiensis, scale bar = 5 μm, adapted
from [83]; (e) Chloromonas krienitzii, scale bar = 10 μm, adapted from [84]; (f) Chlainomonas sp., scale
bar = 10 μm, adapted from [85] © Taylor & Francis Online, 2018; (g) Sanguina nivaloides, scale bar =
5 μm, adapted from [86] © Oxford Academic, 2019; (h) Coelastrella rubescens, scale, bar = 10 μm,
adapted from [70]; (i) Bracteacoccus aggregatus, scale bar = 10 μm, adapted with permission from

Figure 4. Representatives of carotenogenic algae inhabiting Europe. (a) Haematococcus lacustris, scale
bar = 10 µm, adapted with permission from [69] © Springer Nature B.V., 2020; (b) Ettlia carotinosa,
scale bar = 5 µm (unpublished); (c) Dunaliella salina, scale bar—not provided, adapted from [1]
© Springer Nature B.V., 2005; (d) Chromochloris zofingiensis, scale bar = 5 µm, adapted from [83];
(e) Chloromonas krienitzii, scale bar = 10 µm, adapted from [84]; (f) Chlainomonas sp., scale bar = 10 µm,
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adapted from [85] © Taylor & Francis Online, 2018; (g) Sanguina nivaloides, scale bar = 5 µm,
adapted from [86] © Oxford Academic, 2019; (h) Coelastrella rubescens, scale, bar = 10 µm, adapted
from [70]; (i) Bracteacoccus aggregatus, scale bar = 10 µm, adapted with permission from [87]
© Oxford Academic, 2020; (j) Halochlorella rubescens, scale bar = 5 µm, adapted with permission
from [88] © Pleiades Publishing, Ltd., 2022; (k) Tetraëdron minimum, scale bar = 20 µm, adapted
from [89] © Iheringia, Série Botânica, 2016; (l) Deasonia sp., scale bar = 5 µm, adapted with per-
mission from [90]; (m) Chlorosarcinopsis bastropiensis, scale bar = 10 µm, adapted with permission
from [91]; (n) Acetabularia acetabulum, scale bar—not provided, adapted from [92] © Inter-Research
Science Publisher, 2012; (o) Pseudospongiococcum protococcoides, scale bar = 10 µm, adapted from [93]
© Phytocenter, 2013; (p) Protosiphon botryoides, scale bar = 20 µm, adapted with permission from [94]
© Taylor & Francis Online, 2019; (q) Botryococcus braunii, scale bar = 40 µm, adapted from [95];
(r) Golenkinia brevispicula, scale bar = 10 µm, adapted with permission from [96] © Elsevier, 2020;
(s) Euglena sanguinea, scale bar = 20 µm, adapted with permission from [97] © Taylor & Francis
Online, 2021; (t) Trachelomonas volvocina, scale bar 10 µm, adapted from [98] © TÜBİTAK libraries,
2013; (u) Tovellia sanguinea, scale bar = 10 µm, adapted with permission from [99] © Taylor & Fran-
cis Online, 2019; (v) Diacronema vlkianum, scale bar = 5 µm, adapted with permission from [100]
© Elsevier, 2013; (w) Rhexinema sarcinoideum, scale bar = 10 µm, adapted from [101] © Sciendo, 2007;
(x) Trentepohlia jolithus var. yajiagengensis, scale bar = 100 µm, adapted from [102] © PLoS, 2012.

Snow algae inhabit a unique niche, for liquid water between crystals of ice. Their
motile stage moves to the microenvironments with temperature and illumination optimal
for growth [75–77,103,104]. However, for a significant portion of the time these algae
exist as an immotile cyst, also known as “hypnospore” [105–107] resisting the adverse
environmental factors. In some species, transition to the cyst is accompanied by carotenoid
accumulation. Snow algae are characterized by high photostability [103]. This resistance
is explained by high contents of carotenoids and α-tocopherol, as well as phenolic com-
pounds [107,108]. They are distributed in alpine and polar glacial areas, such as the Alps,
Vitosha Mountains, High Tatra Mountains, and Sierra Nevada Mountains. These algae
cause red snow. In some cases, this snow also can have green, gray, brownish, orange or
pink color [73]. This phenomenon plays a notable ecological role. Snow algae decrease the
albedo of snow and ice surfaces, promoting ice melting in polar and alpine regions [31,73].
Snow and ice algae could be a promising object of biotechnology, because of their abil-
ity to grow at low temperatures and produce a spectrum of valuable compounds [73].
However, the low number of deposited strains is a significant disincentive to use them in
biotechnological studies.

Some carotenogenic species inhabit ponds with extreme salt concentrations (up to 6 M
NaCl). They accumulate protective compounds to resist external osmotic pressure. These
algae cause intensive reddish or orange coloration of saline water [1,9,10,54]. These ponds
are present in some European countries, e.g., salt ponds of Monzon (Spain), Marele Lacul
Sărat (Romania), Sasyk and Saki lakes of Crimea (Ukraine).

4. Diversity and Distribution of Unicellular Carotenogenic Algae
4.1. Haematococcus Flotow (Chlorophyceae, Chlamydomonadales)

As was specified above, Haematococcus lacustris (Figure 4a) is one of the most known
carotenogenic algae. It is also published under the name H. pluvialis Flotow, but in 2016
Nakada and Ota [109] showed in a taxonomic study, H. lacustris is a more correct. There are
two other recently described European species of Haematococcus: H. rubens Allewaert and
Vanormelingen, and H. rubicundus Allewaert and Vanormelingen [110]. Astaxanthin is a
predominant carotenoid of Haematococcus spp. (c.a. 99% of total pigment content) (Table 1).
It is deposited in the form of mono- and diesters with fatty acids with predominant
monoesters [47,111].

The biogeography of Haematococcus lacustris is widely studied. It was mentioned in
different countries. Most of this information is summarized from national catalogs of flora
and species checklists in AlgaeBase [30]. The appearance of the microalga was mentioned in
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the United Kingdom, Ireland, Czechia, France, Germany, Ireland, The Netherlands, Norway,
Portugal, Romania, Scandinavia, Slovakia, Spain and Sweden. In more detailed reports,
the strains of H. lacustris were isolated from natural habitats. Allewaert et al. [110] obtained
them from a water puddle on top of a container in Vlissingen (The Netherlands) as well
as from a water puddle in a concrete depression and rainwater barrel in Ghent (Belgium).
Dragoş et al. [112] isolated a H. lacustris strain from a sample of freshwater phytoplankton,
collected from a fishpond near Cefa, Bihor District (Romania). Chekanov et al. [87,113]
obtained a series of strains from the coastal zone of the Kandalaksha bay of the White Sea
(Karelia, European part of Russia): from temporal rock ponds with semi-saline water, dry
crust on the rocks and styrofoam sheets, biofilms in reddish water and water from the upper
layer of a meromictic lake. Gacheva et al. [114] isolated the algae from an old granite bed of
a dried fountain near Rozhen village (Blagoevgrad region, Bulgaria). Chelebieva et al. [115]
reported the strain in the vicinity of the city of Sevastopol (Crimea, Ukraine), as well as
from the European part of Russia (in the vicinity of Adler and mountainous region of the
Central Caucasus). Some of Haematococcus lacustris are deposited to international culture
collections, such as Scandinavian Culture Collection of Algae and Protozoa (SCCAP),
Culture Collection of Algae at the University of Göttingen (SAG), Culture Collection of
Algae at UT-Austin (UTEX), Algae Culture Collection of Kyiv University (ACKU), and
Culture Collection of Autotrophic Organisms (CCALA). In particular, there are strains in
SAG from Harz Mountains, bog pool at Bruchberg, 3000 m a.s.l. (Germany) isolated by
Koch in 15959, from Aneboda (Sweeden) isolated by Pringsheim before 1966, from former
Czechoslovakia, from pond Binai (Zbyny) near Hirschberg (Doksy), Bohemia, 1000 m
a.s.l. (Czechia) isolated by Mainx before 1979, Botanical Garden of the University of Basel,
Basel (Switzerland) isolated by Vischer in 1923, from roof of Botany School, Cambridge
(United Kingdom) isolated by George in 1959 [116–119]. Several strains deposited to SAG
were isolated by Zehnder in 1953: from the metallic holy water font and from the stony
holy water font in the Eggenwil churchyard, isolated from Aargau (Switzerland), from
the holy water font at the Sihlfeld church yard, Zürich (Switzerland), from little “blood
pond” near Samnun, Graubünden (Switzerland) [116,119]. In CCALA, there are strains
obtained from concrete, Březová nad Svitavou (Czechia) isolated by Ettl in 1958, from
pond in Třeboň (Czechia) isolated by Takáčová in 1983, from pool in Veverská Bítýška
(Czechia), isolated by Přibyl in 2005, from puddle in Brno (Czechia) isolated by Přibyl in
2009. A cold-tolerant strain of Haematococcus lacustris was isolated from Blomstrandhalvøya,
Svalbard (Norway) [120].

An authentic strain of H. rubens was obtained from a water puddle on white bucket
(Ghent, Belgium) [110]. The second known strain was isolated from supralittoral rock pool,
Tvärminne (Finland) by Droop in 1951 [119]. Most strains of H rubicundus were obtained in
Central Europe: from a water puddle on a white chair (Třeboň, Czechia), from a grey rain
water barrel (Wageningen, The Netherlands), from water puddle on a white bucket and a
rain water barrel (Ghent, Belgium), from a water puddle on green trash bin (Merelbeke,
Belgium), from water puddle in white porcelain sink (Aaigem, Belgium) [110]. One was
sampled from the dry crust on the rocks in the coastal zone of the Kandalaksha bay of the
White Sea (Karelia, European part of Russia) [87]. One was isolated from the small water
puddle in rock depression (Province of Pescara, Italy) [110]. The data on distribution of
Haematococcus spp. in Europe are summarized in Table 2.

4.2. Ettlia Komárek (Chlorophyceae, Chlamydomonadales)

Ettlia carotinosa Komárek (Figure 4b) is one of the “non-canonical” carotenogenic green
algae. Its former name is Neochloris wimmeri (Hilse) Archibald and Bold. Although it is
considered as a member of a separate genus, in recent phylogenetic studies, it was shown
that Ettlia carotinosa was close to the Haematococcus clade [121]. It was concluded that
there is no need to transfer Ettlia carotinosa to the Haematococcus genus. Data on more
strains of Ettlia are required. The predominant secondary carotenoid of the microalga is
astaxanthin; however, an admixture of c.a. 10–15% adonirubin was observed [122] (Table 1).
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Xanthophylls are deposited mainly in the form of esters with fatty acids; astaxanthin
monoesters are predominant [122]. There are also small amounts of canthaxanthin and
β-carotene [122,123]. The maximal carotenoid content after carotenogenesis induction in
Ettlia carotinosa is as high as 2.1% of the culture dry mass [124].

Table 1. Main secondary carotenoids accumulated in carotenogenic algae found in Europe.

Species Phylum Order Predominant Secondary Carotenoid

Acetabularia acetabulum Chlorophyta Dasycladales Astaxanthin
Botryococcus braunii race A Chlorophyta Trebouxiales Astaxanthin
Botryococcus braunii race B Chlorophyta Trebouxiales Echinenone, botryoxanthines, braunixanthines
Botryococcus braunii race L Chlorophyta Trebouxiales Echinenone, and β-carotene

Bracteacoccus aggregatus Chlorophyta Sphaeropleales Astaxanthin, adonirubin, and β-carotene
Bracteacoccus bullatus Chlorophyta Sphaeropleales Echinenone and astaxanthin

Bracteacoccus giganteus Chlorophyta Sphaeropleales Astaxanthaxanthin and canthaxanthin
Bracteacoccus minor Chlorophyta Sphaeropleales Astaxanthin and canthaxanthin
Chloromonas arctica Chlorophyta Chlamydomonadales NO DATA

Chloromonas brevispina Chlorophyta Chlamydomonadales NO DATA
Chloromonas rosae Chlorophyta Chlamydomonadales NO DATA

Chloromonas rostafinskii Chlorophyta Chlamydomonadales NO DATA
Chlainomonas rubra Chlorophyta Chlamydomonadales Astaxanthin
Chloromonas nivalis Chlorophyta Chlamydomonadales Astaxanthin

Chloromonas hindakii Chlorophyta Chlamydomonadales Astaxanthin
Chloromonas krienitzii Chlorophyta Chlamydomonadales Astaxanthin

Chlorosarcinopsis bastropiensis Chlorophyta Chlamydomonadales Canthaxanthin
Chlorosarcinopsis dissociate Chlorophyta Chlamydomonadales Canthaxanthin
Chromochloris zofingiensis Chlorophyta Sphaeropleales Astaxanthin and canthaxanthin

Coelastrella rubescens Chlorophyta Sphaeropleales Mixture of xanthophylls 1 and α/β-carotene
Coelastrella aeroterrestrica Chlorophyta Sphaeropleales Mixture of xanthophylls 1

Coelastrella terrestris Chlorophyta Sphaeropleales Mixture of xanthophylls 1

Coelastrella oocystiformis Chlorophyta Sphaeropleales Astaxanthin, canthaxanthin, β-carotene
Deasonia granata Chlorophyta Chlamydomonadales Mixture of xanthophylls 1,2

Diacronema vlkianum Haptophyta Pavlovales Astaxanthin
Dunaliella salina Chlorophyta Chlamydomonadales β-carotene
Ettlia carotinosa Chlorophyta Chlamydomonadales Astaxanthin + admixture of adonirubin
Euglena rubida Euglenophyta Euglenales Astaxanthin

Euglena sanguinea Euglenophyta Euglenales Astaxanthin and adonixanthin
Golenkinia brevispicula Chlorophyta Sphaeropleales β-carotene + admixture of astaxanthin
Haematococcus lacustris Chlorophyta Chlamydomonadales Astaxanthin

Haematococcus rubicundus Chlorophyta Chlamydomonadales Astaxanthin
Haematococcus rubens Chlorophyta Chlamydomonadales Astaxanthin
Halochlorella rubescens Chlorophyta Sphaeropleales Canthaxanthin, astaxanthin, (β-carotene)
Protosiphon botryoides Chlorophyta Chlamydomonadales Astaxanthin

Pseudospongiococcum protococcoides Chlorophyta Chlamydomonadales Mixture of xanthophylls 1

Sanguina aurantia Chlorophyta Chlamydomonadales Astaxanthin
Sanguina nivaloides Chlorophyta Chlamydomonadales Astaxanthin
Tovellia sanguinea Dinophyta Gonyaulacales Astaxanthin
Tovellia rubescens Dinophyta Gonyaulacales Astaxanthin

Trachelomonas volvocina Euglenophyta Euglenales Astaxanthin
Tetraëdron minimum Chlorophyta Sphaeropleales Astaxanthin and adonixanthin

Trentepohlia Chlorophyta Trentepohliales β-carotene
Rhexinema sarcinoideum Chlorophyta Ulvophyceae Astaxanthin+ admixture of canthaxanthin

1 Mixture of three or more secondary xanthophylls in the amount of 10% of total pigment content; 2 based on
unpublished data.

An authentic (and single known) strain Ettlia carotinosa SAG 213–4 (subcultures: CCAP
213/4, UTEX 113, ACKU 573–06) was isolated by Mainx from the soil sample collected
in the vicinity of Praha (former Czechoslovakia) before 1954 (exact date is unknown).
Ettlia carotinosa also was mentioned as Neochloris wimmeri in Germany [116,117,122,124]
(Table 2). No other information about distribution of the species is available.
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Table 2. Distribution of carotenogenic algae in Europe based on published data.

Species Country and Region (If Available)

Acetabularia acetabulum Mediterranean and Adriatic Seas

Botryococcus braunii

Cambridge (United Kingdom), Maddingley Brick Pits (United Kingdom) Cheshire (United
Kingdom), Cumbria (United Kingdom), Brittany (France), Côte-d’Or, Morvan region (France),
vicinity of Lingoult (France), Chaumecon Lake and Crescent Lake, Arcachon region (France),

Large Lake of Sanguinet (France), barrier lake of Pareloup (France), Grasmere Lake, vicinity of
Amieiro (Portugal); Ukraine, Ireland, The Netherlands, Norway, Poland, Romania, Russia 1,

Spain, Sweden.

Bracteacoccus aggregatus Yershovskoye Lake, Karelia (Russia 1); Czechia, Germany, Ukraine

Bracteacoccus bullatus Sierra Nevada (Spain), Staro-Berdyansky forestland, Zaporozhye region (Ukraine),
Dnipropetrovsk Oblast (Ukraine); Russia 1

Bracteacoccus giganteus High Ardennes (Belgium); Germany, Russia 1, Ukraine

Bracteacoccus minor Boreč Hill ventaroles (Czechia), Mykhailivska Tsilyna Nature Preserve, Katerynivka (Ukraine);
Poland, Romania, Russia 1

Chloromonas arctica Svalbard Archipelago (Norway) 2

Chloromonas brevispina Tyrol Alps (Austria), Giant Mountains (Czechia), Svalbard Archipelago (Norway) 2

Chlainomonas rubra L’adové Lake in the High Tatras and Gossenkölle Lake in the Tyrolean Alps (Austria), Pirin
Mountains (Bulgaria)

Chloromonas rosae Tyrol Alps (Austria), Boreč Hill ventaroles (Czechia), Giant Mountains (Czechia)

Chloromonas rostafinskii Stara Planina, Central Balkan Mountains (Bulgaria)

Chloromonas nivalis

Alps, Tyrol (Austria), Zheleznitza village, Vitosha Mountains (Bulgaria), Pirin Mountains
(Bulgaria), Stara Planina, Central Balkan Mountains (Bulgaria), High Tatra Mountains (Slovakia),
Sierra Nevada Mountains (Spain), Pyrenees (Spain, France), Giant Mountains (Czechia), Jeseníky

Mountains (Czechia), Mountain Olympus (Greece), Svalbard Archipelago (Norway) 2

Chloromonas hindakii High Tatra Mountains (Slovakia, Poland), Krkonoše and Jeseníky Mountains (Czechia)

Chloromonas krienitzii Sarntal Alps, South Tyrol (Italy), High Tatra Mountains (Slovakia, Poland), North Pindus (Greece)

Chlorosarcinopsis bastropiensis Ukraine

Chlorosarcinopsis dissociata Snake Islands Tract, Kanevsky Natural Reserve, Cherkasy Oblast (Ukraine)

Chromochloris zofingiensis
Ram Oswald near Zofingen (Switzerland), Dalmatia (Former Yugoslavia), Unterengadin
(Switzerland), Ortenberg near Marburg/Lahn (Germany), Firenze (Italy), Sklene Teplice

(Slovakia); Iceland, Croatia, France, Romania, Bulgaria, Russia 1

Coelastrella rubescens Pitschberg mountain, South Tirol (Austria), South Tirol (Italy), Rastorguevo Village, Moskovskaya
Oblast (Russia 1)

Coelastrella aeroterrestrica Pirin Mountains (Bulgaria), Obergurgl, Tirol (Austria), Kandalaksha bay of the White Sea, Karelia
(Russia 1), Odesa Oblast (Ukraine); The Netherlands.

Coelastrella terrestris Sölheimjökull glacier (Iceland), Obergurgl, Tyrol (Austria), Pirin Mountains (Bulgaria), Odesa
Oblast (Ukraine); Czechia, Germany, Italy, The Netherlands, Poland, Russia 1, Slovakia, Romania

Coelastrella oocystiformis Windermere (United Kingdom), Boreč Hill ventaroles (Czechia)

Deasonia granata Praha (Czechia), Gomel (Belarus)

Diacronema vlkianum English Channel (France), sea water Ryde, Isle of Wight, England (United Kingdom). Sea coast
(Portugal), Kühnhausen near Erfurt (Germany); Ireland, Portugal, Romania, Spain

Dunaliella salina

Salt Lake Elton, Volgograd Oblast (Russia 1), Razval, Orenburg Oblast (Russia 1), Arinaga
Saltwork, Monzon (Spain), Gran Canaria (Spain). Kuyalnitsky Liman, Odesa oblast (Ukraine),

Zmievo Lake, sedimentation pond of Heroyskoe salt works, Kherson Oblast (Ukraine),
Genicheskoe Lake, sedimentation pond of Genichesk salt works, Kherson Oblast (Ukraine), IBSS

Siwash bay, Crimea (Ukraine), Filatovskaya salt flat, Crimea (Ukraine), Sasyk Lake, Crimea
(Ukraine), Saki, Crimea (Ukraine), Lacul Sărat (Romania); Germany, Portugal

Ettlia carotinosa Vicinity of Praha (Czechia); Germany
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Table 2. Cont.

Species Country and Region (If Available)

Euglena rubida Branicki Palace, Białystok (Poland)

Euglena sanguinea

Eichenbirkig, Fränkische Schweiz, Bayern (Germany), Spydeberg, Ehrenberg, the county of
Østfold (Norway), vicinity of Debden (United Kingdom); Denmark, Belarus, Bulgaria, Czechia,

Estonia, Hungary, Italy, Latvia, Moldova, The Netherlands, Poland, Romania, Slovakia,
Spain, Ukraine

Golenkinia brevispicula Vicinity of Dortmund (Germany), The Netherlands

Haematococcus lacustris

Rozhen village (Bulgaria), Ghent (Belgium), Cefa, Bihor District (Romania), Bruchberg
(Germany), Aneboda (Sweden), Basel (Switzerland), Aargau (Switzerland), Zürich (Switzerland),

Graubünden (Switzerland), Zbyny, Hirschberg (Czechia), Březová nad Svitavou (Czechia),
Třeboň (Czechia), Veverská Bítýška (Czechia), Brno (Czechia), Sevastopol, Crimea (Ukraine),

Vlissingen (The Netherlands), Svalbard Archipelago (Norway) 2, coastal zone of the Kandalaksha
bay of the White Sea, Karelia (Russia 1), vicinity of Adler and mountainous region of the Central

Caucasus (Russia 1), Cambridge (United Kingdom); Ireland, France, Norway, Portugal,
Slovakia, Spain

Haematococcus rubicundus
Třeboň (Czechia), Wageningen (The Netherlands), Ghent (Belgium), Merelbeke (Belgium),

Aaigem (Belgium) Kandalaksha bay of the White Sea, Karelia (Russia 1), Province of
Pescara (Italy)

Haematococcus rubens Ghent (Belgium), Tvärminne (Finland)

Halochlorella rubescens Vicinity of Bordeaux (France), Buhta Blagopoluchiya, Bolshoy Slovetskii Island (Russia 1), Lake
Solone, Zaporizhzhya Oblast (Ukraine)

Protosiphon botryoides Samara forest, Dnepropetrovsk Region (Ukraine), Františkovy Lázně (Czechia),
Lützel-Breitenborn (Germany); United Kingdom, Ireland, Portugal, Spain

Pseudospongiococcum
protococcoides Windermere (United Kingdom), Arabat Spit, Crimea (Ukraine)

Sanguina aurantia Svalbard Archipelago (Norway) 2

Sanguina nivaloides Ötztal Alps (Austria), Sarntal Alps (Italy), High Tatra Mountains (Slovakia), Alps (Slovenia),
Urner Alps (Switzerland); Svalbard Archipelago (Norway) 2; Norway

Tetraëdron minimum Þórsmörk (Iceland); United Kingdom, Bulgaria, Czechia, France, Germany, Ireland, The
Netherlands, Norway, Portugal, Romania, Russia 1, Slovakia, Spain, Sweden, Ukraine

Tovellia sanguinea Trentino Province (Italy)

Tovellia rubescens Gafanha da Boavista, Ílhavo (Portugal)

Trachelomonas volvocina United Kingdom, Poland; Ireland, Bulgaria, Czechia, Germany, The Netherlands, Romania,
Russia, Scandinavia, Slovakia, Spain, Sweden, Ukraine

Trentepohlia spp. Ubiquitous in Europe

Rhexinema sarcinoideum Institute of Soil Science and Plant Cultivatio near Puławy (Poland), Chelčice, South Bohemia
(Czechia); Ukraine, Russia

1 Only European part of Russia was considered; 2 Formally not related to continental Europe.

4.3. Dunaliella Teodoresco (Chlorophyceae, Chlamydomonadales)

Dunaliella salina (Figure 4c) was also previously known as Dunaliella bardawil Ben-
Amotz and Avron. Although current systematics of the genus Dunaliella is far from a well-
established state [10], the name Dunaliella salina is commonly accepted to denote halophilic
carotenoid producing Dunaliella. This species accumulates exclusively β-carotene as a
secondary carotenoid [1,9,54] (Table 1).

According to AlgaeBase [30], Dunaliella salina was mentioned in Ukraine, Germany,
Portugal, Romania, European parts of Russia, and Spain (Table 2). Recently the strains were
isolated from salt ponds of Monzon (Spain) [125], from salt lakes Elton, Volgograd Oblast
(European part of Russia), and Razval, Orenburg Oblast (European part of Russia) [126,127].
The strain CCAP 19/39 was obtained from a sea salt sample from Arinaga Saltwork,



Mar. Drugs 2023, 21, 108 13 of 31

Gran Canaria (Spain) (Table 2). The alga was isolated from Lacul Sărat (Romania) [128].
It is plhylogenetically close to Dunaliella salina [127] isolated and deposited to the SAG
collection [116]. Many strains were isolated in Ukraine: from Zmievo Lake (Kherson Oblast),
from a sedimentation pond of Heroyskoe salt works (Kherson Oblast), from Genicheskoe
Lake (Kherson Oblast), from sedimentation pond of Genichesk salt works (Kherson Oblast),
from IBSS Siwash Bay (Crimea), from Filatovskaya salt flat bay, behind the dam of salt
works of soda plant (Crimea), and from Sasyk Lake, sedimentation pond of salt works
of cooperative “Halite” (Crimea), from evaporation ponds, Saki (Crimea) [37,129], from
Kuyalnitsky Liman (Odesa Oblast) [130]. The presence of the microalga also was noticed
on the Arabat Spit, Crimea (Ukraine) [131] (Table 2).

4.4. Chromochloris Kol and Chodat (Chlorophyceae, Chlamydomonadales)

Chromochloris zofingiensis (Dönz) Fucíková and Lewis (Figure 4d) is also known under the syn-
onyms Chlorella zofingiensis Dönz, Muriella zofingiensis (Dönz) Hindák, Mychonastes zofingiensis (Dönz)
Kalina and Puncochárová, Chromochloris cinnabarina Kol and Chodat, Bracteacoccus cinnabarinus
(Kol and Chodat) Starr, and Bracteacoccus minutus Schwarz [29,30,132,133]. It is widely studied as
a possible industrial source of carotenoids [16,83,134–137]. Its main secondary carotenoids
are astaxanthin (predominantly in the form of monoesters with fatty acids) and echi-
nenone [62,123,133,136,138] (Table 1). Astaxanthin content varies from 0.1 to 1.3% of cell
dry mass depending on culturing conditions [134,139]. Significant amount of adonixanthin
(predominantly in the form of diesters with fatty acids) is also observed [136]. Notably,
Chromochloris is characterized by a high content of free astaxanthin (compared to other
carotenogenic algae) [136]. It could be explained by independence of astaxanthin and fatty
acid biosynthesis in this microalga [140]. This distinguishes Chromochloris zofingiensis from
Haematococcus lacustris, where cerulenin, an inhibitor of fatty acid biosynthesis, blocks
astaxanthin accumulation [141].

There are some data on isolated European strains of Chromochloris zofingiensis. For
example, they have been deposited to SCCAP, SAG, UTEX, ACKU, and CCALA. They were
isolated from soil samples from Ram Oswald near Zofingen, 1000 m a.s.l. (Switzerland) [132],
from soil of Dalmatia (Former Yugoslavia) [132], from soil of Unterengadin, 8000 m a.s.l.
(Switzerland) [142], from sample from cave wall (France) (unpublished data, GenBank
accession numbers OK217227.1, FN597652.1), from a bark of a deciduous tree, Ortenberg
near Marburg/Lahn (Germany) by Czygan in 1963 [116] (Table 2). The strains isolated
from Firenze (Italy) and Sklene Teplice (Slovakia) were deposited to CCALA (GenBank
accession number is MW075310.1). Chromochloris zofingiensis was mentioned in Slovakia,
Romania, and the European part of Russia [30] (Table 2).

4.5. Chloromonas Gobi (Chlorophyceae, Chlamydomonadales)

The snow microalgae Chloromonas nivalis (Chodat) Hoham and Mullet, Chloromonas krienitzii
Matsuzaki and Nozaki (Figure 4e) and Chloromonas hindakii Procházková and Remias accu-
mulate secondary carotenoids [51,76,84,107,143–145]. The genus Chloromonas should also
include “Scotiella cryophila Chodat” found in Austrian Alps (Tyrol, district Imst at Kühtai Val-
ley, between Schwarzmoos and Gossenkö lle Lake) [146]. Predominant carotenoid of stud-
ied Chloromonas spp. is astaxanthin [51,76,84,107,143–145] (Table 1). In Chloromonas nivalis
it is deposited mainly in the form of fatty acid monoesters [147] and diglycosides with
fatty acid radicals [51]. Astaxanthin content in this microalga is c.a. 20.85 mg per 1 mg of
chlorophyll a [107].

Distribution of Chloromonas spp. microalgae has been thoroughly reviewed by Hoham
and Remias [73]. Chloromonas nivalis inhabits alpine snow. It causes appearance of red or
in some cases green-, brownish-, orange- or pink-colored snow [73,143,145,148–150]. This
species also includes previously described Scotiella tatrae Kol (currently Chloromonas nivalis
subsp. tatrae Procházková, Remias, Řezanka and Nedbalová) [144,151] It was isolated from
snow samples at Kühtai, in the proximity of Gossenkölle Lake, Tyrol Alps (Austria) [143],
from snow samples in the vicinity of Zheleznitza village, at the edge of timber line, c.a.
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1900 m a.s.l., Vitosha Mountains (Bulgaria) [152], from a shore of Capie Lake [151], from
a shore and ice cover of Okrúhle Lake [153] in High Tatra Mountains (Slovakia) [144],
from Tyrol, Alps (Austria) [107], from Sierra Nevada Mountains (Spain) [154], from Gi-
ant Mountains (Czechia) at altitudes 730–1545 m a.s.l. [149], on Tiefenbach Glacier, Alps,
Tyrol, 2980 m a.s.l. (Austria) [155], in Kühtai, 2300 m a.s.l., Mountain Schönwieskopf,
near Obergurgl, Ötztal, 2350 m a.s.l. (Austria) [156], in snow fields persisted in the Stara
Planina, Central Balkan Mountains (Bulgaria) [157], Pirin Mountains, 1996–2930 m a.s.l.
(Bulgaria) [51,158], on the Mountain Olympus, different altitudes (Greece) [159], the
Pyrenees (France, Spain) [76,77], Jeseníky Mountains (Czechia) [144] (Table 2). Another
cryophylic caotenogenic microalga, Chloromonas hindakii, was found in the samples of snow
from the High Tatra Mountains (Slovakia, Poland), Krkonoše, and Jeseníky Mountains
(Czechia) [144] (Table 2). Chloromonas krienitzii was sampled from the snow in the Sarn-
tal Alps, South Tyrol (Italy), High Tatra Mountains (Slovakia, Poland) and from North
Pindus (Greece) [145] (Table 2). Procházková et al. [160] described Chloromonas kaweckae
Procházková, Matsuzaki, Řezanka, Nedbalová and Remias in the High Tatras (Slovakia)
tolerant to high light intensities. Diversity of Chloromonas was also studied in the Svalbard
Archipelago (Norway) [73] (Table 2).

There are also reports about other snow carotenogenic Chloromonas spp. (Chloromonas
brevispina (Fritsch) Hoham, Roemer and Mullet, Chloromonas rosae (H. and O. Ettl) Ettl,
Chloromonas rostafinskii (Starmach and Kawecka) Gerloff and Ettl), and Chloromonas arctica
Barcyte and Hodač [73,149,156–158,161,162] (Table 2), their carotenoid composition is
poorly studied. It should be noted that, although the samples of snow algae were collected
and reported, in most cases there is no information that they were deposited to culture
collections as strains. Only a few carotenogenic strains have been deposited. For example,
Chloromonas rosae from High Tatra Mountains is stored in SAG, ACKU and UTEX [116,117].

4.6. Chlainomonas Christen (Chlorophyceae, Chlamydomonadales)

Chlainomonas rubra (Stein and Brooke) Hoham is another species of European snow
carotenogenic algae. Its predominant carotenoid is astaxanthin. Procházková et al. [85]
studied pigment composition on Chlainomonas from High Tatras and Austrian Alps pop-
ulations (Figure 4f). Their secondary carotenoid contents were 93.0% and 88.5% of the
total pigment pool, respectively, with astaxanthin as a predominant carotenoid (Table 1).
Astaxanthin content was 44.5% and 31.9% of the total pigment pool in the High Tatra
Mountains and Austrian Alps, respectively. Most likely, astaxanthin was deposited mainly
in the esterified form [85]. Remias et al. [147] studied Austrian strains Chlainomonas sp.
DR53 and Chlainomonas sp. AS02. Their predominant carotenoid was also astaxanthin.
It was deposited predominantly in the form of diesters with fatty acids (but not their
glycosides) [147].

Sumarizing the data on Chlainomonas distribution in Europe, Chlainomonas sp. was
sampled in the vicinity of Gossenkölle lake, Tyrol, 2416 m a.s.l. (Austria), Hallstätter
Glacier and Upper Austria (Austria) [147]. Chlainomonas rubra samples were collected in the
L’adové Lake in the High Tatras and Gossenkölle Lake in the Tyrolean Alps (Austria) [85],
Tyrol, Alps [163] and Pirin Mountains, 1996–2930 m a.s.l. (Bulgaria) [158] (Table 2). It
seems to be, there are currently no carotenogenic strains deposited into public collections
of international value.

4.7. Sanguina Leya, Procházková and Nedbalová (Chlorophyceae, Chlamydomonadales)

Snow algae Sanguina nivaloides Procházková, Leya and Nedbalová (Figure 4g) and
Sanguina aurantia Leya, Procházková and Nedbalová were recently described [86]. They
are responsible for the red and orange coloration of snow, respectively [86]. The genus
Sanguina is close related to Chloromonas [86]. Astaxanthin is the most abundant secondary
carotenoid of Sanguina (72 ± 9.9% and 91.7 ± 0.9% of all pigments in Sanguina aurantia
and Sanguina nivaloides, respectively) [164] (Table 1). Sanguina nivaloides is characterized
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by cosmopolitan distribution, whereas Sanguina aurantia has been found in Arctic and
Subarctic regions [86].

The algae were collected from samples of snow from Haferkarlespitze, High Tauern,
Kühtai, Ötztal Alps (Austria), from Dolomites, Sarntal Alps (Italy), from High Tatra Moun-
tains (Slovakia), from Alps (Slovenia) and from Urner Alps (Switzerland) [86] (Table 2).
Only Sanguina nivaloides was found in continental Europe by Procházková et al. [86],
Sanguina aurantia was sampled only on the Svalbard Archipelago (Norway) (Table 2). No
strains of Sanguina are available in culture, and hence, their life cycles, which should include
migrating flagellates, are unknown [164].

4.8. Coelastrella Chodat (Chlorophyceae, Sphaeropleales)

Members of the genus Coelastrella are also known as carotenoid producers. Carotenogenic
alga Coelastrella rubescens (Vinatzer) Kaufnerová are Eliás [70,165] (Figure 4h) was previ-
ously related to the genus Scotiellopsis, therefore also known under a former synonym
Scotiellopsis rubescens Vinatzer [166]. The same is true about Coelastrella terrestris (Reisigl)
Hegewald and N.Hanagata [166], which also accumulates carotenoids [167]. Carotenogen-
esis also has been reported for European strains of Coelastrella aeroterrestrica Tschaikner,
Gärtner and Kofler [87]. Coelastrella spp. are characterized by a diverse composition of
secondary carotenoids. Coelastrella rubescens contains comparable amounts of different ke-
tocarotenoids (adonixanthin, echinenone, canthaxanthin, astaxanthin) as well as α-carotene
and β-carotene [70,165] (Table 1). Coelastrella aeroterrestrica [87] and Coelastrella terrestris [167]
accumulate a mixture of secondary xanthophylls. Coelastrella oocystiformis (Lund) Hege-
wald and Hanagata (formerly Scotiellopsis oocistiformes Lund) accumulates predominantly
astaxanthin with admixtures of β-carotene and canthaxanthin [123,168] (Table 1). Astaxan-
thin content under nitrogen starvation and high light in this species is c.a. 1% of cell dry
mass [168].

Coelastrella spp. are aeroterrestrial and soil algae, they are found in peat pools,
Sphagnum beds, as a crust on biotic or abiotic surfaces, where they form orange or red-
dish colonies. Characterized strains of Coelastrella rubescens were isolated from soil on a
Pitschberg mountain, 2300 m a.s.l., South Tirol (Austria) [169], from soil in South Tirol
(Italy) [170] and from the surface of bark from an apple tree (Malus × domestica) in Ras-
torguevo Village, Moskovskaya Oblast (European part of Russia) [70] (Table 2).

Coelastrella terrestris was noted in Europe: Germany, Italy, The Netherlands, Poland,
European part of Russia, Slovakia, and Romania [30]. The strains of Coelastrella terrestris
were isolated in the foreland of Sölheimjökull glacier from a small brook “where macro-
scopic mucilaginous mats of reddish cyanobacteria dominated” (Iceland) [167], from soil in
Czechia [171], from alpine soil near the village Obergurgl, Tyrol (Austria) [172], and from
soils in Pirin Mountains (Bulgaria). It was found in the soil crusts from sand dunes of the
Danube Delta, Odesa Oblast (Ukraine) [173] (Table 2).

Coelastrella aeroterrestrica was reported from soils in Pirin Mountains (Bulgaria) [174],
soils of Alpine grassland and ski slopes near the village Obergurgl, Tirol (Austria) [175],
from reddish crust on a piece of styrofoam, Kandalaksha bay of the White Sea, Karelia (Eu-
ropean part of Russia) [87]. This species also was mentioned in The Netherlands [30]. It was
found in the soil crusts from sand dunes of the Danube Delta, Odesa Oblast (Ukraine) [173]
(Table 2).

The strain Coelastrella sp. S6 [176] isolated from an open pond in the Liège region
(Belgium), Coelastrella sp. BGV from a metal tub found in the village Varvara (Bulgaria) [177]
and the strain Coelastrella sp. FGS-001 sister to the clade C. thermophila var. globulina Song,
Liu, Liu and Hu from a foliose, land-living colony of Nostoc commune in Ås, Akershus
County (Norway) [178] (Table 2).

An authentic strain of Coelastrella oocystiformis was isolated from a rock face near
the Freshwater Biological Associaton’s laboratory in Windermere (United Kingdom) by
Fogg before 1957 (exact date is unknown) [116]. Its distribution was studied in Boreč Hill
ventaroles (Czechia) [162] (Table 2).
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4.9. Bracteacoccus Tereg (Chlorophyceae, Sphaeropleales)

Three strains of Bracteacoccus have been reported producing carotenoids: Bracteacoccus
minor (Schmidle ex Chodat) Petrová [133,179,180], Bracteacoccus giganteus Bischoff and
Bold [180], Bracteacoccus aggregatus Tereg (former synonym Bracteacoccus cohaerens Bischoff
and Bold) (Figure 4i) with the maximal carotenoid content of 3.0% of cell dry mass [181],
and Bracteacoccus bullatus Fuciková Flechtner and Lewis [182]. In Bracteacoccus minor and
Bracteacoccus giganteus, astaxanthin is a predominant carotenoid with an admixture of
canthaxanthin [133,179,180] (Table 1). Its total carotenoid content reaches 1.0% of cell dry
mass [179]. Bracteacuccus aggregatus accumulates a mixture of astaxanthin, adonirubin
and β-carotene [181]. Bracteacoccus bullatus contains echinenone and astaxanthin [182]
(Table 1). As a rule, Bracteacoccus spp. accumulate hydroxylated xanthophylls mainly in the
form of esters with fatty acids with a predominance of astaxanthin diesters [179,181], but
Bracteacoccus giganteus accumulate monoesters predominantly [180].

Carotenogenic strains of Bracteacoccus aggregatus, Bracteacoccus bullatus, Bractracoccus giganteus,
and Bracteacoccus minor were found in Europe. Bracteacoccus bullatus and Bracteacoccus aggregatus
were noted in Czechia, Germany, European part of Russia, and Ukraine [30]. Carotenogenic
strain of Bracteacoccus aggregatus was isolated from the water of the Yershovskoye Lake
(the flow through) with the salinity of 6‰ in the coastal zone of the Kandalaksha bay of
the White Sea, Karelia (European part of Russia) [87] (Table 2). The strain of Bracteacoccus
minor was obtained from a snow sample in Sierra Nevada Mountains (Spain) [182]. The
microalga was also found in the Wyżyna Krakowsko Wieluńska upland, it was found
in Cave Łabajowa, Cave Żarska, Cave Głęboka, Cave Zbójecka, Cave Ciemna, and Cave
Pustelnia (Poland) [183] and in caves Grott de Remouchamps and Grotte gauche de Fonds
de Forêt (Belgia) [184]. Kostikov et al. noted these algae in Carpathians and Crimean Moun-
tains (Ukraine) [185]. It was found in Mykhailivska Tsilyna Nature Preserve, Katerynivka
(Ukraine) [186] (Table 2). Distribution of Bracteacoccus minor was studied in Boreč Hill
ventaroles (Czechia) [162]. The strain of Bracteacoccus giganteus was isolated from the acidi-
fied brown soil in spruce forest, experimental site Waroneu, High Ardennes (Belgium) by
Kostikov in 1996 and deposited to ACKU [117] (Table 2). Carotenogenic strain of Bractea-
coccus bullatus was isolated from a snow sample, Sierra Nevada (Spain) by Cepák in 2010
and deposited to CCALA [154,182], from the locust plantation of the Staro-Berdyansky
forestland, Zaporozhye region (Ukraine) [187], and from the Robinia forest, Dnipropetrovsk
region (Ukraine) [188] (Table 2).

4.10. Halochlorella Dangeard (Chlorophycee, Sphaerapleales)

Halochlorella rubescens Dangeard is also known under former synonyms Chlorella emersonii
var. rubescens (Dangeard) Fott, Lochead and Clemençon, and Chlorella fusca var. rubescens
(Dangeard) Kessler, Czygan, Fott and Nováková) (Figure 4j) It is well known as a carotenoid-
accumulating organism. Carotenoid composition and content for this alga depends on
strain and/or culturing conditions. Jo et al. [189] reported that the main secondary
carotenoids were canthaxanthin and astaxanthin (Table 1). Their contents after caroteno-
genesis induction are c.a. 1.8 and 1.2% of cell dry mass, respectively. In another work,
carotenoid content was 1.9–2.2% of cell dry mass with the predominance of β-carotene,
astaxanthin, and canthaxanthin [190].

The data on distribution are scarce. The authentic strain SAG 5.95 (subcultures ACKU
647–06, CCAP 232/1) [116,117] was isolated from a culture of brown alga near Bordeaux
(France) [191] (Table 2). One strain was isolated from the sample of water from the littoral
of the Buhta Blagopoluchiya Bay, Bolshoy Slovetskii Island (European part of Russia), Gen-
Bank accession numbers OP810940.1 and OP810416.1 [88] (Table 2). It was also mentioned
on the coast of the Salt Lake Solone, Zaporizhzhya Oblast (Ukraine) [192] (Table 2).

4.11. Tetraëdron Kützing (Chlorophyceae, Sphaeropleales)

The microalga Tetraëdron minutum (Braun) Hansgirg (Figure 4k) has been recently
reported as a carotenoid producer. This unicellular chlorophyte is a part of phytoplankton,
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can be adhered to submerged surfaces. It inhabits ponds and small lakes [30]. After induc-
tion by a salt stress (c.a. 150 Pa), it accumulates 61.1% astaxanthin and 38.9% adonixanthin
as secondary carotenoids [193] (Table 1).

The microalga Tetraëdron minimum is commonly distributed in small freshwater ponds
and in seawater. It was mentioned in the United Kingdom, Ireland, Bulgaria, Czechia,
France, Germany, Ireland, The Netherlands, Norway, Portugal, Romania, European part of
Russia, Slovakia, Spain, Sweden, and Ukraine [30] (Table 2). A single strain with described
carotenoid accumulation was isolated from a wet grave by dripping water close to a steep,
sun-exposed slope at Þórsmörk (Iceland) [193] (Table 2).

4.12. Deasonia Ettl and Komárek (Chlorophyceae, Chlamydomonadales)

Deasonia is a genus of green microalgae poorly studied in terms of carotenogenesis. The
fact of carotenoids accumulation has been noticed for Deasonia granata [194] and the strain
Deasonia sp. NAMSU 934/2 [90] (Figure 4l). No data have been published on the carotenoid
composition of these strains. Based on the absorbance spectra of pigment extracts [90],
Deasonia sp. NAMSU 934/2 accumulates ketocarotenoids under stress conditions. Its
predominant carotenoid seems to be astaxanthin (unpublished data).

The strain Deasonia sp. CALU 934 was isolated from the soil samples on the shore of a
lake in the Gvardeyskoye Settlement, Leningrad Oblast, European part of Russia [90,195].
The strain defined as Deasonia granata ACKU 566–06 (authentic strain of the genus) was
isolated by Pringsheim from soil in the vicinity of the city of Praha (former Czechoslo-
vakia) [116,117], the strain Deasiona garanata ACSSI 150 was isolated from the soil in Gomel
(Belarus) [196] (Table 2).

4.13. Chlorosarcinopsis Herndon (Chlorophyceae, Chlamydomonadales)

The microalgae from the Chlorosarcinopsis genus are considered as carotenoid-producing, al-
though data on carotenoid composition is poor. They produce a mixture of ketocarotenoids
with a predominance of canthaxanthin [91] (Table 1). Carotenogenesis was mentioned in
Chlorosarcinopsis bastropiensis Groover and Bold [91,197] (Figure 4m) and Chlorosarcinopsis dissociata
Herndon [197,198] inhabiting Europe.

Chlarosarcinopsis dissociata and Chlorosarcinopsis bastropiensis were mentioned in Ukraine,
especially in Mountain Crimea [30,199]. Two strains of Chlorosarcinopsis dissociata were
isolated from the forest soil in the Snake Islands Tract, Kanevsky Natural Reserve, Cherkasy
Oblast (Ukraine) by Demchenko and deposited to ACKU [117] (Table 2). The strains of this
genus were isolated from the soil samples in Ukraine. The strain of the microalga of un-
known origin was deposited to ACKU [117]. Several strains defined as Chlorosarcinopsis sp.
isolated from different sites in Ukraine also were deposited to the same collection [117]. No
data on European strains of this species in other collections (Table 2).

4.14. Acetabularia Lamouroux (Ulvophyceae, Dasycladales)

Little is known about the carotenoid accumulating Acetabularia acetabulum (L.) Silva
previously known as Acetabularia mediterranea Lamouroux. In fact, the siphonal macroscopic
thallus of Acetabularia is represented by one large uninucleate cell with a complex shape
(Figure 4n). Accumulation of astaxanthin by this organism has been reported in two works:
in 1967 and in 1986 [200,201]. Since that time, this topic has been of no interest to the
researchers. Besides astaxanthin, it also contains 3-hydroxyechinenone, adonixanthin,
adonirubin and “unknown yellow pigment” [200] (Table 1). Currently, Acetabularia is not
considered as a source of carotenoids. However, it could serve as a source of astaxanthin
for marine animals eating algae in the wild [92,202].

Acetabularia acetabulum is a marine alga distributed in the Mediterranean and Adriatic
Seas [30]. The presence of astaxanthin has been recorded for the samples obtained in the
Adriatic Sea, Sipan Island, in the vicinity of Dubrovnik (former Yugoslavia) [201] and in
the Stazione Zoologica Naple (Italy) (Table 2).
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4.15. Pseudospongiococcum Gromov and Mamkaeva (Chlorophyceae, Chlamydomonadales)

Pseudospongiococcum protococcoides Gromov and Mamkaeva (Figure 4o) is a little-known
species of unicellular algae with the ability to accumulate secondary carotenoids [93,203].
The strain was proposed as a potential source of these pigments. Its total carotenoid content
reaches 0.4% of cell dry mass, which is relatively low. However, it is characterized by
high growth rate, therefore is considered as a prospective carotenoid producer [93]. It
accumulates predominantly ketocarotenoids [203] (Table 1).

Single known strain of Pseudospongiococcum protococcoides CALU 221 (GenBank acces-
sion numbers (MZ126559.1, KU057947.1) was isolated from rock face near the Freshwater
Biological Associaton’s laboratory in Windermere (United Kingdom) by Fogg in 1957 [204]
(Table 2). No data about distribution. In one report, the microalga was also noticed on the
Arabat Spit, Crimea (Ukraine) [131] (Table 2).

4.16. Protosiphon Klebs (Chlorophyceae, Chlamydomonadales)

Secondary carotenogenesis were studied in Protosiphon botryoides (Kützing) Klebs [205]
(Figure 4p). Its total carotenoid content is c.a. 1.7% of cell dry mass [168]. The main sec-
ondary carotenoid is astaxanthin in the form of mono- and diesters with fatty acids [123,168]
(Table 1). As in most other carotenogenic microalgae, induction of carotenogenesis in previ-
ous studies was induced by nitrogen starvation and high light [168].

Carotenoid producing Protosiphon botryoides is a soil alga. Its strains were isolated
from the soil of the floodplain birch-ash grove of the Samara forest, Dnepropetrovsk Region
(Ukraine) [206], from soil in Františkovy Lázně, 5500 m (Czechia) by Pringsheim and from
soil from massdevelopment on field on red sandstone, Hessen, Biebergemuend/Spessart,
OT Lützel-Breitenborn (Germany) [116], from soil (Czechia) [171] (Table 2). It was also
noticed in the United Kingdom, Ireland, Czechia, Portugal, Spain [30] (Table 2).

4.17. Botryococcus Kützing (Trebouxiophyceae, Trebouxiales)

Botryococcus braunii is a unicellular alga forming colonia with botryoid organization
(Figure 4q). It is able to accumulate secondary carotenoids [95,207–209]. Its strains are
divided into three different races, namely A, B, and L, distinguished in terms of accumulated
secondary metabolites [209–211]. These races are characterized by different carotenoid
profiles [209,210,212]. Only race A accumulates astaxanthin (Table 1), whereas the biomass
of races B and L is enriched by echinenone. Race L is characterized by an increased
amount of β-carotene, whereas race B contains a higher amount of echinenone (up to 73%
of total carotenoid content) (Table 1). In addition, race B accumulates botryoxanthines
A and B, α-botryoxanthine (10–11% of total carotenoids), as well as braunixanthines 1
and 2 (23% of total carotenoids) (Table 1). Biomass of race A is also enriched by the
primary carotenoid lutein. It seems to be that secondary carotenoids are deposited in
Botryococcus cells in lipid bodies as in other carotenogenic algae, but it can excrete them
from the cytoplasm to the extracellular matrix by the external pressure [211] (Figure 4q).
It can facilitate pigment extraction. Total carotenoid content in Botryococcus braunii at the
end of the culturing varies from 0.25% to 0.55% of cell dry mass depending on strain
and culturing conditions [208,210,212], that is lower than in some other carotenogenic
representatives, such as Haematococcus, Dunaliella, Coelastrella, Pseudospongiococcum, and
Bracteacoccus (see above).

The species is abundant in brackish lakes, reservoirs, and freshwater bodies [209].
The strains of Botryococcus braunii were isolated from Madingley Brick Pits, Cambridge
(United Kingdom) [213,214], from an extensive orange bloom floating on the surface of
Oakmere, Cheshire, England (United Kingdom) [215], from water samples of the lake
of Coat ar Herno, in Brittany (France) [216], a barrier lake near Grosbois-en-Montagne,
Côte-d’Or, Morvan region (France) [217]. Samples were also taken from a small pool
near Lingoult, two barrier lakes, Chaumecon and Crescent in Arcachon region, Large
Lake of Sanguinet, Barrier Lake of Pareloup (France) [218], from Grasmere Lake, Cumbria
(United Kingdom), and from a small pool near Amieiro (Portugal) [219,220]; one strain was
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isolated in Ukraine [221] (Table 2). It was noted in Ireland, Czechia, Germany, Ireland, The
Netherlands, Norway, Poland, Romania, the European part of Russia, Spain, Sweden [30]
(Table 2). Botryococcus braunii is widespread in water bodies in Ukraine [222] (Table 2).

4.18. Golenkinia Chodat (Chlorophycee, Sphaerapleales)

Rearte et al. [96] studied the microalgae Golenkinia aff. brevispicula Hegewald and
Schnepf (Figure 4r) as a possible source of carotenoids. Under inductive conditions accu-
mulation of β-carotene with an admixture of astaxanthin (c.a. 10% of total carotenoids)
is observed (Table 1). Maximal carotenoid content is c.a. 0.25% of culture dry mass. In
a single found work on carotenoid production in the strain FAUBA-3 of Golenkinia aff.
brevispicula [96], salt stress (osmotic pressure c.a. 3 kPa) was used for induction of caroteno-
genesis. It seems that the stress effect was not sufficiently intensive. Indeed, effective
carotenoid accumulation is accompanied by a strong reduction in PSA and photosynthetic
activity [223]. However, it was not the case for Golenkinia aff. brevispicula under salt stress:
significant amounts of primary carotenoids (lutein, violaxanthin, and zeaxanthin) and non-
zero parameters of primary photochemistry [96]. Most likely, low yield of the pigments can
be improved by enhancing the stress, for example by nutrient deprivation.

The strain Golenkinia aff. brevispicula FAUBA-3 is not European. It was isolated
in Argentina [224]. However, there is one European strain, Golenkinia aff. brevispicula
SAG 4.81 [225] isolated from a pond near Dortmund (Germany) by Jeeji-Bai in 1980 with
untapped potential for carotenoid production. It was deposited to SAG. According to
AlgaeBase, Golenkinia brevispicula was mentioned in The Netherlands [30] (Table 2).

4.19. Euglena Ehrenberg (Euglenophyceae, Euglenales)

Euglena is phylogenetically far from most algae accumulating secondary carotenoids.
Chlorophytes and euglenophytes are related to different supergroups of the Eukaryotic
Tree of Life, Diaphoretickes and Discoba, respectively [226]. Some Euglena members
accumulate secondary carotenoids. Although the technology of industrial culturing of them
for carotenoid production has not been developed, Euglena spp. are promising as a source
of these pigments [227,228]. Due to the high diversity of euglenoid metabolic pathways
they are also proposed as a source of other valuable compounds [227]. Euglena rubida Mainx
and Euglena sanguinea Ehrenberg (Figure 4s) are the most referenced within the context of
carotenoid accumulation. Some of them cause red blooms of freshwater ponds [97,229,230].
Most abundant carotenoid of Euglena rubida is astaxanthin (68.5% of total carotenoid
amount), another major pigment is mutatoxanthin with minor fractions of others [231]
(Table 1). Euglena sanguinea predominantly accumulates predominantly astaxanthin (up to
75%) (Table 1). It also contains detectable amounts of the esters of astaxanthin precursors,
adonixanthin and adonirubin [229]. Adonixanthin content is also significant, i.e., 13% [229].
Based on the published data, astaxanthin is deposited mainly in the form of fatty acid
diesters [229,231]. Some strains of euglenophytes produce the ichthyotoxin euglenophycin,
which causes fish mortalities in freshwater aquaculture systems [232]. Certain strains
of Euglena sanguinea are characterized by the highest euglenophycin content [233]. In
Euglena rubra it has not been detected [233]. Potential toxicity of Euglena strains limits their
use as a source of carotenoids, especially in aquaculture.

The Astaxanthin-accumulating strain of Euglena rubida with characterized carotenoid
profile was isolated from a pool in the grounds of the Branicki Palace, Białystok (Poland) [231].
Euglena sanguinea with reported carotenogenesis was collected from a neuston in a eu-
trophic, nitrogen-poor pond in Eichenbirkig, Fränkische Schweiz, Bayern (Germany) [230]
(Table 2). The data on worldwide distribution of Euglena sanguinea are summarized by
Grung and Liaaen-Jensen [229]. It is distributed in Belarus, United Kingdom, Bulgaria,
Czechia, Estonia, Germany, Hungary, Italy, Latvia, Moldova, The Netherlands, Poland,
Romania, Slovakia, Spain, and Ukraine (Table 2). Red-colored bloomed water containing
Euglena sanguinea was sampled from a farm pond in Spydeberg, Ehrenberg, the county
of Østfold (Norway) [229]. The strains of carotenogenic euglenoids were deposited to
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culture collections. The strain Euglena sanguinea SAG 1224-30 was isolated from a pool near
Debden (United Kingdom) by Pringsheim in 1945 and deposited to SAG [116] (Table 2).
The toxic strain Euglena sanguina UTEX LB 3117 was isolated in Denmark by Benet in 2011
and deposited to UTEX (Table 2).

4.20. Trachelomonas Ehrenberg (Euglenophyceae, Euglenales)

Trachelomonas (Figure 4t) is another euglenoid alga able to accumulate secondary
carotenoids. In 1963 Green [234] noted accumulation of astaxanthin in addition to common
algal carotenoids by Trachelomonas volvocina (Ehrenberg) Ehrenberg from a small pond in
the Botany Garden at Bedford College (United Kingdom) (Table 1). However, details on its
fraction and yield were not provided.

The alga causes red blooms in small water ponds and seas [234]. For example, it
caused water blooming of ponds in the United Kingdom and Poland [234–236]. It was
mentioned in Ireland, Bulgaria, Czechia, Germany, The Netherlands, Poland, Romania, the
European part of Russia, Scandinavia, Slovakia, Spain, Sweden, and Ukraine [30] (Table 2).

4.21. Tovellia Moestrup, Lindberg and Daugberg (Dinophyceae, Gonyaulacales)

The genus Toviella is related to Dinophyta (supergroup SAR) [226]. Tovellia rubescens
Pandeirada, Craveiro, Daugbjerg, Moestrup and Calado (Figure 4u) accumulates astaxan-
thin predominantly in the form of monoesters with fatty acids [99]. Secondary carotenoids
are localized in oil bodies in the epicone [99]. Carotenoid accumulation is enhanced by N
and P starvation [99]. Tovellia sanguinea Moestrup, Gert Hansen, Daugbjerg, G.Flaim and
d’Andrea also accumulates a significant fraction of diesters. Notably, its most abundant
monoester is with the long-chain polyunsaturated C22:6 microalgae [237]. Carotenogenic
Tovellia also contains adonirubin and astacene (the form of astaxanthin oxidation) [99,237]
(Table 1).

Type locality of Tovellia rubescens is the freshwater lake in Gafanha da Boavista, Ílhavo,
Portugal [99]. There are no other data on its distribution. Tovellia sanguinea was noted in the
Lake Tovel [237,238] and other lakes of Trentino Province (Italy) [237–240] (Table 2), where
it causes red blooming.

4.22. Diacronema Prauser (Pavlovales)

Diacronema vlkianum Prauser (Pavlovales, Haptophyta) is the alga accumulating sec-
ondary carotenoids at the stationary growth stage (Figure 4v). Maximal carotenoid
content is c.a. 0.6–0.80% of cell dry mass [241,242]. Its main secondary carotenoid is
astaxanthin [242] (Table 1). The cells have oil bodies in the cytoplasm [243]. Since the
alga also accumulates high amounts of fatty acid residues, it seems that the carotenoid is
deposited in the form of fatty acid esters [241,242].

The European carotenogenic strain Diacronema vlkianum used in the work by
Durmaz et al. [242] was collected on the Portuguese coast and deposited in the AQ/INIAP
(Portugal) collection. The strain RCC1546 was collected in the English Channel (France).
The strain CCAP 914/1 has been obtained from the sea water Ryde, Isle of Wight, England
(United Kingdom). It was also found in Kühnhausen near Erfurt (type locality) [30]. It was
mentioned in Ireland, Portugal, Romania and Spain [30] (Table 2).

4.23. Rhexinema Geitler (Ulvophyceae, Helicodictyaceae)

Accumulation of secondary carotenoids was studied in Rhexinema sarcinoideum (Groover
and Bold) Darienko and Pröschold (Chlorophyta) (formerly Pleurastrum sarcinoideum
Groover and Bold [244]) by Kopeckýv et al. [133]. Under stress conditions (high light
and N-starvation), it accumulates mainly diesters of astaxanthin (Table 1). Detectable
amounts of astaxanthin monoesters and canthaxanthin were also observed.

Rhexinema sarcinoideum is a freshwater filamentous green alga (Figure 4w). It was
isolated from the experimental fields of the Institute of Soil Science and Plant Cultivatio
near Puławy (Poland) [101] and from field soil covered with 20 cm snow layer, Chelčice,
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South Bohemia (Czechia) [245]. The alga was also mentioned in Ukraine and Russia [30]
(Table 2).

4.24. Trentepohlia Martius (Ulvophyceae, Trentepohliales)

Although the form of Trentepohlia (Figure 4x) is not unicellular, it will be also briefly
considered here. Representatives of the filamentous Trentepohlia genus form bright orange
crust on the surface of stones, tree bark, soil, and buildings [246,247]. Although the ability to
accumulate carotenoids in these organisms is well-known, the number of works proposing
it for biotechnological pigment production is not high (compared with, e.g., Haematococcus,
Dunaliella and Chromochloris), e.g., [248,249] mostly due to low growth rate [249]. Predomi-
nant carotenoid of Trentepohlia spp. is β-carotene with an admixture of α-carotene [248–250]
(Table 1). Total carotenoid content in these algae can reach 13% of cell dry mass [251].

Trentepohlia seems to be ubiquitous in Europe [30]. Diversity of free-living Trentepohlia
in crusts were studied in Ireland [246]. Here, just several examples on its distribution
will be considered. Trentepohlia abietina (Flotow) Hansgirg, Trentepohlia aurea (L.) Martius,
Trentepohlia cf. umbrina (Kützing) were found. They grew on tree bark, walls of buildings,
cement and asbestos sheeting, concrete, and cement walls. In that study, algae were isolated
and studied in laboratory cultures. Trentepohlia diversity was studied in France. Members of
this genus were found on building walls in northern and central France [247]. Distribution
of the microalga was studied in the French Alps [72]. Trentepohlia spp. inhabiting granite
outcrops of river valleys were studied in three climatic zones of Ukraine [252].

4.25. Other Microalgae

In some reports the microalgae with unclear taxonomic affiliation are described. Par-
ticularly, they are related to Scenedesmus spp. and Chlorella spp. [8,28,64,76,152,253]. Most
representatives were reclassified several times. In many cases, there is no clear infor-
mation, including genetic data. Moreover, members of these genera also include many
non-carotenogenic strains; thus, it is difficult to evaluate the genetic distribution of the
representatives accumulating secondary carotenoids. Hence, these representatives are not
considered in the current review.

5. Summary of Geographical Distribution

Unicellular carotenogenic algae are widely distributed throughout Europe (Figure 5).
They include most of reported algae able to accumulate secondary carotenoids: Haematococcus,
Ettlia, Dunaliella, Chromochloris, Chloromonas, Chlainomonas, Sanguina, Coelastrella, Bracteacoccus,
Halochlorella, Tetraëdron, Deasonia, Chlorosarcinopsis, Acetabularia, Pseudospongiococcum, Protosiphon,
Botryococcus, Golenkinia, Trachelomonas, Toviella, Diacronema, Rhexinema, and Euglena.

The highest number of registered species was found in Ukraine, Czechia, Germany,
and Russia. Relatively high number was also observed in Spain, Romania, Slovenia, Bul-
garia, The Netherlands, and Norway as well as in Austria, Italy, France, Poland, and
the United Kingdom (Figure 5). Notably, the high number of reported species can be
explained by the presence of large biotopes with adverse conditions. Indeed, moun-
tain ranges, such as Alps in Italy and Austria, Sierra Nevada in Spain, High Tatra in
Slovakia and Poland, and Giant Mountains in Czechia, Vitosha, Central Balkan Moun-
tains, and Pirin Mountains in Bulgaria. High diversity of snow alpine microalga was
recorded there [51,73,86,107,143–149,151–160]. The same is true for polar snow valleys
and mountains of Norway, especially on the Svalbard Archipelago [73,86,120,145,150,161].
Carotenogenic algae are also abundant in the Polar zone of the White Sea coast with
temporary dried small rock ponds with semi-saline water [87,88,113]. Studies of ponds
with extreme salinity also have contributed to the number of registered carotenogenic
species. These are the cases of, e.g., Monzon (Spain), Lacul Sărat (Romania) and Elton
(Russia) [125,126,128]. There are many extreme biotopes in Ukraine, which can explain the
high number of strains there. They include hypersaline ponds in Kherson Oblast, Odesa
Oblast, and Crimea, as well as the Carpathian and Crimean Mountains [37,129–131,185].
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Another possible explanation of distribution of reported species of carotenogenic microal-
gae is traditions of scientific groups studying these objects. The best examples are studies
of snow algae in European alpine regions by the same authors and studies of the diversity
of carotenogenic algae in Ukraine, where it was proposed for the first time to use halophilic
algae as a source of carotenoids. The studies on diversity of soil and aeroterrestrial species
in Germany and the United Kingdom also have promoted generation of knowledge in the
field of carotenogenic algae diversity.
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6. Conclusions and Perspectives

Discussed species of European carotenogenic algae are related to three different clades
of the Tree of Life, Diaphoretickes, SAR, and Discoba. Although in some reported strains
carotenoid yields are not high, they could be promising objects for biotechnology. They can
produce pigments from a wide secondary carotenoid spectrum: β-carotene, astaxanthin,
canthaxanthin, echinenone, adonixanthin, and adonirubin. Some species can be used for
production of mixtures of valuable carotenoids. This offers new opportunities to create
natural products with a combination of benefit properties. In this regard, new studies on
optimization of culturing conditions of poorly characterized strains are required. Isolation
of the strains from different natural habitats, opens up prospects for culturing in different
conditions, especially at low temperature or in seawater. Collectively, the existing data on
the diversity of carotenogenic algae is valuable for further research on their unrevealed
biotechnological potential.

https://www.mapchart.net
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144. Procházková, L.; Remias, D.; Řezanka, T.; Nedbalová, L. Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), causing
orange snow blooms at different light conditions. Microorganisms 2019, 7, 434. [CrossRef]

145. Procházková, L.; Nedbalová, L. Snow algal blooms: Melting mountain and polar snow as a challenging habitat. Czech Polar Rep.
2020, 10, 130–131.

146. Remias, D.; Procházková, L.; Holzinger, A.; Nedbalová, L. Ecology, cytology and phylogeny of the snow alga Scotiella cryophila
K-1 (Chlamydomonadales, Chlorophyta) from the Austrian Alps. Phycologia 2018, 57, 581–592. [CrossRef]

147. Remias, D.; Pichrtová, M.; Pangratz, M.; Lütz, C.; Holzinger, A. Ecophysiology, secondary pigments and ultrastructure of
Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow. FEMS Microbiol.
Ecol. 2016, 92, fiw030. [CrossRef]

148. Hoham, R.W.; Mullet, J.E. The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales).
Phycologia 1977, 16, 53–68. [CrossRef]

149. Nedbalová, L.; Kociánová, M.; Lukavský, J. Ecology of snow algae in the Giant Mts. Opera Corcontica 2008, 45, 59–68.
150. Segawa, T.; Matsuzaki, R.; Takeuchi, N.; Akiyoshi, A.; Navarro, F.; Sugiyama, S.; Yonezawa, T.; Mori, H. Bipolar dispersal of

red-snow algae. Nature Commun. 2018, 9, 3094. [CrossRef] [PubMed]
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