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Abstract: Two new compounds, named rhizoaspergillin A (1) and rhizoaspergillinol A (2), were
isolated from the mangrove endophytic fungus Aspergillus sp. A1E3, associated with the fruit of
Rhizophora mucronata, together with averufanin (3). The planar structures and absolute configura-
tions of rhizoaspergillinol A (2) and averufanin (3) were established by extensive NMR investigations
and quantum-chemical electronic circular dichroism (ECD) calculations. Most notably, the constitu-
tion and absolute configuration of rhizoaspergillin A (1) were unambiguously determined by single-
crystal X-ray diffraction analysis of its tri-pivaloyl derivative 4, conducted with Cu Kα radiation,
whereas those of averufanin (3) were first clarified by quantum-chemical ECD calculations. Rhi-
zoaspergillin A is the first orsellinic acid–ribose–pyridazinone-N-oxide hybrid containing a unique
β-oxo-2,3-dihydropyridazine 1-oxide moiety, whereas rhizoaspergillinol A (2) and averufanin (3) are
sterigmatocystin and anthraquinone derivatives, respectively. From the perspective of biosynthesis,
rhizoaspergillin A (1) could be originated from the combined assembly of three building blocks, viz.,
orsellinic acid, β-D-ribofuranose, and L-glutamine. It is an unprecedented alkaloid-N-oxide involving
biosynthetic pathways of polyketides, pentose, and amino acids. In addition, rhizoaspergillinol A (2)
exhibited potent antiproliferative activity against four cancer cell lines. It could dose-dependently
induce G2/M phase arrest in HepG2 cells.

Keywords: Aspergillus; pyridazinone-N-oxide hybrid; sterigmatocystin; antitumor; cell cycle arrest

1. Introduction

Pyridazines and pyridazinones are rare in nature but are common building blocks for
heterocyclic organic synthesis [1–4]. Maleic hydrazide, i.e., 1,2-dihydro-3,6-pyradizinedione,
is a synthesized selective herbicide and temporary plant growth regulator commonly used
to prevent sprouting of potato tubers, onions, garlic, and radishes, etc., during storage. It
can also inhibit crop growth and extend flowering periods [5]. Pyridaben, another example
of a pyridazinone, is a broad-spectrum and contact killing acaricide. It is a mitochondrial
electron transport inhibitor (METI) acaricide that promotes the formation of damaging
oxygen and nitrogen radicals [6–8]. Pyridazine N-oxides are photoactivatable O(3P) precur-
sors for applications in organic synthesis and chemical biology [9], whereas pyridazinone
N-oxides are relatively stable. To the best of our knowledge, all the pyridazinone N-oxides
are synthetic compounds. To date, no natural products of pyridazinone N-oxides have
been reported.

Mangrove endophytic fungi of the genus Aspergillus can produce structurally unique
metabolites with diverse bioactivities [10–19]. In order to search for bioactive natural
compounds with new structures, two new compounds, named rhizoaspergillin A (1) and
rhizoaspergillinol A (2), were isolated from the mangrove endophytic fungus Aspergillus sp.
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A1E3, associated with the fruit of Rhizophora mucronata, together with averufanin (3) [20–25]
(Figure 1). To our knowledge, rhizoaspergillin A (1) is the first alkaloid-N-oxide featuring
the presence of an unprecedented orsellinic acid–ribose–pyridazinone-N-oxide hybrid
scaffold containing a unique β-oxo-2,3-dihydropyridazine 1-oxide moiety, whereas rhi-
zoaspergillinol A (2) and averufanin (3) are sterigmatocystin and anthraquinone derivatives,
respectively. Herein, we report the isolation and structural identification of rhizoaspergillin
A (1) and rhizoaspergillinol A (2), along with clarification of the absolute configuration
of averufanin (3). The antiproliferative activities of compounds 1–3 were also evaluated
against four cancer cell lines.
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Figure 1. Structures of compounds 1–4.

2. Results and Discussion

Rhizoaspergillin A (1) was obtained as an amorphous powder. The molecular formula
C17H19N2O9 with ten degrees of unsaturation was determined by HR-ESIMS (m/z: calcd:
395.1085; found: 395.1084 [M + H]+). The 13C-NMR spectroscopic data and DEPT 135 ex-
perimental results for 1 revealed the presence of a methyl group, an oxygenated methylene
group, eight methine groups (four oxygenated and four olefinic), and seven nonprotonated
carbons (two carbonyl and five olefinic). According to the 1D and 2D NMR spectroscopic
data for 1, nine degrees of unsaturation are due to a carbon–carbon double bond, a carbon–
nitrogen double bond, a tetrahydrofuran ring, an amide group, and a benzoate group.
Thus, a pyridazinone ring should exist in the molecule.

The presence of a β-D-ribofuranose unit, being characterized by the corresponding
NMR spectroscopic data [δH 5.96 (d, J = 6.4 Hz, H-5), 4.46 (dd, J = 11.0, 5.8 Hz, H-6),
6.00 (d, J = 5.6 Hz, 6-OH), 5.45 (dd, J = 5.2, 2.8 Hz, H-7), 4.26 (dd, J = 5.4, 2.8 Hz, H-8),
3.74 (br s, H2-9), 5.38 (t, J = 4.8 Hz, 9-OH); δC 87.8 (CH, C-5), 72.0 (CH, C-6), 74.0 (CH, C-7),
83.0 (CH, C-8), 61.2 (CH2, C-9)] (Table 1), was corroborated by 1H–1H COSY correlations
between H-5/H-6, H-6/H-7, H-7/H-8, and H-8/H2-9 (Figure 2a). The existence of an
orsellinic acid moiety, i.e., a 2,4-dihydroxy-6-methylbenzoic acid unit, being evidenced by
the corresponding NMR spectroscopic data [δH 6.24 (d, J = 2.0 Hz, H-12), 6.28 (d, J = 2.0 Hz,
H-14), 2.47 (s, H3-17), 10.85 (s, 11-OH), 10.17 (s, 13-OH); δC 106.3 (C, C-10), 162.6 (C, C-11),
100.9 (CH, C-12), 162.1 (C, C-13), 111.2 (CH, C-14), 142.4 (C, C-15), 169.1 (C, C-16), 23.1 (CH3,
C-17)] (Table 1), was confirmed by HMBC correlations between OH-11/C-10, OH-11/C-11,
OH-11/C-12, OH-13/C-12, OH-13/C-13, OH-13/C-14, H3-17/C-10, H3-17/C-14, H3-17/
C-15, and H3-17/C-16. Strong HMBC cross-peaks from protons of Me-17 (δH 2.47, s) to the
nonprotonated C-15 (δC 142.4) placed it at C-15. Most notably, the key HMBC cross-peak
from H-7 to the carbonyl C-16 connected the β-D-ribofuranose unit and the orsellinic acid
moiety through the C-7–O–C-16 bond (Figure 2a).
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Table 1. 1H- and 13C-NMR Data for 1 and its Derivative 4 in DMSO-d6 and CDCl3, respectively (δ in
ppm and J in Hz).

Position 1 a 4 b

δH, Multi. (J) δC, Type δH, Multi. (J) δC, Type

1 163.3, C 162.1, C
2 5.78 d (8.0) 102.6, CH 5.79 d (8.0) 103.4, CH
3 7.96 d (8.0) 140.7, CH 7.39 d (8.0) 139.4, CH
4 151.1, C 149.7, C
5 5.96 d (6.4) 87.8, CH 6.06 d (6.3) 87.8, CH
6 4.46 dd (11.0, 5.8) 72.0, CH 5.47 t (6.3) 72.6, CH
7 5.45 dd (5.2, 2.8) 74.0, CH 5.65 t (4.9) 72.0, CH
8 4.26 dd (5.4, 2.8) 83.0, CH 4.56 m 80.4, CH

9 3.74 2H, br s 61.2, CH2
4.39 dd (12.6, 2.8)
4.47 dd (12.6, 3.5) 63.4, CH2

10 106.3, C 108.6, C
11 162.6, C 164.9, C
12 6.24 d (2.0) 100.9, CH 6.53 br s 117.0, CH
13 162.1, C 156.2, C
14 6.28 d (2.0) 111.2, CH 6.62 br s 108.9, CH
15 142.4, C 142.9, C
16 169.1, C 170.1, C
17 2.47 s 23.1, CH3 2.66 s 24.6, CH3
2’ 11.40 s 8.19 s
18 176.2, C
19 38.9, C
20 1.35 s 27.0, CH3
21 1.35 s 27.0, CH3
22 1.35 s 27.0, CH3
23 177.9, C
24 39.3, C
25 1.27 s 27.3, CH3
26 1.27 s 27.3, CH3
27 1.27 s 27.3, CH3
28 177.3, C
29 38.8, C
30 1.09 s 26.8, CH3
31 1.09 s 26.8, CH3
32 1.09 s 26.8, CH3

6-OH 6.00 d (5.6)
9-OH 5.38 t (4.8)

11-OH 10.85 s 11.08 s
13-OH 10.17 s

a 1H- and 13C-NMR data measured at 400 and 100 MHz, respectively; b 1H- and 13C-NMR data measured at
700 and 175 MHz, respectively.

The presence of a pyridazinone ring, being characterized by the corresponding NMR
spectroscopic data [δH 11.40 (s, H-2′), 5.78 (d, J = 8.0 Hz, H-2), 7.96 (d, J = 8.0 Hz, H-3); δC
163.3 (C, C-1), 102.6 (CH, C-2), 140.7 (CH, C-3), 151.1 (C, C-4)] (Table 1), was corroborated by
the 1H–1H COSY cross-peak between H-2/H-3 and HMBC correlations between H-2/C-1,
H-3/C-1, H-3/C-2, and H-3/C-4 (Figure 2a). The Key HMBC correlation from H-5 to
C-4 connected the β-D-ribofuranose unit and the above pyridazinone ring through the
C-4–C-5 bond. In addition, the existence of a nitrogen–oxygen bond could be inferred by
the molecular formula of 1 to be loaded on N1′ . Taken together, the planar structure of
1 was elucidated as shown (Figure 2a).
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The relative configuration of 1 was determined by NOE interactions (Figure 2b). Those
between H-2/H-6, H-2/H2-9, H2-9/H-3, and H-3/H-7 revealed their cofacial relationships
and were arbitrarily assigned as the α-oriented H-6 and H-7, whereas the diagnostic NOE
interaction between H-5 and H-8 assigned their cofacial β-orientation. In order to reconfirm
the constitution of 1 and establish its absolute configuration, single-crystal X-ray diffraction
analysis was taken into account. However, it is impossible to obtain suitable crystals of 1 due to
its poor solubility. Thus, derivatization reaction products were considered. Compound 1 was
acylated by pivaloyl chloride to afford 4 (a tri-pivaloyl derivative of 1, Figure 1). Suitable
crystals of 4 were obtained in MeOH after considerable effort. Finally, the constitution and
absolute configuration of 1 were established by single-crystal X-ray diffraction analysis of 4,
conducted with Cu Kα radiation [Flack parameter—0.12(9)] (Figure 3, CCDC 2291154). The
absolute configuration of 1, named rhizoaspergillin A, was unambiguously determined to be
(5S,6S,7S,8R). To the best of our knowledge, rhizoaspergillin A is the first reported orsellinic
acid–ribose–pyridazinone-N-oxide hybrid.
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Figure 3. Oak Ridge Thermal-Ellipsoid Plot Program (ORTEP) illustration of the X-ray structure of
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Rhizoaspergillinol A (2) was isolated as a light white amorphous powder. The molecular
formula C32H26O9 was determined by the positive HR-ESIMS ion at m/z 555.1644 (calcd
for [M + H]+, 555.1650), indicating twenty degrees of unsaturation. According to 1H- and
13C-NMR spectroscopic data of 2 (Table 2), thirteen degrees of unsaturation are due to a
keto-carbonyl function and twelve carbon–carbon double bonds. Therefore, the molecule
has to be heptacyclic. The 13C-NMR spectroscopic data and DEPT 135 experimental
results for 2 revealed the presence of three methyl groups (a methoxy and two tertiary),
a methylene group, thirteen methine groups (twelve olefinic and one oxygenated), and
fifteen nonprotonated carbons (one carbonyl, five olefinic, and nine oxygenated).
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Table 2. 1H- and 13C-NMR data for 2 and dihydrosterigmatocystin in CDCl3 and DMSO-d6, respec-
tively (δ in ppm and J in Hz).

Position 2 (CDCl3) a Dihydrosterigmatocystin
(DMSO-d6) [26]

δH, Multi. (J) δC, Type δH, Multi. (J) δC, Type

1 181.4, C 180.0, C
2 109.0, C 108.1, C
3 162.3, C 161.3, C
4 6.77 d (8.0) 111.4, CH 6.73 dd (8.5, 1.0) 110.5, CH
5 7.52 t (8.0) 135.8, CH 7.61 t (8.5) 136.0, CH
6 6.83 d (8.0) 105.9, CH 6.94 dd (8.5, 1.0) 106.1, CH
7 154.9, C 154.4, C
8 154.5, C 153.8, C
9 106.6, C 105.4, C
10 164.8, C 165.8, C
11 6.43 s 90.6, CH 6.60 s 90.2, CH
12 163.7, C 162.9, C
13 106.1, C 104.8, C
14 6.56 d (5.6) 112.3, CH 6.55 d (5.5) 113.4, CH
15 4.37 m 42.5, CH 4.25 m 43.3, CH
16 2.61 m, 2.73 m 37.4, CH2 2.24 m, 2.45 m 30.7, CH2
17 5.89 t (4.9) 103.3, CH 3.54 m, 4.10 m 67.2, CH2
18 157.6, C 56.5, OCH3
19 6.67 br s 112.0, CH
20 140.9, C
21 6.51 br s 114.0, CH
22 157.8, C
23 158.2, C
24 6.400 d (2.0) 111.4, CH
25 141.0, C
26 6.399 d (2.0) 111.1, CH
27 156.5, C
28 6.29 t (2.0) 103.3, CH
29 6.56 d (2.0) 105.1, CH
30 2.30 s 21.5, CH3
31 2.27 s 21.7, CH3
32 4.01 s 56.9, CH3

3-OH 13.22 s 13.38 s
27-OH 4.71 br s

a 1H- and 13C-NMR data measured at 700 and 175 MHz, respectively.

The NMR spectroscopic data for 2 resembled those of dihydrosterigmatocystin [26,27],
except for the presence of an additional 5,5’-oxybis(3-methylphenol) moiety, namely diorci-
nol [28–30], being characterized by the corresponding NMR spectroscopic data [δH 6.67 (br
s, H-19), 6.51 (br s, H-21), 6.400 (d, J = 2.0 Hz, H-24), 6.399 (d, J = 2.0 Hz, H-26), 6.29 (t,
J = 2.0 Hz, H-28), 6.56 (d, J = 2.0 Hz, H-29), 2.30 (s, H3-30), 2.27 (s, H3-31), 4.71 (br s,
27-OH); δC 157.6 (C, C-18), 112.0 (CH, C-19), 140.9 (C, C-20), 114.0 (CH, C-21), 157.8 (C,
C-22), 158.2 (C, C-23), 111.4 (CH, C-24), 141.0 (C, C-25), 111.1 (CH, C-26), 156.5 (C, C-27),
103.3 (CH, C-28), 105.1 (CH, C-29), 21.5 (Me-30), 21.7 (Me-31)]. The existence of the diorcinol
moiety was corroborated by HMBC correlations between H-19/C-18, H-19/C-21, H-19/
C-29, H3-30/C-19, H3-30/C-20, H3-30/C-21, H-21/C-22, H-24/C-23, H-24/C-28, H3-31/
C-24, H3-31/C-25, H3-31/C-26, 27-OH/C-26, 27-OH/C-27, and 27-OH/C-28. HMBC cross-
peaks from protons of Me-30 (δH 2.30, s) to the nonprotonated C-20 (δC 140.9) and those
from protons of Me-31 (δH 2.27, s) to the nonprotonated C-25 (δC 141.0) placed Me-30 at
C-20 and Me-31 at C-25, respectively. In addition, the key HMBC correlation from H-17
(δH 5.89, t, J = 4.9 Hz) to the nonprotonated C-18 (δC 157.6, C) connected the dihydrosterig-
matocystin unit and the diorcinol moiety through the C-17–O–C-18 bond. Therefore, the
constitution of 2 was elucidated as shown (Figure 4).
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Figure 4. Selected 1H–1H COSY cross-peaks, HMBC correlations, and NOE interactions for 2.

The relative configuration of 2 was determined by NOE interactions (Figure 4). Those
between H-17/H-14 and H-17/H-15 revealed their cofacial relationship. Based on the
previously reported absolute configuration of dihydrosterigmatocystin, the absolute config-
uration of C-17 in 2 was thereby assigned as R. In addition, the absolute configuration of
2 was reconfirmed by quantum-chemical electronic circular dichroism (ECD) calculations
(Figure S1). The calculated ECD curve of (14S,15S,17R)-2 showed good agreement with that
of the experimental curve of 2 (Figure 5), whereas that of (14R,15R,17S)-2 exhibited mir-
rored Cotton effects. Therefore, the absolute configuration of 2, named rhizoaspergillinol
A, was concluded to be (14S,15S,17R).
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Compound 3 was obtained as amorphous powder. The molecular formula C20H18O7
was established by the positive HR-ESIMS ion at m/z 371.1136 (calcd for [M + H]+, 371.1125),
indicating twelve degrees of unsaturation. According to the NMR spectroscopic data for
3 (Table 3), eight degrees of unsaturation are due to two keto-carbonyl function, six carbon–
carbon double bonds. Therefore, the molecule has to be tetracyclic. The presence of a
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3,5,11,13-tetrahydroxyanthraquinone core, being characterized by the corresponding NMR
spectroscopic data [δH 6.51 (d, J =1.2 Hz, H-4), 7.03 (br s, H-6), 7.00 (s, H-10); δC 188.5 (C, C-1),
108.4 (C, C-2), 165.5 (C, C-3), 108.0 (CH, C-4), 164.3 (C, C-5), 109.0 (CH, C-6), 134.7 (C, C-7),
181.0 (C, C-8), 133.1 (C, C-9), 109.0 (CH, C-10), 161.5 (C, C-11), 119.8 (C, C-12), 162.9 (C, C-13),
108.2 (C, C-14)], was confirmed by HMBC correlations between H-4/C-2, H-4/C-5, H-10/C-1,
H-10/C-8, H-10/C-12, and H-10/C-14. The presence of a 20-methyltetrahydropyran moiety
was confirmed by 1H–1H COSY cross-peaks between H-15/H2-16, H2-16/H2-17, H2-17/
H2-18, H2-18/H-19, and H-19/H3-20 and HMBC correlations between H-15/C-11, H-15/
C-12, H-15/C-13, H-15/C-16, H-15/C-19, H3-20/C-18, and H3-20/C-19. HMBC correlations
from H-15 to C-11, C-12, and C-13 connected the 3,5,11,13-tetrahydroxyanthraquinone core
and the 20-methyltetrahydropyran moiety through the C-12–C-15 bond (Figure 6a).

Table 3. 1H- and 13C-NMR Data for 3 in DMSO-d6 (δ in ppm and J in Hz).

Position 3 a

δH, multi. (J) δC, type

1 188.5, C
2 108.4, C
3 165.5, C
4 6.51 d (1.2) 108.0, CH
5 164.3, C
6 7.03 br s 109.0, CH
7 134.7, C
8 181.0, C
9 133.1, C
10 7.00 s 109.0, CH
11 161.5, C
12 119.8, C
13 162.9, C
14 108.2, C
15 4.94 d (10.8) 73.3, CH
16 1.60 m, 1.93 m 28.3, CH2
17 1.63 m, 1.87 m 23.4, CH2
18 1.30 m, 1.65 m 32.5, CH2
19 3.61 m 74.6, CH
20 1.18 d (6.0) 21.9, CH3

a 1H- and 13C-NMR data measured at 400 and 100 MHz, respectively.
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The strong NOE interaction between H-15 and H-19 revealed their cofacial rela-
tionship (Figure 6b). The NMR spectroscopic data for 3 were the same as those of
averufanin [21,22,25]. However, two absolute configurations, viz., (15R,19R) and (15S,19S),
were confused in the literature [20–25]. In order to clarify the absolute configuration of 3,
quantum-chemical ECD calculations were employed (Figure S2). The calculated ECD curve
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of (15R,19R)-3 showed good agreement with that of the experimental curve of 3, whereas
that of (15S,19S)-3 exhibited mirrored Cotton effects (Figure 7). Therefore, the absolute
configuration of 3, i.e., averufanin, was concluded to be (15R,19R).

Mar. Drugs 2023, 21, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 7. Experimental and calculated ECD curves for 3. 

The biosynthetic origin of 1 could be traced back to three building blocks, viz., 

3-oxo-2,3-dihydropyridazine 1-oxide, β-D-ribofuranose, and orsellinic acid, among 

which the 3-oxo-2,3-dihydropyridazine 1-oxide moiety could be originated from one unit 

of L-glutamic acid, whereas the orsellinic acid unit could be biosynthesized from four 

units of acetyl coenzyme A (Scheme 1). The amidation of L-glutamic acid could generate 

L-glutamine, of which the decarboxylation and dehydrogenation would produce the in-

termediate (E)-4-aminobut-2-enamide. Subsequent cyclization and dehydrogenation 

could afford the heterocyclic intermediate pyridazin-3(2H)-one, of which the oxidation at 

the nitrogen atom would yield the crucial building block 3-oxo-2,3-dihydropyridazine 

1-oxide. The dehydration of the anomeric center of the β-D-ribofuranose motif could 

produce a carbocation at C-1, of which nucleophilic attack at C-6 of the 

3-oxo-2,3-dihydropyridazine 1-oxide moiety would generate a new carbon–carbon bond 

between C-1 of the β-D-ribofuranose motif and C-6 of the 3-oxo-2,3-dihydropyridazine 

1-oxide moiety [31‒35]. Finally, the esterification between 3-OH of the β-D-ribofuranose 

motif and the 7-carboxyl group of the orsellinic acid unit could produce rhizoaspergillin 

A (1). (Scheme 1) 

Figure 7. Experimental and calculated ECD curves for 3.

The biosynthetic origin of 1 could be traced back to three building blocks, viz., 3-oxo-
2,3-dihydropyridazine 1-oxide, β-D-ribofuranose, and orsellinic acid, among which the
3-oxo-2,3-dihydropyridazine 1-oxide moiety could be originated from one unit of L-glutamic
acid, whereas the orsellinic acid unit could be biosynthesized from four units of acetyl
coenzyme A (Scheme 1). The amidation of L-glutamic acid could generate L-glutamine,
of which the decarboxylation and dehydrogenation would produce the intermediate
(E)-4-aminobut-2-enamide. Subsequent cyclization and dehydrogenation could afford
the heterocyclic intermediate pyridazin-3(2H)-one, of which the oxidation at the nitrogen
atom would yield the crucial building block 3-oxo-2,3-dihydropyridazine 1-oxide. The
dehydration of the anomeric center of the β-D-ribofuranose motif could produce a carboca-
tion at C-1, of which nucleophilic attack at C-6 of the 3-oxo-2,3-dihydropyridazine 1-oxide
moiety would generate a new carbon–carbon bond between C-1 of the β-D-ribofuranose
motif and C-6 of the 3-oxo-2,3-dihydropyridazine 1-oxide moiety [31–35]. Finally, the
esterification between 3-OH of the β-D-ribofuranose motif and the 7-carboxyl group of the
orsellinic acid unit could produce rhizoaspergillin A (1). (Scheme 1)

The antiproliferative activity of 1-3 against four cancer cell lines were evaluated by
using the standard MTT assay, with MS-275 (Entinostat, Figure 8) as the positive control [36].
MS-275 is a known histone deacetylase inhibitor as an anticancer agent. As summarized
in Table 4 and Figure 9, 2 is the most potent one among the three compounds, with IC50
values of 8.83, 14.18, and 15.12 µM against HepG2, LLC, and B16-F10 cancer cell lines,
respectively. Compounds 1 and 3 showed lower activities with IC50 values around or
greater than 50.0 µM.

The most potent 2 was selected to evaluate its effects on the cell cycle of HepG2 cancer
cells using flow cytometry. As shown in Figure 10A,B, after treatment with increasing
concentrations of 2 (4.0, 8.0, and 16.0 µM) for 48h, the percentages of cells arrested at G2/M
phase were increased from 14.83% to 25.91%, as compared to the control group (15.03%).
Therefore, 2 could dose-dependently induce G2/M phase arrest in HepG2 cells.
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Figure 10. Cell cycle arrest induced by 2. (A) HepG2 cells were incubated with varying concentrations
of 2 (4.0, 8.0, and 16.0 µM) for 48 h. (B) Histograms showing the percentage of cell cycle distribution
following 2 treatment (n = 3). The bar graphs are presented as mean ± SD. ***p < 0.001, ** p < 0.01
compared with the corresponding control group, ### p < 0.001, ## p <0.01 compared with the 16.0 µM-
treated group, calculated by one-way ANOVA.
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Table 4. In vitro antiproliferative activities of 1–3.

Compounds IC50 (µM) ± SD

HepG2 LLC B16-F10 MCF7

1 >50.0 >50.0 >50.0 >50.0

2 8.83 ± 3.43 14.18 ± 3.84 15.12 ± 1.45 >50.0

3 39.86 ± 1.27 >50.0 48.63 ± 1.20 >50.0

MS-275 a 1.01 ± 0.25 5.36 ± 1.05 4.00 ± 0.28 14.74 ± 0.44
a MS-275 was used as a positive control.

3. Materials and Methods
3.1. General Experimental Procedures

HR-ESIMS spectra were obtained on a Bruker Daltonics Apex-Ultra 7.0 T (Bruker
Corporation, Billerica, MA, USA). Optical rotations were recorded on an MCP500 mod-
ular circular polarimeter (Anton Paar GmbH, Graz, Austria) with a 0.5 cm cell at 25 ◦C
and UV spectra were measured on a UV-2600 UV-Vis spectrophotometer (SHIMADZU)
at room temperature. IR spectra were obtained on a SHIMADZU IRAffinity-1 Fourier
transform infrared spectrometer and ECD spectra were recorded on a circular dichromatic
spectrometer (Chirascan, Applied PhotoPhysics, Leatherhead, Surrey, UK). X-ray data were
collected using an Agilent SuperNova with AtlasS2 X-ray single-crystal diffractometer
with Cu Kα radiation. 1D and 2D NMR spectra were measured on a Bruker AV-400 or
700 MHz NMR spectrometer. High-performance liquid chromatography (HPLC) was
performed on a Waters 2535 pump equipped with a 2998 photodiode array detector and
C18 reversed-phase columns (YMC, Kyoto, Japan; 250 mm × 4.6 mm, length × i.d., 5 µm,
for analysis; 250 mm × 10 mm, length × i.d., 5 µm, for preparation). Silica gel (Qingdao
Haiyang Chemical Co., Ltd.; 100–200 and 200–300 mesh) and octadecylsilyl silica gel (YMC,
Kyoto, Japan, ODS-A-HG, 12 nm, 50 µm) were used for column chromatography (CC).

3.2. Fungus Material

The fungal strain Aspergillus sp. A1E3 was isolated from the fruit of Rhizophora
mucronata, collected from the Thai mangrove swamps of the Trang Province in February
2012. It was identified as Aspergillus sp. according to ITS rDNA sequence data. The strain
was preserved in the School of Pharmaceutical Sciences, Southern Medical University.

3.3. Fermentation, Extraction and Isolation

The Fungal strain Aspergillus sp. A1E3 was inoculated into Erlenmeyer flasks (500 mL)
containing 10‰ sea salt and potato glucose solution in a sterile environment at 25 ◦C for
seven days to prepare the seed culture, which was then inoculated into 100 Erlenmeyer
flasks (1000 mL) each containing rice solid medium (100 g rice and 150 mL water containing
10‰ sea salt) at room temperature in static conditions for 28 days. Then the fermenta-
tion material of Aspergillus sp. A1E3 was extracted three times with EtOAc, which was
evaporated under vacuum. The resulting EtOAc extract was dissolved in EtOAc again
and washed three times with water. The EtOAc solution was dried under reduced pres-
sure to obtain the residue, which was then completely dissolved in MeOH/H2O (v/v,
1:1). After washing with double volume of n-hexane three times, the remaining aqueous
methanol solution was dried to yield the resulting solid (70.11 g). The solid extract was
then fractionated by silica gel column chromatography (200–300 mesh silica, 180 × 10 cm,
i.d.) with a gradient mixture of CHCl3/MeOH (v/v, 100:0, 100:1, 50:1, 98:2, 30:1, 20:1, 10:1,
5:1, 3:1, 2:1, 1:1, 1:2) to afford 170 fractions. Fr. 42 and Fr. 43 were combined (3.89 g) and
subjected to a C18 reversed-phase column (60 × 6 cm, i.d.), eluted with a gradient mixture
of acetone/H2O (v/v, 50:50 to 100:0) to afford 70 subfractions. Then subfractions 22 and
23 were combined and further purified by semi-preparative HPLC (MeCN:H2O 58:42)
to yield 2 (1.0 mg, tR = 90.0 min). Fr. 44 (1.01 g) was subjected to a C18 reversed-phase
column (60 × 6 cm, i.d.), eluted with a gradient mixture of acetone/H2O (v/v, 50:50 to
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100:0) to give 50 subfractions, among which subfraction 46 (112.6 mg) was further puri-
fied by semi-preparative HPLC (CH3CN:H2O 65:35) to afford 3 (40.0 mg, tR = 68.8 min).
Fr. 145 (238.0 mg) was dissolved in chloroform and then filtered to give 1 (50.0 mg).

3.4. Spectroscopic Data of Compounds

Rhizoaspergillin A (1): white amorphous powder; [α]25
D —25.4 (c 0.10, MeOH); UV

(MeOH) λmax (logε) 213 (1.81) nm (Figure S3); IRvmax 3744, 3649, 3443, 3256, 2361, 2338,
1713, 1678, 1616, 1443, 1379, 1323, 1252, 1173, 1136, 1065 cm−1 (Figure S6); 1H and
13C NMR spectroscopic data (see Table 1); HR-ESIMS m/z 395.1084 [M + H]+ (calcd for
C17H20N2O9, 395.1085).

Rhizoaspergillinol A (2): light white amorphous powder; [α]25
D —57.6 (c 0.10, MeOH);

UV (MeOH) λmax (logε) 206 (1.52) nm (Figure S4); IRvmax 3439, 2918, 2851, 2359, 1647, 1620,
1582, 1460, 1233, 1155, 1040 cm−1 (Figure S7); 1H and 13C NMR spectroscopic data (see
Table 2); HR-ESIMS m/z 555.1644 [M + H]+ (calcd for C32H27O9, 555.1650).

Averufanin (3): Deep red amorphous powder; [α]25
D + 27.8 (c 0.05, MeOH); UV (MeOH)

λmax (logε) 208 (1.88) nm (Figure S5); IRvmax 3566, 3385, 3231, 2932, 2859, 2359, 2342, 1614,
1395, 1254, 1207, 1167, 1072, 1024, 995 cm−1 (Figure S8); 1H and 13C NMR spectroscopic
data (see Table 3); HR-ESIMS m/z 371.1136 [M + H]+ (calcd for C20H19O7, 371.1125).

3.5. X-Ray Crystallographic Data of 4

C32H42N2O12, Mr 646.67. Colorless crystal from MeOH (mp 184.6–185.5). Tempera-
ture/K: 149.99(10). Crystal system: orthorhombic. Space group: P21212, a = 10.90168(15)
Å, b = 11.02307(18) Å, c = 28.1523(4) Å, α: 90◦, β: 90◦, γ: 90◦. Volume: 3383.06(9) Å3, Z: 4,
ρcalcg: 1.270 cm3, µ: 0.816 mm−1, F(000): 1376.0. Crystal size: 0.26 × 0.05 × 0.03 mm3.
Radiation: CuKα (λ = 1.54184). 2Θ range for data collection: 6.28 to 129.988◦. Index ranges:
−12 ≤ h ≤ 12, −12 ≤ k ≤ 9, −33 ≤ l ≤ 33. Reflections collected: 15534. Independent
reflections: 5739 [Rint = 0.0313, Rsigma = 0.0343]. Data/restraints/parameters: 5739/35/426.
Goodness-of-fit on F2: 1.049. Final R indexes [I ≥ 2σ (I)]: R1 = 0.0415, wR2 = 0.1143. Final R
indexes [all data]: R1 = 0.0439, wR2 = 0.1172. Largest diff. peak/hole: 0.73/−0.61 e Å−3.
Flack parameter: −0.12(9) (CCDC 2291154).

3.6. Synthesis of the Derivative 4

Compound 1 (20.0 mg) was dissolved in pyridine (0.5 mL). DMAP (3.0 mg) was
then added, along with 50.0 µL of pivaloyl chloride under ice bath and stirred for 10 min.
After the completion of the reaction (monitored by thin-layer chromatography, i.e., TLC),
the reaction solution was evaporated under reduced pressure. The resulting residue was
dissolved in methanol, purified by semi-preparative HPLC, and eluted with the mixture
of MeCN/H2O (v/v, 58:42, 3.0 mL/min) to afford 4 (5.0 mg). Suitable crystals of 4 were
obtained in MeOH after considerable effort.

3.7. Cell Culture and Cytotoxicity (MTT) Assay

An MTT assay was used to determine the antiproliferative activities of compounds
1–3 and MS-275 (positive control) against four cancer cell lines, including a human lung
cancer cell line (HepG2), mouse Lewis lung carcinoma (LLC) cells, a mouse skin melanoma
cell line (B16-F10), and a human breast cancer cell line (MCF-7). Fetal bovine serum (FBS,
10%) in RPMI-1640 medium was used to culture MCF-7 cell lines and Fetal bovine serum
(FBS, 10%) in DMEM medium was used to culture B16-F10, HepG2 and LLC cells. Cells
were seeded into 96-well plates at a density of 5000 cells/well and incubated at 37 ◦C with
5% CO2 overnight. The next day, the three compounds and MS-275 (InvivoChem) were
dissolved in a complete medium to prepare different concentrations of solution, which
were added to each well, followed by incubation at 37 ◦C for 48 h. Finally, 20 µL of MTT
(5 mg/mL dissolved in PBS) was added to each well and incubated with cells at 37 ◦C for
4 h. Then, the complete medium was removed and the formazan crystals were dissolved
in 100 µL of DMSO in each well. The absorbance was measured in a TECAN microplate
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reader at 490 nm. GraphPad Prism was utilized to calculate the IC50 values by a model
of nonlinear regression to fit a normalized dose response. All of the experiments were
performed independently three times.

3.8. Cell Cycle Analysis

HepG2 cells were seeded to a six-well plate at a density of 5 × 105 cells/well followed
by incubation at 37 ◦C overnight. Then, different concentrations of 1–3 (4.0, 8.0, 16.0 µM)
were added to the plate and incubated for 48 h. The collected cells were washed once
with PBS. Then the cells were added 1.0 mL of DNA staining solution and 10.0 µL of
permeabilization solution followed by incubation in the dark for 30.0 min. The DNA
content of the samples was analyzed by flow cytometry.

4. Conclusions

In summary, two new compounds, named rhizoaspergillin A (1) and rhizoaspergillinol
A (2), were obtained from the rice culture of the mangrove endophytic fungus Aspergillus sp.
A1E3, together with the known compound averufanin (3). The planar structures and abso-
lute configurations of rhizoaspergillinol A (2) and averufanin (3) were established by exten-
sive NMR investigations and quantum-chemical electronic circular dichroism (ECD) calcu-
lations, whereas the constitution and absolute configuration of rhizoaspergillin A (1) were
unambiguously determined by single-crystal X-ray diffraction analysis of its tri-pivaloyl
derivative 4, conducted with Cu Kα radiation. In addition, the absolute configuration of
averufanin (3) was first clarified by ECD calculations. Most notably, rhizoaspergillin A (1)
is the first reported orsellinic acid–ribose–pyridazinone-N-oxide hybrid containing a unique
β-oxo-2,3-dihydropyridazine 1-oxide moiety, whereas rhizoaspergillinol A (2) is a sterig-
matocystin derivative containing an additional diorcinol motif. From the perspective of
biosynthesis, rhizoaspergillin A (1) could be originated from the combined assembly of
three building blocks, viz., orsellinic acid, β-D-ribofuranose, and L-glutamine. It is an
unprecedented alkaloid-N-oxide involving biosynthetic pathways of polyketides, pentose,
and amino acids. Rhizoaspergillinol A (2) exhibited potent antiproliferative activity against
a panel of cancer cell lines. Additionally, it could dose-dependently induce G2/M phase
arrest in HepG2 cells. This work demonstrates that mangrove endophytic fungi of the
genus Aspergillus harbor secondary metabolites with new structures.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md21110598/s1, HR-ESIMS, 1D and 2D NMR spectra of compounds 1–4,
UV and IR spectra of compounds 1–3, along with energy analyses of conformers for compounds 2 and 3.
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