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Abstract: Soft corals, recognized as sessile marine invertebrates, rely mainly on chemical, rather
than physical defense, by secreting intricate secondary metabolites with plausible pharmaceutical
implication. Their ecological niche encompasses a diverse community of symbiotic microorganisms
which potentially contribute to the biosynthesis of these bioactive metabolites. The emergence of new
viruses and heightened viral resistance underscores the urgency to explore novel pharmacological
reservoirs. Thus, marine organisms, notably soft corals and their symbionts, have drawn substantial
attention. In this study, the chemical composition of four Mauritian soft corals: Sinularia polydactya,
Cespitularia simplex, Lobophytum patulum, and Lobophytum crassum was investigated using LC–MS
techniques. Concurrently, Illumina 16S metagenomic sequencing was used to identify the associated
bacterial communities in the named soft corals. The presence of unique biologically important
compounds and vast microbial communities found therein was further followed up to assess their
antiviral effects against SARS-CoV-2 and HPV pseudovirus infection. Strikingly, among the studied
soft corals, L. patulum displayed an expansive repertoire of unique metabolites alongside a heightened
bacterial consort. Moreover, L. patulum extracts exerted some promising antiviral activity against
SARS-CoV-2 and HPV pseudovirus infection, and our findings suggest that L. patulum may have the
potential to serve as a therapeutic agent in the prevention of infectious diseases, thereby warranting
further investigation.

Keywords: Mauritius; soft corals; metabolic profiling; metagenomics; antiviral; SARS-CoV-2; HPV
pseudovirus

1. Introduction

Mauritius Island is a volcanic island, which has one of the biggest Exclusive Economic
Zones at 2.3 million square kilometers, in the Indian Ocean. The coral reefs surrounding
Mauritius Island still need to be fully explored, as they hold many unexplored marine
compounds. Soft corals (class Octocorallia) form an integral part of the island’s reef ecosys-
tem [1], and their importance range from providing a habitat to other marine organisms to
being a bountiful source of new marine natural products, and one of the prominent bioac-
tive secondary metabolites’ sources [2]. Soft corals can produce a broad variety of chemical
compounds with unique chemical structures and bioactive characteristics which could lead
to the successful development of commercial drugs. The bioactive secondary metabolites,
such as terpenoids, cembranoids, and steroids, from soft corals have exhibited interesting
biological properties, including cytotoxic, antifungal, antibacterial, anti-inflammatory, and
antiviral activity [3–6].

Furthermore, there is evidence that soft corals are prolific producers of secondary
metabolites [6,7]. Interestingly, the presence of symbiotic microorganisms in soft corals
has raised many debates on the origin of the secondary metabolites of the hosts. It has
been recognized that dense and diverse microbial communities harboring on and in the
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tissues of soft corals are the true producers of many metabolites responsible for antiviral,
anticancer, and anti-inflammatory properties [8].

The rise of emerging viruses, such as SARS-CoV-2, draws the attention of scientists
throughout the world to the urgent need to discover new treatments and activities targeted
to diminishing viral spread. Indeed, it has been suggested that marine-derived compounds
could be a good alternative against coronaviruses [9]. SARS-CoV-2 is an enveloped, single-
stranded, positive-sense RNA virus belonging to the Betacoronavirus group of the family
Coronovidae [10]. Metabolites from the soft coral Nephthea sp. have been identified which
can be used as potential SARS-CoV-2 protease inhibitors [11]. A series of cembranoid diter-
penes from the genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors [12].
The compound Bislatumlide A from the same genus has been reported to remodulate the
p38 MAPK signaling pathway hijacked by SARS-CoV-2 infection, thereby antagonizing its
harmful effects [12]. Tuaimenal A (1) from the Irish deep-sea soft coral Duva florida was
found to inhibit the main protease of SARS-CoV-2 [13].

Bioactive compounds are also being screened for novel and alternative means to
combat the infectivity of established viruses that cause significant disease burden, par-
ticularly in low-income settings [14]. Human papillomaviruses (HPVs), for example, are
nonenveloped small DNA tumor viruses that infect keratinocytes of the differentiating
epithelium of the skin and mucosa [15], and high-risk HPV types have been identified
as the etiological agent of cervical and other anogenital cancers [16]. Although highly
effective prophylactic HPV vaccines are available, they do not offer protection against all
cancer-associated HPV types and are often too expensive for nationwide roll-outs outside
of developed countries [17]. Therefore, the search for potential drug candidates with high
inhibitory activities against various HPV types is increasing in the pharmaceutical industry.
Marine-derived natural bioactive compounds and their derivatives are great sources for
the development of new-generation anti-HPV therapeutics, which is more effective with
fewer side-effects [18]. Over the years, different marine compounds have been studied
intensively for their antiviral effect, and carrageenan is in the limelight. Carrageenans
are one of the major constituents of red seaweed cell walls and are mainly extracted from
certain genera of red seaweeds [19,20]. The three main types of carrageenans, λ-, κ-, and
ι-carrageenans, each show different inhibitory effects on different viruses, such as HPV [17],
dengue virus (DENV) [21], human immunodeficiency virus (HIV) [22], and influenza A
virus [23]. However, until now, no work has been published on the antiviral activity of soft
coral metabolites against HPV infection.

Our previous work showed that soft corals around Mauritius Island have antimicrobial
effects, and the GCMS-MS analysis indicated the presence of compounds with potential
antiviral effects [6]. Therefore, our current study investigated the chemical profile of four
soft corals extracts, namely, Sinularia polydactyla, Cespitularia simplex, Lobophytum patulum,
and Lobophytum crassum, using LC-MS. Furthermore, metagenomic analysis was employed
to identify the microbial community harboring on or in the soft corals’ tissues which might
be responsible for the presence of the different biological compounds identified by LC–
MS. Finally, we investigated the antiviral activities of the four soft coral extracts against
SARS-CoV-2 and HPV pseudovirus infection.

2. Results
2.1. Metabolic Profiling

The identification of the metabolites from the four studied soft corals, namely, Sinularia
polydactya, Cespitularia simplex, Lobophytum patulum, and Lobophytum crassum, was achieved
using the LC-MS technique. Terpenoids were observed to be the most abundant class.
Additionally, alkaloids, esters, flavonoids, steroids, and coumarins were also detected in
the soft corals (Figure 1). LC-MS analysis identified 362 metabolites in S. polydactyla, 379 in
L. patulum, 368 in C. simplex, and 370 in L. crassum. When analyzing the constituents from
the different extracts, the soft coral extracts contained metabolites with molecular masses
predominantly in the range m/z 90–500 (Supplementary Data S1).
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Figure 1. Pie chart of the classes of metabolites identified in soft coral samples. The category “Others”
includes compounds such as ketones, heterocyclic aromatic compounds, and nucleosides. The pie
chart was created from all the metabolites listed as Supplementary Data S1.

The data also revealed that the four soft corals produced nearly identical metabolites;
however, the production of certain metabolites was species-specific (Table 1). Ten unique
metabolites were identified from L. patulum, nine from S. polydactyla, two from C. simplex,
and one from L. crassum, as illustrated in Figure 2A. Furthermore, the methanol extract
of L. patulum yielded a higher number of compounds compared to the other solvents
(Figure 2B).
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Certain metabolites derived from the studied soft corals have been noted for their dis-
tinctive biological properties (Table 1). From L. patulum, seven of the ten unique metabolites
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exhibited intriguing biological properties. Specifically, 2-amino-4-hydroxypyrimidine-5-
carboxylic acid is known for its antibacterial effects [24], while bruceine D demonstrated
antitumor properties [25], and terbutaline was reported for its anti-inflammatory, an-
tiarthritic effects, as well as bronchodilator properties [26,27]. Additionally, cyclopamine,
eurycomalactone, and quinaldic acid were found to possess antiviral properties [28–30].

Out of the nine unique metabolites retrieved from S. polydactyla, two of them, namely,
erianin and methotrexate, have been reported for their biological properties, such as antitu-
mor, antiviral, anti-inflammatory, and immunosuppressant properties [31–34]. Addition-
ally, ketoconazole, reported in the C. simplex extract only, was reported to have antifungal,
antiviral, anticancer, and anti-inflammatory properties [35–38].

Interestingly, all soft corals contained metabolites with previously reported antiviral
activities, as shown in Table 2.

Table 1. Unique metabolites present in the soft corals and their biological properties.

Soft
Corals Metabolites Name Average Rt (min) Biological

Properties References

L. patulum

2-amino-4-hydroxypyrimidine-5-
carboxylic

acid
4.586 Antibacterial [24]

Cyclopamine 10.841 Antiviral (RSV, BRSV);
Antitumor [28,39,40]

Bruceine D 11.117 Antitumor [25]

5-(hydroxymethyl)pyrimidine-2,4-diol 9.145 - -

2-(3,5-Dimethyl-7-oxo-7H-furo[3,2-
g]chromen-6-yl)-N-[3-(2-oxo-1-
pyrrolidinyl)propyl]acetamide

11.771 - -

Eurycomalactone 11.27
Antiviral (HCoV-OC43 and

SARS-CoV-2 strains);
Anticancer

[29,41]

Neosolaniol 11.223 - -

Quinaldic acid 11.117
Antiviral (influenza A/H5N1);

Antibacterial;
Anticancer;

[30,42,43]

Terbutaline 9.151
Bronchodilator;

Anti-inflammatory;
Antiarthritic

[26,27]

Tetrahydrozoline HCl 11.323 Topical nasal and conjunctival
decongestant [44]

S. polydactyla

2-((6-((6,7-dimethoxy-3,4-
dihydroisoquinolin-2(1H)-yl)methyl)-4-

oxo-4H-pyran-3-yl)oxy)-N-(3,4-
dimethoxyphenethyl)acetamide

13.187 - -

2-(3,4-dimethoxyphenyl)-7-methoxy-4H-
chromen-4-one 12.817 - -

24-epimakisterone A 11.834 - -

7-amino-flunitrazepam 13.568 - -

Erianin 13.521

Antitumor;
Antiviral (Human enterovirus

68);
Anti-inflammation

[31–34]

Linderane 12.927 - -

Pregn-4-ene-3,20-dione 12.254 - -

Methotrexate 0.674 Anticancer;
Immunosuppressant [45,46]
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Table 1. Cont.

Soft
Corals Metabolites Name Average Rt (min) Biological

Properties References

C. simplex Ketoconazole 0.39

Antifungal;
Antiviral (HSV-1/HSV-2);

Anticancer;
Anti-inflammatory

[35–38]

L. crassum

Methyl 3-(6-((4-formylpiperazin-1-
yl)methyl)-3-hydroxy-4-oxo-4H-pyran-2-

yl)-3-(4-((1-methyl-1H-imidazol-2-
yl)methoxy)phenyl)propanoate

6.329 - -

Table 2. Soft coral metabolites detected in all four species with potential antiviral activities.

Soft Corals Metabolite Name Antiviral Activities References

S. polydactyla,
C. simplex,
L. patulum,
L. crassum

Catechin

Human immunodeficiency virus;
Herpes simplex virus;

Influenza virus;
Hepatitis B and C virus;

SARS-CoV-2;
Human papilloma virus

[47–52]

2-Aminobenzothiazole Hepatitis C virus [53]

Lysine SARS-CoV-2;
Influenza A virus [54]

Nylidrin Influenza A virus [55]

Quinoxaline Herpes simplex virus [56]

Tenofovir
SARS-CoV-2;

Herpes simplex virus;
Human immunodeficiency virus

[57,58]

2.2. Associated Bacterial Communities

At the taxonomic classification level of phyla, operational taxonomic units (OTUs)
affiliated with the Proteobacteria phylum exhibited a predominant presence within the
two investigated soft coral species, C. simplex and L. patulum, constituting 79% and 60%
of their respective microbiomes (Figure 3A). Conversely, in S. polydactyla and L. crassum,
Proteobacteria accounted for only 30% and 27%, respectively. Spirochaetes emerged as the
most abundant phylum within S. polydactyla, representing 45% of the microbial community.
In L. crassum, the Firmicutes phylum dominated with an approximate representation of
70%. Cyanobacteria were also present in the soft corals, but to a lower extent, hovering
at around 10% in C. simplex and L. patulum, and approximately 5% in S. polydactyla and
L. crassum.

The OTUs assigned to the order level (Figure 3B) revealed noteworthy insights. Within
L. crassum, the prevalent order was Lactobacillales, accounting for approximately 20% of
the composition, closely followed by Clostridiales at 15%. In S. polydactyla, Spirochaetales
dominated the bacterial order composition with a substantial 40%, although its prevalence
in other soft coral species was notably lower. Oceanospirillales was ranked as the second
most abundant order in S. polydactyla, comprising 25% of the community, while constituting
less than 10% in the remaining soft coral species. L. patulum, in comparison to the others,
exhibited a broader spectrum of bacterial orders, with the order Rhizobiales exhibiting the
highest abundance of 18%. Interestingly, within C. simplex, only two orders, Actinomyc-
etales and Rhizobiales, were substantially abundant, each accounting for less than 30%,
while most of the other bacterial orders formed part of the ‘Others’ category, as they had an
abundance of less than 0.1%. A detailed report of taxonomic rank based on normalized
proportion is provided as Supplementary Data S2–S5.
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ing of Mauritian soft corals. (B) The relative abundance is shown as in A, but specified by the
order taxonomic level. Orders that constituted to less than 0.1% of the community were grouped
under other.

Average linkage analysis revealed the presence of a higher number of unique bacterial
species in L. patulum compared to the other soft corals (Figure 4). L. patulum exhibited
symbiotic relationships with several noteworthy bacterial taxa, including Salipiger mucosus,
Psychrobacter marincola, Psychrobacter sp., Propionibacterium sp., Paracoccus marcussi, Kocuria
palustris, Exiguobacterium sp., and Brachybacterium sp. These bacterial species have been
documented as prolific producers of metabolites bearing substantial biological importance
(Table 3). According to published data, the bacteria Paracoccus marcussi, Exiguobacterium sp.,
and Brachybacterium sp. produce metabolites which have antimicrobial properties [59–61],
while Salipiger mucosus and Propionibacterium sp. have been observed to yield compounds
exhibiting antiviral activity [62,63]. Furthermore, biological compounds isolated from
Psychrobacter marincola, Psychrobacter sp., and Mycobacterium vaccae demonstrated antitumor
and anticancer properties [64–66].

2.3. Cell-Viability Analysis

As mentioned above, the four soft corals, Sinularia polydactyla, Cespitularia simplex,
Lobophytum patulum, and Lobophytum crassum, were extracted sequentially using four differ-
ent solvents, namely, hexane, dichloromethane, methanol, and ethyl acetate. The LC–MS
data revealed the presence of biologically important compounds in the four soft corals,
particularly in L. patulum, which had a heightened number of unique compounds compared
to the others (Figure 2A) and showed the most efficient extraction when using methanol
(Figure 2B).

The cytotoxicity of each extract was evaluated on HEK293T-ACE2 cells using four-
fold serial dilutions, and the IC50 value of each extract was determined (summarized in
Figure 5E). Extracts from the soft corals S. polydactyla and L. crassum exhibited IC50 values
ranging from 0.002 to 0.168 mg/mL, depending on the extraction method. C. simplex
and L. patulum extracts showed IC50 values in the range from 0.010 to 0.480 mg/mL.
Furthermore, the methanol extract of all soft corals displayed higher IC50 values, ranging
from 0.07 to 0.480 mg/mL, than other extraction methods. It is worth noting that no IC50
value was determined for the methanol extract of L. patulum, indicating its nontoxicity to
the cells.
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0.1% of the community were not included in the dendrogram. The species in the red box are unique
bacterial species found in L. patulum.
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Table 3. Overview of the more abundant associated bacteria (genus/species level) from Mauritian
soft corals, and their biological compounds and properties, using published references (S.c = S.
polydactyla; C.s = C. simplex; L.p = L. patulum; L.c = L. crassum).

Soft Corals Associated
Bacteria Biological Compounds Biological

Properties References

L.p

Salipiger mucosus Exopolysaccharides Antiviral; Antiangiogenic [62]
Psychrobacter marincola Capsular polysaccharides Antitumor [64]

Psychrobacter sp. Bile acid derivative Antibacterial, Cytotoxic to
tumor cell lines [65]

Propionibacterium sp. Propionic acid Antiviral [63]
Paracoccus marcussi - Antibacterial [59]

Kocuria palustris Alkaloids Antifungal [67]
Exiguobacterium sp. - Antibacterial [60]
Brachybacterium sp. Exopolysaccharides Antibacterial [61]

L.p/C.s Mycobacterium vaccae - Cancer treatment [66]
C.s Gordonia sp. - Antimicrobial [68]
C.s Dermobacter sp. Imidazolium compound Antibacterial [69]

C.s Actinomyces sp.
Tetradecanoic acid,
pentadecanoic acid,
n-hexadecanoic acid

Antifungal; Antimicrobial [70,71]

L.p/S.p Streptomyces sp.

Polyketides, alkaloids and
terpenoids Strepchloritides

A and B, Polyketone,
9(10H)-acridanone

Antiviral (H1N1,
SARS-CoV-2, white spot
syndrome virus (WSSV))

[72–75]

L.p/S.p/L.c/C.s Lactobacillus sp.
Intercellular polysaccha-

rides/exocellular
polysaccharides

Prebiotics with
bifidogenic effect [76]
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dilution factors. HEK293T-ACE2 cells were exposed to different concentrations of (A) S. polydactyla
extracts, (B) C. simplex extracts, (C) L. patulum extracts, and (D) L. crassum extracts. (E) Summary
of all IC50 values for all tested soft coral extracts against HEK293T–ACE2 cells. The IC50 was
determined by three independent experiments using nonlinear regression analysis in GraphPad
Prism Software®v10.0.2.

L. patulum extracts, which showed to be least toxic to HEK293T-ACE 2 cells (Figure 5),
were further assessed for their cytotoxicity on HaCaT cells (Figure 6). Interestingly, L. pat-
ulum was found to be more toxic to HaCaT cells than to HEK293T-ACE2 cells, with IC50
values ranging between 0.002 and 0.020 mg/mL for HaCaT cells compared to IC50 val-
ues between 0.012 and 0.034 mg/mL (and even not detectable) for HEK293T-ACE2 cells.
Hexane, DCM, and methanol extracts showed the highest toxic effects on HaCaT cells,
with IC50 values ranging from 0.002 to 0.005 mg/mL. Ethyl acetate extract, however, had a
relatively lower toxicity towards HaCaT cells, with an IC50 value of 0.020 mg/mL.
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Using these IC50 values, all the different extracts of each soft coral were investigated for
their anti-SARS-CoV-2 activities, while only the L. patulum extracts were further investigated
for their anti-HPV activities.

2.4. Antiviral Activity

Based on the cytotoxic activity of the fractions of the four soft corals, the SARS-CoV-2-
spike-pseudotyped virus infection assays were next performed to evaluate if the soft coral
extracts inhibited viral entry in HEK293T-ACE2 cells. Under our experimental condi-
tions, we identified Lobophytum patulum extracts to exhibit some antiviral activity against
SARS-CoV-2, with the hexane and DCM extracts inhibiting viral entry by 27.8 ± 7.6% and
24.1 ± 13.1%, respectively. In contrast, the other soft coral extracts were found to increase
the infectivity of the pseudotyped virus, though not significantly (Figure 7A). Being non-
toxic to the cells, and having some antiviral activity, three different concentrations of the
L. patulum methanol extract obtained by four-fold serial dilution were then used to further
evaluate the inhibition of viral entry into HEK293T-ACE2 cells (Figure 7B). The highest viral
entry inhibition was observed at a concentration of 1.00 mg/mL, resulting in 58.5 ± 6.1%
inhibition, with decreasing concentrations leading to decreased inhibition of viral entry.
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Figure 7. Antiviral activity of all soft coral extracts against SARS-CoV-2-spike-pseudotyped viruses.
(A) The % relative firefly luciferase activity (RLU) was determined after treating HEK293T-ACE2
cells with the 1/2 IC50 concentrations of the individual extracts for 24 h, followed by infection with
SARS-CoV-2 pseudovirions for 48 h. (B) The % RLU of cells treated with the methanol extract of
L. patulum at the indicated concentrations followed by infection with SARS-CoV-2-spike-pseudotyped
viruses. The mock-treated sample was set at 100%. Data are expressed as the mean ± S.D. of three
independent experiments. Luciferase data were normalized to cell viability derived from a parallel
plate with identical set-up. ** p < 0.01, *** p < 0.001.

Following the results obtained for the inhibition of SARS-CoV-2 pseudovirus entry
into HEK293T-ACE-2 cells, the selected soft coral for the further evaluation of antiviral
activities was L. patulum. The HPV16 pseudovirus entry into HaCaT cells (Figure 8) was
further investigated, and the L. patulum ethyl acetate extract was found to have the capacity
to inhibit viral infection by 40.1 ± 3.9% at a concentration of 0.04 mg/mL, followed by the
methanol extract, which inhibited infectivity by 14.5 ± 7.1%.
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In summary, the extracts derived from L. patulum, characterized by a heightened abun-
dance of metabolites and a greater spectrum of bacterial diversity, demonstrated a noteworthy
capacity for eliciting antiviral effects against both SARS-CoV-2 and HPV16 pseudoviruses.

3. Discussion

The lack of calcium carbonate skeletons in soft corals make them more susceptible,
and hence they rely strongly on chemical defense for their protection from predators in a
highly competitive marine environment [77]. The protective/defensive metabolites found
in soft corals are of pharmaceutical interest, as they exhibit distinct bioactivities, such as
antimicrobial, antiviral, anti-inflammatory, and anticancer activities [78]. Existing and
emerging viral infections pose a significant threat to global populations, as demonstrated
by the ongoing challenges posed by viruses like HIV, influenza, SARS-CoV-2, HPV, and
many others [79]. In response to the rising demand for the identification of novel antiviral
compounds in the ongoing battle against existing and emerging viral diseases, the present
study examined the in vitro antiviral activities of four Mauritian soft coral extracts.

The antiviral potential of the soft coral extracts was assessed against SARS-CoV-2
and HPV16 pseudovirus infections. Notably, the species L. patulum exhibited remarkable
antiviral efficacy against both pseudoviruses, thereby representing the first instance of such
activity reported for this species. While information concerning the chemical composition
and antiviral attributes of L. patulum remains absent in the existing literature, prior research
has highlighted the antiviral properties of various other Lobophytum species [20,80]. In-
terestingly, the genus Lobophytum has been recognized as a prolific source of secondary
metabolites, characterized by diverse biological functionalities encompassing antibacterial,
anticancer, and anti-inflammatory properties [81–83].

The different antiviral potentials observed for the different soft coral species and
extraction methods could be a result of the quantitative and qualitative abundance of
metabolites. In the case of L. patulum, ten unique metabolites were discerned within the
crude extracts, out of which some have previously been acknowledged for their antiviral
properties against other groups of viruses. For example, a study by Choonong et al. [29]
revealed potent antiviral activities of eurycomalactone, a quassinoid compound, against
both HCoV-OC43 and SARS-CoV-2 [29], with low IC50 values ranging from 0.32 to 0.51 µM.
In another study, Bailly et al. (2016) demonstrated that cyclopamine exhibited inhibitory
effects on the human respiratory syncytial virus (hRSV) via a unique Smo-independent
mechanism [28]. Furthermore, the antiviral potential of derivatives of quinaldic acid against
the influenza A/H5N1 virus has been reported [30]. It is important to note, however, that
the observed antiviral effects of the L. patulum extracts found in our study cannot be solely
attributed to the presence of unique compounds, but are more likely due to combined
synergistic effects with other compounds found in this species. Lobane diterpenoids, for
example, which have been recognized as one of the most prolific components of the genus
Lobophytum, demonstrated remarkable pharmacological potential as well [84].

Interestingly, all four studied soft corals contained metabolites with previously reported
antiviral effects, namely catechin, 2-aminobenzothiazole, lysine, nylidrin, quinoxaline, and
tenofovir. Catechin was reported to have an entry-inhibitory role against SARS-CoV-2 through
binding to the S1 domain of the spike protein, thereby effectively blocking its interaction with
the ACE2 receptor and preventing viral infection [50,85]. A derivative of catechin demon-
strated growth-inhibitory potential in four human papillomavirus-infected tumor cell lines [52].
Furthermore, studies on the mechanism of action of lysine demonstrated that it may disrupt
SARS-CoV-2 virus uncoating instead of affecting virus attachment and endosomal acidifica-
tion [54]. While our study only focused on the effect of the soft coral extracts on viral entry,
these reports demonstrate the potential for further research into targeting downstream steps in
the viral lifecycle and virus-associated pathogenesis by using soft coral extracts. In addition to
the characterization of the bioactive compounds in the four soft coral species, our study also
analyzed the microbial structure associated with the soft corals, as coral-associated bacteria
have been recognized as the true sources of biologically active compounds in corals [86,87].
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Indeed, some compounds isolated from soft corals have great similarities to the metabolites
produced by their symbiotic bacteria [87]. To our knowledge, our study represents the first
characterization of Mauritian soft coral-associated bacterial communities based on operational
taxonomic units (OTUs). These were categorized into major phyla, including Proteobacteria,
Spirochaetes, Firmicutes, and Cyanobacteria, although we experienced limitations in precisely
matching all bacterial sequences to established reference sequences of biologically significant
bacteria. Nevertheless, our findings did reveal the presence of certain associated bacterial com-
munities that have previously been documented for their ability to produce biologically active
metabolites. For example, the isolation of 9(10H)-acridanone from the genus Streptomyces has
been reported, which has antiviral activities against white spot syndrome virus (WSSV) [75].
Interestingly, this compound was also identified in the soft corals from this study.

It should be noted that not only complex microbial communities associated with soft
corals could be responsible for metabolite production. Environmental conditions, such as
light intensity, pH, water temperature, nutrient availability, as well as the water quality,
can impact the physiology of marine organisms, altering the production of secondary
metabolites [88]. However, these data were not assessed in this study.

The development of effective antiviral drugs is rather challenging, primarily due to the
intricate task of only targeting the virus without affecting the host cells [89]. Mechanisms
of action of antiviral drugs include enhancing cellular resistance to viral infections, such
as inhibiting viral entry, intracellular trafficking, and deproteinization within the cell, as
well as antimetabolites that cause inhibition of viral replication [89]. It is noteworthy that
the present study focused only on investigating antiviral activities against viral entry by
using pseudovirions. The observed results suggest that the unique compounds, either in
isolation or in combination with the common compounds identified in L. patulum, exhibit
the potential to act as inhibitors of viral entry into cells. More in-depth work is required to
decipher the underlying mechanisms of action in order to identify potential novel antiviral
drug targets.

4. Materials and Methods
4.1. Soft Coral Materials

Four soft corals, namely, Sinularia polydactyla, Cespitularia simplex, Lobophytum patulum,
and Lobophytum crassum, were collected from Pereybere and Flic en Flac (Figure 9). The
samples from Flic en Flac were collected at a depth of 15 m by scuba diving and the
soft corals from Pereybere were collected at a depth of 2 m by snorkeling. The fresh
samples were transported in seawater to the laboratory, where they were cleaned and
frozen at −80 ◦C before freeze-drying. Taxonomic identification of the soft corals was
confirmed using the mitochondrial-protein-coding primers ND42599F and Mut-3458R [90],
and submitted to GenBank NCBI. S. polydactyla was given the accession number OQ616755,
L. patulum OR513793, C. simplex OR538714, and L. crassum OR548245.

4.1.1. Preparation of Extracts

All samples were freeze-dried and shipped to the International Centre for Genetic
Engineering and Biotechnology (ICGEB) for further processing. Each dried soft coral
sample (20–130 g) was sequentially extracted with different solvents in the increasing
polarity order [91]. Briefly, each soft coral was macerated separately in 150 mL hexane
with intermittent shaking for 24 h. Then, they were first filtered with muslin cloth and
then through Whatman no 1 filter paper. The resulting residue was air-dried and further
extracted with dichloromethane (DCM), followed by ethyl acetate, and then methanol,
similar to the procedure carried out for the hexane extraction. Finally, the solvent was
removed from each filtrate using a rotary evaporator (Rotavapor®R-300) under reduced
pressure and low temperature. The yield of each extract was weighed and stored at −20 ◦C.
For the antiviral assay, each extract (15 to 90 mg) was dissolved in 0.5–1.0 mL of dimethyl
sulfoxide (DMSO), sterilized using a 0.44 µm syringe filter, and stored in 1.5 mL light-
sensitive vials at −80 ◦C. The percentage yield, as well as the concentration of each soft
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coral extract used for the antiviral assays, was calculated using the Equations (1) and (2)
respectively and the data was provided in Tables S1 and S2:

% yield =
Mass of extract (g)

Mass of sample used (g)
× 100 (1)

Concentration (mg/mL) =
Mass of extract (mg)

Volume of solvent used to dissolve the extracts (mL)
(2)
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4.1.2. Metabolic Profiling

Metabolic profiling of the different soft coral extracts was performed in the Division
of Chemical & Systems Biology, University of Cape Town. A Thermo Fisher Scientific
Ultimate 3000 nano-LC system coupled to a Q Exactive Plus Orbitrap mass spectrometer,
following published procedures [92], was employed. Prior to injection onto the liquid
chromatography (LC) system, samples were centrifuged at 3500× g for 5 min to remove
insoluble debris. Chromatographic separation was performed on the Hypersil GOLD C18
(100 mm × 2.1 mm, 3 µm; Thermo Scientific, Waltham, MA, USA) column. The mobile
phase used for chromatographic separation was composed of acetonitrile (solvent B) and
water (containing 0.1% formic acid, solvent A). The flow rate was 0.3 mL/min.

Eluted compounds were directly introduced into the mass spectrometer. Optimal
parameters were as follows: probe heater temperature, 350 ◦C; spray voltage, 3.5 kV for
the positive- and negative-ion modes; sheath gas, 35 arb; auxiliary gas, 10 arb. Capillary
temperature was set at 320 ◦C and S-lens was 50 V. Full-scan MS data were generated
across a mass range of 100–1500 Da. The stepped normalized collision energy setting was
25 and 30 eV. Data were acquired by Xcalibur software version 3.0. All analytes were
identified using their elemental composition, accurate mass measurement, elution order,
fragmentation behavior, fragmentation pattern of the standard compound, and comparison
with reliable data in the compounds database [93]. The feature table of compounds within
the extracts was generated through the process of uploading and converting the raw data
into MSDIAL Version 4.80. This table encompassed parameters, including retention time,



Mar. Drugs 2023, 21, 574 14 of 21

precursor mass-to-charge ratio (m/z), adduct ion type, and the mass spectrometry (MS)
type. During the MSDIAL alignment running, an inner authentic standards database
“MSMS_Public_EXP_Pos_VS17” from the MSDIAL platform was matched based on pre-
cursor mass and MS/MS similarity. By matching precursor masses and assessing MS/MS
similarity, MS-DIAL suggested potential identifications of the metabolites present in our
samples. The feature table was then automatically compared with different databases, such
as Drug Bank, PubChem, NANPDB, COCONUT, KNApASck, ChEBI, and UNPD [94].

4.2. Metagenomics Analysis

Frozen samples were thawed, and tissues were broken down into small pieces and
macerated at room temperature. Total microbial community DNA was extracted from
macerated tissues using a ZymoBIOMICSTM DNA Miniprep Kit (Zymo research, Irvine,
CA, USA). About 15 mg of macerated tissues was transferred to bead-beating tubes and vor-
texed horizontally at maximum speed for 10 min at room temperature. DNA was extracted,
precipitated, and purified according to the manufacturer’s instructions. The purity and
concentration of the extracted DNA were checked using a NanoDrop Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). The DNA was then stored at −20 ◦C until
PCR amplification. The V3–V4 hypervariable regions of bacterial 16S rRNA genes were
amplified using the universal primer pair 341F (CCTACGGGNGGCWGCAG) and 805R
(GACTACHVGGGTATCTAATCC) [95,96]. The primers were synthesized with a specific Il-
lumina overhang adapter. The PCR amplification and sequencing was conducted at Inqaba
(Pretoria, South Africa) according to the Illumina 16S Metagenomic Sequencing Library
protocols (www.illumina.com (accessed on 12 May 2023)). The bioinformatics analysis
was conducted by Inqaba (Pretoria, South Africa). Reads were processed through usearch
(https://drive5.com/usearch (accessed on 12 May 2023)) and taxonomic information was
determined based on the Ribosomal Database Project’s (http://rdp.cme.msu.edu/index.jsp
(accessed on 12 May 2023)) 16S database v16, or in the case of ITS1F, the RDP ITS V2
database. Operational taxonomic units (OTUs) contributing less than 0.1% of the total data
were excluded.

4.3. Bioassays
4.3.1. Cell Culture

HaCaT and HEK293T/17 cells (American Type Culture Collection, Manassas, VA,
USA), HEK293-TT cells [97,98], as well as HEK293T cells stably expressing the ACE2
receptor (HEK293T-ACE2) [99], were maintained in high-glucose Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 1% penicillin/streptomycin and 10% fetal
bovine serum (Thermo Fisher Scientific, Waltham, MA, USA) at 37 ◦C in a humidified
atmosphere and 5% CO2. Fresh culture medium was supplied every other day. HEK293T–
ACE2 cells were grown in the presence of 3 µg/mL puromycin (Thermo Fisher) to maintain
ACE2 expression.

4.3.2. Preparation of SARS-CoV-2 and HPV16 Pseudovirions

Single-cycle infectious SARS-CoV-2 pseudovirions based on the HIV backbone ex-
pressing the SARS-CoV-2 spike protein and a firefly luciferase reporter were produced in
HEK-293T/17 cells by cotransfection of plasmids pNL4–3.Luc.R-.E- (NIH AIDS Reagent
Program (#3418), Germantown, MD, USA) and pcDNA3.3-SARS-CoV2-spike ∆18 [100].
HEK-293T/17 cell-culture supernatants containing the virions were harvested 3 days post-
transfection, filtered through 0.45 micron filters, and stored at −80 ◦C. Infectivity was tested
on HEK293T–ACE2 cells using serial dilutions, and luciferase activity 3 days postinfection
was measured using a GloMax® Explorer Multimode Microplate Reader (Promega Bio-
sciences, San Luis Obispo, CA, USA) together with the Luciferase assay system (Promega).
Virus preparations that yielded RLU values between 50,000 and 200,000 were selected for
further infection experiments.

www.illumina.com
https://drive5.com/usearch
http://rdp.cme.msu.edu/index.jsp
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HPV16-PsVs encapsidating the secreted Gaussia luciferase reporter gene plasmid
pCMV-GLuc2 (New England Biolabs, Ipswich, MA, USA) were produced in HEK-293TT
cells by cotransfection with the plasmid pXULL, which encodes codon-optimized HPV16
L1 and L2, following published procedures [98,101]. Virions were purified by CsCl density
gradient centrifugation, as described [102], and protein concentration determined by BCA
assay (Thermo Fisher). Quality controls of the pseudovirus preparations were performed
as described [98,101]. For infection experiments, a final protein concentration of 0.1 µg/µL
was used.

4.3.3. Cytotoxicity Assay

Cytotoxicity assays were carried out to determine noncytotoxic concentrations of
the soft coral extracts to be used in the antiviral assays. HEK293T–ACE2 or HaCaT cells,
respectively, were seeded at a density of 1 × 105 cells/well in 96-well microplates and
incubated for 24 h at 37 ◦C in a humidified incubator with 5% CO2. Thereafter, 100 µL
of each extract at four different concentrations, which were obtained by four-fold serial
dilution in DMEM, were added. The stock concentrations of each soft coral extract are
given in Supplementary Data S3. The control wells contained cells without any extract
treatment. The microplates were incubated at 37 ◦C in a humidified incubator with 5% CO2
for 48 h.

Cell viability was determined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide) assay following published procedures [103]. Optical density was mea-
sured spectrophotometrically (GloMax® Explorer, Promega) at 590 nm. The experiments
were conducted in triplicate and the 50% inhibitory concentration (IC50) was calculated by
nonlinear regression analysis using GraphPad Prism Software® v10.0.2. For the antiviral
assays, the 1

2 IC50 concentrations of each extract were used.

4.3.4. Inhibiting SARS-CoV-2 Pseudovirus Entry into HEK293T–ACE2 Cells

The ACE2-overexpressing HEK293T cells were seeded at a density of 1 × 105 cells/well
in 96-well microplates. After 24 h, medium was exchanged with fresh medium containing
1
2 IC50 concentrations of the soft coral extracts, as indicated. Each concentration was tested
in triplicate, and at least six nontreated control wells were included in the assay. After an
incubation period of another 24 h, the medium was removed and replaced by 100 µL of
virus-containing medium. The plates were incubated at 37 ◦C in a 5% CO2 humidified
incubator for 48 h. Firefly luciferase RLU was then assayed using the Promega GloMax
Explorer together with the Luciferase assay system kit (Promega) and normalized to cell
viability. The percentage inhibition of each sample was calculated using the Equation (3).

% cell inhibition =
Ac − At

Ac
× 100 (3)

where At = the normalized luminescence value of the test compound and Ac = normalized
luminescence value of the control.

4.3.5. Inhibiting HPV Entry in HaCaT Cells

HaCaT cells were seeded at a density of 1 × 105 cells/well in 96-well microplates.
After 24 h, the medium was exchanged with fresh medium containing 1

2 IC50 concentration
of L. patulum extracts. After 24 h incubation, the medium was removed and replaced by
100 µL of fresh medium containing HPV16 pseudovirions. The plates were incubated at
37 ◦C in a 5% CO2 humidified incubator for 48 h, after which the Gaussia luciferase RLU
was assayed using the Promega GloMax Explorer together with the Gaussia Luciferase
Assay Kit (New England Biolabs, MA, USA). The percentage inhibition was determined
according to the luciferase activity normalized to the cell viability assay.
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4.3.6. Data Analysis

To analyze the bacterial cohort data, the identified bacterial species were scored as a
data matrix (0–1). The matrix data were ultimately used to generate a dendrogram using
the SPSS Statistics 29.0 program. The option Average Linkage (Between Groups) was
selected to generate the phylogenetic tree. Microsoft Excel and Graph Pad Prism (Version
10.0.2) software were used to calculate the minimum inhibitory concentration (IC50) of
the different extracts. The percentages of cell viability at different extract concentrations
were analyzed by one-way analysis of variance (ANOVA) using Graph Pad Prism (Version
10.0.2) software. The IC50 values were calculated from linear regression analysis.

5. Conclusions

Overall, this study revealed that L. patulum demarcates itself from the other collected
soft corals due to its plethora of distinctive metabolites, a greater diversity of associated
bacterial communities, and broader and more potent antiviral activities. The intricate
microenvironment within soft corals presents a challenge to identify the precise nature
and origin of the antiviral compounds. A comprehensive investigation of L. patulum to
elucidate the specific bioactive compounds for downstream synthesis and assessment,
either alone or in combination, holds promise as a viable avenue for the potential discovery
of pharmaceutical agents with antiviral properties. Consequently, this study is considered
as an important preliminary work to study the mechanisms of actions underlying the
antiviral activities of Mauritian soft corals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21110574/s1, Supplementary Data S1: Metabolites identified
from the four soft corals; Supplementary Data S2: Bioinformatics data showing all the bacterial
communities present in C. simplex; Supplementary Data S3: Bioinformatics data showing all the
bacterial communities present in L. patulum; Supplementary Data S4: Bioinformatics data showing
all the bacterial communities present in S. polydactyla; Supplementary Data S5: Bioinformatics data
showing all the bacterial communities present in L. crassum; Table S1: % yield of each soft coral;
Table S2: Crude concentration of each soft coral used.
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