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Abstract: Cardiovascular diseases (CVD) remain the leading cause of death across the globe, hence,
establishing strategies to counteract CVD are imperative to reduce mortality and the burden on health
systems. Dietary modification is an effective primary prevention strategy against CVD. Research
regarding dietary supplementation has become increasingly popular. This review focuses on the
current in vivo, in vitro, and epidemiological studies associated with that of omega-3 polyunsaturated
fatty acids (n-3 PUFAs) and polar lipids (PLs) and how they play a role against CVD. Furthermore,
this review focuses on the results of several major clinical trials examining n-3 PUFAs regarding
both primary and secondary prevention of CVD. Notably, we place a lens on the REDUCE-IT and
STRENGTH trials. Finally, supplementation of PLs has recently been suggested as a potential
alternative avenue for the reduction of CVD incidence versus neutral forms of n-3 PUFAs. However,
the clinical evidence for this argument is currently rather limited. Therefore, we draw on the current
literature to suggest future clinical trials for PL supplementation. We conclude that despite conflicting
evidence, future human trials must be completed to confirm whether PL supplementation may be
more effective than n-3 PUFA supplementation to reduce cardiovascular risk.

Keywords: cardiovascular disease; omega-3 polyunsaturated fatty acids; polar lipids; cardiovascular
risk; thrombosis; platelet-activating factor (PAF); eicosanoids; fish oils

1. Introduction

The burden of cardiovascular diseases (CVDs) has lessened over the last two decades
due to the development of novel therapies; however, such diseases maintain their status as
the leading cause of death globally [1]. CVD has been reported to account for 1 in 4 deaths
across Europe, and 1 in 3 deaths in the United States [2,3]. Diet is known to be one of the
most important risk factors for CVD prevention and treatment [4,5]. A wide range of other
traditional risk factors are also associated with CVD, namely, smoking, obesity, and lack of
physical activity. A maladaptive lifestyle characterized by these risk factors can contribute
to an increase in oxidative stress and inflammation, contributing to metabolic dysfunction
and atherogenesis over time [6].
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Mechanistically, activated platelets play a major role in CVD [7–9]. Platelet activation,
aggregation, and adhesion are all processes that contribute to the development of atheroscle-
rosis over years, potentially leading to vessel occlusion, the rupture of atherosclerotic
lesions, and thrombosis, causing myocardial infarction, stroke, or other complications [10].

Evidence suggests that the consumption of foods or supplements containing ma-
rine oils may affect chronic diseases and complications of metabolic dysfunction such as
atherosclerosis [11,12]. These include omega-3 polyunsaturated fatty acids (n-3 PUFAs) and
polar lipids (PLs). These lipids have been associated with the modulation of inflammatory
and thrombotic pathways associated with atherogenesis [13].

The n-3 PUFAs are a heterogenous group of fatty acids naturally present in algae,
fish, shellfish, and other marine sources that can be harvested to produce supplements
and nutraceuticals [14,15]. In nature, n-3 PUFAs are most prevalent as neutral lipids
(triglycerides, esters, etc.). However, they also present to a lesser extent in the form of
polar lipids (PLs). PLs include glycerophospholipids, glycolipids, and sphingolipids. These
molecules are characterized by a hydrophobic tail containing fatty acids and a polar head
group. These characteristics mean that PLs are amphipathic. Consequently, PLs may
increase the bioavailability of n-3 PUFA [16,17] attached to the polar head groups. These
polar lipids are thought to be cardioprotective, but it is worth noting that some PLs may
also exert cardioprotective effects independent of n-3 PUFA [18] as observed in non-marine
PL extracts [19–21].

In this manuscript, we review published research, reviews, and the literature, to probe
the role of n-3 PUFA- and PL-containing marine oils and their potential cardiovascular
health benefits. We critically discuss crucial studies and trials that emerged from the lit-
erature, and we discuss the future of research in the field of marine oil cardioprotective
products. In particular, we focus on the disparate results obtained in the REDUCE-IT and
STRENGTH trials. Finally, we present a comparison of n-3 PUFA versus PL supplementa-
tion to identify evidence-based recommendations for conducting future clinical trials that
may clarify and improve the current treatment and prevention strategies for both CVD and
cardiovascular risk.

2. Methods

Manuscript record retrieval was completed using the following search terms: “car-
diovascular disease” + “polar lipids”, “cardiovascular disease” + “omega-3 fatty acids”,
“cardiovascular disease” + “omega-3 fatty acids” + “polar lipids”, “cardiovascular risk” +
“omega-3 fatty acids”, “cardiovascular risk” + “polar lipids”, “cardiovascular risk” +
“omega-3 fatty acids” + “polar lipids”, “inflammation” + “thrombosis” + “polar lipids”,
“inflammation” + “thrombosis” + “omega-3 fatty acids”. All searches were completed using
a combination of the Scopus, PubMed, and Web of Science databases from 1994 to 2023. The
inclusion criteria encompassed original research articles and relevant reviews published
in English between 1994 and 2023. Preference for inclusion was given to manuscripts
that were closely aligned with the theme of this review article and published since 2010.
Relevant literature cited in the identified literature were also considered for inclusion.

3. Marine Oils: Polyunsaturated Fatty Acids and Polar Lipids

In general, the consumption of supplements has increased over the past few decades
due to increased consumer awareness and demand for wellness products [22]. Therefore, it
is no surprise that the global nutraceuticals and supplements market was worth almost
USD 353 billion in 2019 [23,24]. The consumption of marine oil supplements has steadily in-
creased over the years due to their association with anti-inflammatory and cardioprotective
effects relevant to public health [25]. Indeed, fish oils are the most commonly consumed
dietary supplement aside from vitamin and mineral supplements in the US, whereby 7.8%
and 1.1% of US adults and children respectively, consume fish oil supplements containing
EPA, DHA, or a mix of n-3 PUFAs [26,27]. In 2022, fish oil consumption globally reached
3.6 million metric tonnes [28]. In contrast, the projected fish oil production in 2010 was
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estimated to be only 1 million metric tonnes [29]. This phenomenal growth is expected to
continue with the fish oil market expected to expand further at a compound annual growth
rate of 5.9% from 2022 to 2030, valued at USD 3.62 billion [28]. However, the added value
of producing supplements means the value is considerably higher, with global sales of
omega 3 supplements generating approximately USD 5.18 billion in 2019 alone [30]. While
this growth is largely driven by human consumption, fish oils are also used in animal and
pet foods, cosmetics, aquaculture, and pharmaceuticals [28,29,31]. However, there have
been reports that n-3 PUFA supplements often do not contain the correct amount of n-3
PUFA or there is evidence of poor lipid quality or oxidation [32,33].

Despite their popularity among consumers, the scientific community is still at odds
about the scientific evidence purporting cardioprotective effects in humans upon con-
sumption. In this review, we discuss n-3 PUFA and PL marine oils and their potential
cardiovascular effects.

3.1. n-3 PUFA Structure and Function

The n-3 PUFAs have a double bond between the third and fourth carbon going from
the end of the carbon chain (omega end), giving rise to the name n-3 PUFA. A short-chain
n-3 PUFA is considered to have a chain that consists of 18 carbons or fewer. A long-chain
n-3 PUFA has 20 or more carbons in its chain. Alpha-linolenic acid (ALA) is a common
n-3 PUFA that is abundantly found in plant oils and the human diet, where it is found in
soy, flaxseeds, and tree nuts in abundance (Figure 1). However, in marine oils the most
abundant n-3 PUFAs are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
EPA is an n-3 PUFA that comprises a 20-carbon chain, making it a long-chain n-3 PUFA,
with five cis double bonds. The double bonds can be found at carbons 5, 8, 11,14, and
17. Docosahexaenoic acid (DHA) possesses a 22-carbon chain. Its structure contains six
cis-double bonds located at carbons 4, 7, 10, 13, 16, and 19 [34–36] (Figure 1).
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3.2. n-3 PUFA Cardiovascular Health Effects

The efficacy of n-3 PUFA treatment of CVD has long been controversial. The n-3 PUFAs
are known to be an essential element of the platelet phospholipid membrane. Hence, they
play a vital role in platelet function and are studied for their antiplatelet properties [38]. For
over 20 years, supplementation of n-3 PUFA has been encouraged to curb the development
of CVD [10]. While these supplements are voluntarily taken and prescribed for a wide range
of medical conditions, they are predominately used for both the primary and secondary
prevention of CVD [39].

The n-3 PUFAs are known to have the ability to alter cell structure and cell signaling by
altering the configuration of lipids within the cell membrane (Figure 2) [40]. This has been
demonstrated by several animal studies that report that the alteration of cellular function
can occur by the addition of n-3 PUFAs via the diet [41,42]. Incorporation of n-3 PUFAs
into the cell membrane can also modulate ion channels, such as L-type calcium (Ca2+)
and sodium (Na+) [43]. In addition, n-3 PUFAs may directly associate with both proteins
and membrane channels (Figure 2). An example of this can be observed from the direct
modulation of the G protein-coupled receptor 120, or that of ion channels. Both actions
have been noted to possibly aid in both anti-inflammatory and anti-arrhythmic responses
associated with n-3 PUFAs, respectively [44]. Figure 2 highlights how both transcription
factors and nuclear receptors contribute to the regulation of gene expression, which is of
course a direct result of the addition of n-3 PUFAs. As a whole, n-3 PUFAs are known to
act as natural ligands of numerous nuclear receptors within various tissues of the body,
such as liver X receptors and retinoid X receptors. The interactions between such nuclear
receptors and that of n-3 PUFAs are altered by cytoplasmic lipid binding proteins, which
in turn can carry the fatty acids inside the nucleus. n-3 PUFAs also amend the role of
transcription factors, for example, the sterol regulatory element binding protein-1c. This
regulation in turn plays a part in inflammatory pathways [45]. Figure 2 also highlights
the conversion of n-3 PUFAs from polar lipids in cell membranes to eicosanoids through
three enzymes: lipoxygenase (LOX), cytochrome P450 (CYP450), and the cyclooxygenases
(COX1 and COX2). Via incorporation into cell membranes, n-3 PUFA can supersede
arachidonic acid (AA) and hence, this results in a reduction in AA-acquired eicosanoids [46].
This has been associated with a reduction in thrombosis, maladaptive vascular function,
and inflammation.
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Another area of interest mechanistically has been the implication that n-3 PUFAs are
required for the formation of specialized pro-resolving mediators (SPMs), involved in the
so-called resolution of inflammation. This is a mechanism distinct from anti-inflammatory
actions [47]. Such SPMs include protectins and resolvins, which are metabolites originating
from the actions of the previously mentioned LOX and COX enzymes. It has been widely
reported within animal models that n-3 PUFA-derived SPMs could possibly play a role
in the reduction of chronic inflammation through the hypothesis of resolving inflamma-
tion [48]. However, evidence of these molecules exerting a beneficial effect in humans has
been lacking [8,49] and the detection of resolvins in plasma and their functional relevance
in human biology is an active but controversial field of research [50–53].

Both EPA and DHA appear to be the most functionally important n-3 PUFAs. Typically,
they are both referred to as marine n-3 PUFAs due to their abundance in fatty (approx.
1–3.5 g/serving) and lean fish (approx. 0.1–0.3 g/serving), and other seafood. In addition,
they are also found, although not equally, in various supplements. A summary of their
relative concentrations of n-3 PUFAs can be found in Table 1. In addition, examples of
pharmaceutical grade EPA and DHA used within the industry are also detailed.

Table 1. A summary of EPA and DHA concentrations in various n-3 PUFA supplements. Data
adapted with permission [54].

Supplements n-3 PUFA Content Per Gram of Oil

Krill oil 205 mg
Tuna oil 460 mg

Fish oil (standard) 300 mg
Cod liver oil 200 mg

Algal oil 400 mg

Pharmaceuticals EPA/DHA content per gram of oil

Omacor® (ethyl esters) 460 mg (EPA) and 380 mg (DHA)
Epanova® (carboxylic acids) 550 mg (EPA) and 200 mg (DHA)

Vascepa® (ethyl ester) 900 mg EPA

DHA and EPA exert a wide range of physiological effects, including the reduction
in triglycerides, heart rate, blood pressure, and platelet aggregation [18,25]. Both n-3
PUFAs also enhance arterial compliance and flow-mediated dilation while also reducing
pro-inflammatory cytokines and C-reactive protein (CRP) [55]. However, it has been
consistently noted that such effects may be dependent on the specific health status or
genetics of an individual [56–58], indicating that there may be a role for personalized
nutrition and supplementation approaches [59]. EPA and DHA may also reduce plasma
or serum concentrations of pro-inflammatory eicosanoids [60]. However, most research
has focused on the use of EPA and DHA in combination, as opposed to their impact
administered separately. EPA and DHA may exert differential effects on cardiovascular
outcomes, particularly in lipid metabolism. Some of these effects, including the reduction
in inflammation and oxidation are summarized in Figure 3. However, the link between
EPA and DHA in the modulation of inflammation lipoprotein metabolism has yet to be
confirmed. Hence, currently there is no clear advantage between DHA and EPA for the
modulation of lipid metabolism. However, it is likely that a combination of both may yield
the most advantageous health outcomes [61].
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3.3. Polar Lipid Structure and Function

While the previous section focused on the neutral forms of n-3 PUFAs, including ethyl
esters, triglyceride, and fatty acid forms, some n-3 PUFAs are present as a constituent of PLs
(Figure 4). Preliminary evidence from nutritional studies suggests that PLs with/without
n-3 PUFAs in their structures may exert beneficial effects on CVD risk [63–66]. PLs are
amphipathic molecules such as phospholipids or sphingolipids that are ubiquitous in
nature. They are essential to the composition of cell membrane structure and function, cell
signaling as secondary messengers, and lipid metabolism. They consist of a hydrophobic
hydrocarbon tail and a polar hydrophilic head group [67]. Glycerophospholipids share
a common assembly composed of a glycerol backbone attached to a phosphate group
and two fatty acids esterified to the sn-1 and sn-2 positions. At the sn-3 position, the
head group is composed of a phosphate group and/or with phosphodiester linkages to
organic molecules. These substituted head groups include choline (phosphatidylcholine),
ethanolamine (phosphatidylethanolamine), serine (phosphatidylserine), or inositol (phos-
phatidylinositol). Sphingolipids replace the glycerol backbone with a sphingosine backbone,
which is a long-chain amino alcohol that is amide-linked to the fatty acid and phosphate
group [68,69]. Other common PLs include glycolipids and ceramides.
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3.4. Polar Lipids and Cardiovascular Health Effects

PLs are commonly found in foods such as olive oil, fish, meat, and dairy products
associated with the Mediterranean diet [71,72]. The Mediterranean dietary pattern is
strongly associated with a decreased risk of CVD [73] as demonstrated by the PREDIMED
trials [74,75]. The Mediterranean diet has also been adopted outside of the Mediterranean
region for the purpose of research, which appears to be a promising preventative and
therapeutic option for CVD [76–78]. PLs are consumed in abundance as part of this dietary
pattern. PLs have been postulated to be one of the constituents of the Mediterranean diet
that may exert cardioprotective benefits via their antithrombotic and anti-inflammatory
bioactivities against the actions of platelet-activating factor (PAF) and other inflammatory
mediators [79–82]. PAF is a potent phospholipid mediator that interacts with its receptor
(PAF-R) on the surface of numerous immune cells and platelets, causing platelet activa-
tion and pro-inflammatory cytokine release [83]. The production of PAF is stimulated by
numerous cells such as platelets and leukocytes [84]. PAF is implicated in every stage of
atherosclerosis through various mechanisms making it crucial to the process. The structure
of PAF is characterized by an alkyl ether linkage, an acetyl group, and a phosphocholine
group present at positions sn-1, sn-2, and sn-3 of the glycerol backbone, respectively [85].
PAF contributes to inflammation by mediating the adhesion of monocytes to the endothe-
lium and in conjunction initiates gene transcription within monocytes resulting in the
production of inflammatory cytokines. PAF generates an influx of Ca2+ ions, which in-
creases endothelial permeability. This allows for the movement of LDL cholesterol and
monocytes into the intima, allowing for the development of atherosclerotic plaque. Patients
with CVD have elevated levels of PAF [84,86].

However, PAF is an important regulator of various physiological functions. If unregu-
lated, it can result in a pro-inflammatory state leading to endothelial dysfunction and the
development of atherosclerosis [71,83] (Figure 5). PAF and PAF-like molecules proceed via
binding to a unique G protein-coupled receptor called PAF-receptor (PAF-R) [83]. PAF-R is
expressed on platelets and is expressed by cells within the cardiovascular system. Ligand
binding of PAF to the PAF-R provokes numerous intracellular signaling pathways which, if
unregulated, can bring about a pro-inflammatory state, endothelial dysfunction, and the
occurrence of atherosclerotic plaques [83].
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Research suggests that PLs consumed in the diet are PAF antagonists that can inhibit
PAF via their effects on the PAF receptor [83]. Indeed, some foods and natural products
contain PAF antagonists [65]. This is due to the similarity in structure between PLs and
PAF/PAF-like molecules, examples of which include phospholipids and sphingolipids [71],
as can be seen in Figure 4. It has also been suggested that PLs can modulate the metabolism
of PAF [79,88,89]. As this is a newer area of research, evidence supporting these claims are
lacking in human trials to date, but research continues [85].

3.5. Implications of the Structural Differences between n-3 PUFAs and Polar Lipids

The n-3 PUFAs exist primarily esterified to triglycerides (neutral) or phospholipids,
which are (polar) in nature. Hydrolysis causes n-3 PUFAs to exist as free fatty acids
(neutral). Structurally, n-3 PUFA triglycerides differ to PLs as n-3 PUFAs comprise a
glycerol backbone with three fatty acids attached to it. In contrast, PLs normally have two
esterified fatty acids attached to the glycerol backbone as seen in Figure 4. PLs can form
liposomes and micelles due to the differences in the physical–chemical [34]. PLs are an
amphiphilic molecule, which means that PLs contain a hydrophobic tail and a hydrophilic
head naturally. This gives rise to PLs to act spontaneously, as their hydrophilic region can
navigate the aqueous phase and the hydrophobic region can navigate the non-aqueous
phase, where it is functionally able to be soluble in fat [35]. On the other hand, n-3 PUFA
triglycerides incur an exceedingly low water solubility, which may have a negative effect
on the utilization of n-3 PUFA supplements [36]. As mentioned previously, PLs are found
in the human diet as phospholipids and sphingolipids, which are essential components of
biological membranes [35]. Whereas, n-3 PUFAs are found in the body as ALA, DHA, and
EPA as previously mentioned.
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Figure 5. An illustration of the role of PAF in the initiation and progression of atherosclerotic plaque.
Following exposure to injury, the endothelial cells are activated, triggering the synthesis of PAF and
the expression of adhesion molecules, mediating the attachment of monocytes to the endothelium.
PAF also triggers gene expression of pro-inflammatory cytokines such as IL-6 and TNF-α via NF-kB,
and the production of ROS, which oxidizes LDL. PAF decreases the production of endothelial NO,
increasing endothelial permeability. This allows for the movement of LDL and monocytes into the
intima. PAF accounts for the polarization of monocytes into macrophages which engulf oxidized
LDL, triggering the production of more PAF. Abbreviations: NF-kB, nuclear factor kB; IL, interleukin;
PAF, platelet-activating factor; TNF-α, tumor necrosis factor α; LDL, low density lipoprotein; ROS,
reactive oxygen species [87].
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4. Marine Oils and Human Health
4.1. Cardioprotective Marine Oil Supplements Containing n-3 PUFA and Polar Lipids

Interest regarding marine oils grew from observations of the dietary patterns of
Greenland Eskimos, who experienced a considerably lower incidence of cardiovascular
disease attributed to their fatty fish-rich diet [54]. This has also been observed in Japanese
populations, where on average one fish meal per day is consumed providing approximately
900 mg of n-3 PUFAs [90]. Research shows that consuming fatty fish as part of your weekly
diet can significantly reduce the risk of CVD in comparison to a person that does not
consume fish [91,92]. It is advised by the American Heart Association (AHA) to consume
at least two meals containing fish per week. Fish consumption provides a wide array
of dietary PUFAs both in neutral and PL form that are generally not as easily acquired
via supplementation [93]. Furthermore, there are additional benefits associated with
consumption of the whole fish, including the addition of vitamins, minerals, and proteins.
However, the AHA has recommended n-3 PUFA supplements if fresh fish is unavailable
to meet recommended n-3 PUFA requirements and to reduce CVD risk [94,95]. However,
the evidence regarding n-3 PUFA supplementation is not as straightforward and there are
some inconsistencies regarding their role in both primary and secondary prevention of
CVD. Indeed, large trials and meta-analyses have yielded inconsistent findings [96,97].

4.2. n-3 PUFA in Clinical Trials

Early trials conducted examining n-3 PUFA consumption focused on cardiovascular
diseases, which largely concluded that n-3 PUFA were efficacious in the treatment and
prevention of CVD. Therefore, there was general support for their consumption [98].
Examples of older trials that generally supported n-3 PUFA consumption to improve
CVD risk include the Diet and Reinfarction Trial (DART), the Lyon Heart Study, and the
Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico Prevenzione trial
(GISSI-P) [99,100]. However, due to limitations in these studies such as small sample sizes,
the findings of these trials are often dismissed when examining the effects of n-3 PUFAs
on CVD. With advances in cardiovascular knowledge, the results of many more recent
randomized controlled trials (RCTs) have challenged previously recorded data [101,102].
More recently published studies are less encouraging regarding the importance of n-3
PUFAs and a reduction in CVD [102], and many studies are now focusing on alternative
approaches including the delivery of n-3 PUFAs in other forms such as PLs [18].

In recent years, there have been several large-scale trials that have examined the effi-
cacy of n-3 PUFA supplementation. These include the REDUCE-IT trial and the STRENGTH
trial. These trials were touted as the studies that may end the debate regarding n-3 PUFAs
and their cardioprotective effects. Therefore, in Sections 4.2.1 and 4.2.2. we discuss the
outcomes, strengths, and limitations of these trials and focus on how these studies have con-
tributed to our growing knowledge regarding n-3 PUFA supplementation, cardiovascular
health, and clinical trials.

4.2.1. The REDUCE-IT Trial in Context

Icosapent ethyl (IPE), also known AMR101 or commercially as Vascepa®, is produced
and marketed by the Irish company Amarin Pharma. IPE is a supplement composed of
highly purified EPA. The product was initially approved by the United States Food and
Drug Administration (FDA) for the treatment of hypertriglyceridemia [103]. The reduction
in cardiovascular events with the icosapent ethyl intervention trial (REDUCE-IT) was es-
tablished to determine the potential of IPE to reduce ischemic events in patients diagnosed
with cardiovascular disease [104]. This was a major multicenter, double-blinded, random-
ized, placebo-controlled trial (mineral oil), which caused controversy between scientists and
health experts since its publication [103]. Bhatt and colleagues enrolled over 8000 patients
with established cardiovascular disease or elevated risk, of which over 70% had experienced
a previous cardiovascular event [105]. Participants were enrolled to the REDUCE-IT study
if they were ≥45 years of age with previous CVD or if they were ≥50 years of age with
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diabetes and at least one other risk factor. These may include elevated fasting LDL levels,
triglyceride levels, or patients receiving statin therapy. Patients were followed for a median
of 4.9 years. The primary composite end points were cardiovascular mortality, nonfatal
stroke, nonfatal myocardial infarction, unstable angina, or coronary revascularization.

Since the majority of the study population enrolled had established CVD, this study
is generally viewed as a secondary prevention of CVD with n-3 PUFA supplementation
study [106]. The results of the trial revealed that consumption of 2 g IPE po bid (4 g total
per day) reduced the risk of ischemic cardiovascular events and death. Of those assigned
to the IPE group, a primary endpoint occurred in 17.2%, versus 22.0% in the placebo
group (p < 0.001; hazard ratio, 0.75; 95% confidence interval [CI], 0.068–0.83) or an absolute
difference of 4.8%, irrespective of triglyceride levels at baseline or during the study [105].
Additional analyses supported that IPE supplementation may reduce CVD risk relating
to high triglyceride levels [107]. Overall, IPE supplementation appeared to be safe with
limited side effects including more frequent nonfatal adverse bleeding events, and more
frequent hospitalization for peripheral edema and atrial fibrillation in the IPE group versus
the placebo group [105,106].

While these widely anticipated results were well received initially, with the study
being described as rounding the corner on residual risk [108], several concerns were raised
regarding the study design. On closer inspection, it was noted that the placebo mineral
oil used for the trial was not inert, and that this may in fact have increased the placebo
groups’ risk for cardiovascular events. Indeed, the mineral oil intake was associated with an
increase in LDL-C (7.4%), CRP (37.6%), and apolipoprotein B (6.7%) [105]. Similar increases
in these biomarkers were reported as a consequence of mineral oil ingestion were previously
reported in the ANCHOR [109] and MARINE [110] trials, which also investigated the use
of IPE for cardiovascular risk reduction. In these studies, it is possible that the differences
in the apparent reduction of cardiovascular risk associated with IPE treatment may be
explained by the increased risk of exposure to mineral oil in the placebo group [103].
However, this is disputed in a review published by the REDUCE-IT trial authors [111].
Indeed, independent reviews by the FDA and other health agencies (Canada Health and
the European Medicines Agency) concluded that the increases in these cardiovascular
biomarkers associated with mineral oil may only partially explain the major cardiovascular
events reported between the two randomized groups [103].

The data have not become any clearer since the trial was published. A meta-analysis
of thirteen randomized controlled trials conducted by Hu et al. in 2019 concluded that
consumption of marine n-3 PUFA supplementation does indeed lower the risk for myocar-
dial infarction, both CHD total and death and also for both CVD total and death [112].
This meta-analysis also calculated the reduced risk excluding the REDUCE-IT trial due to
the controversary surrounding its findings and still deduced that n-3 PUFA consumption
was inversely associated with CVD. However, there were limitations to this study such
as being unable to conduct subgroup analysis due to lack of study-level data available
and the author does state that there is a need for additional large trials, particularly those
undertaken using high doses of n-3 PUFA supplementation to confirm and extend these
findings. Another meta-analysis, which was conducted by Shen et al. in 2022, found that
additional n-3 PUFA supplementation may decrease the risk for incidence of major adverse
cardiovascular events, cardiovascular death, and myocardial infarction [113]. However,
the study also deduced that n-3 PUFA did not significantly impact all-cause death, stroke,
and revascularization. The study did, however, have minor limitations such as some sub-
groups containing a relatively low number of studies and more research is likely required
to support and validate these findings.

In contrast, numerous studies failed to support the positive findings of the REDUCE-IT,
JELIS, GISSI-P, and GISSI-HF (heart failure) trials [99,105,114,115]. These include trials
such as VITAL (The VITamin D and OmegA-3 triaL), ORIGIN (Outcome Reduction with
an Initial Glargine Intervention trial) and ASCEND (A Study of Cardiovascular Events
in Diabetes) [116–118]. Collectively, these trials do not support the use of n-3 PUFA sup-
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plementation for cardioprotection against CVD. However, these trials differ in various
aspects such as the placebo used, entry criteria, and the dosage of n-3 PUFA administered,
which may account for the differences in the findings between these studies. Comparisons
between some of these studies are presented in Table 2.

Table 2. Summary of investigations focusing on the effects of n-3 PUFAs on CVD in both healthy and
high-risk patients.

Trial N Age Formulation and
Dose

Inclusion Criteria/Cohort
Characteristics

Duration
(Years) Placebo

Successful—Primary endpoint reached *

REDUCE-IT
[105] 8179 45 with CVD or

50 with DM
IPE
4 g

Patients with established
CVD or DM on statin

therapy with increased
TG levels

4.9 Mineral oil

EVAPORATE
[119] 80 30–85 IPE

4 g

Patients with confirmed
coronary artery stenosis on

statin therapy with increased
TG levels.

1.5 Mineral oil

JELIS
[114] 18,645

Men 40–75
Women up to

75 years

EPA 1.8 g
+pravastatin or

simvastatin

Patients with previous MI or
PCI or with confirmed

angina pectoris or
without CVD.

4.6 No placebo

CHERRY
[120] 193 68 ± 10 Pivastatin + EPA

4 mg + 1800 mg Patients with CHD after PCI 6–8 months Pitavastatin
4 mg/day

Unsuccessful—Failed to reach primary endpoint *

STRENGTH
[121] 13,078

18–99 (>40 for
men 50 for
women if
with DM)

EPA + DHA
carboxylic acids.

4 g

LDL-C < 100 mg/dL, on
statins, TG levels
180–499 mg/dL,

HDL-C < 42 mg/dL in men,
<47 mg/dL in women,
patients with CVD or

diabetes with risk factors.

5 Corn oil

VITAL
[116] 25,871 Men > 50

Women > 55
EPA + DHA

1 g

Healthy men > 50 and
healthy women > 55. TG

levels not specified.
5.3 Not

specified

ASCEND
[118] 15,480 >40 EPA + DHA

1 g
Persons older than 40 years

with DM without CVD. 7.4 Olive oil 1 g

ORIGIN
[117] 12,536 50 EPA + DHA

465 mg + 375 mg

High risk of CVD + impaired
fasting glucose/glucose

intolerance/DM.
6.2 Olive oil

1 g

OMEMI
[122] 1027

70–82
+

Recent
(2–8 weeks) MI

EPA + DHA
930 mg + 660 mg Recent acute MI 2 Corn oil

* According to the study authors. Abbreviations: IPE: icosapent ethyl, DM: diabetes mellitus, TG: triglyceride, MI:
myocardial infarction, PCI: percutaneous coronary intervention.

4.2.2. The STRENGTH Trial in Context

Epanova® was originally produced by Omthera Pharmaceuticals Inc. in New Jersey,
USA before being acquired by AstraZeneca. Epanova® is a 1 g supplement that delivers
850 mg of n-3 PUFA in the form of carboxylic acids. In the production process, the n-3 PUFA
are hydrolyzed and distilled from ethyl esters into PUFA carboxylic acids. The final concen-
tration of EPA and DHA in this drug is 75%. The aim of this therapeutic was to maximize
the EPA and DHA bioavailability for the treatment of hypertriglyceridemia. Epanova®
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does not need to be hydrolyzed by lipases from the pancreas, allowing easier absorption by
the intestines and eliminating the need for consumption with a high-fat meal [123,124]. The
STRENGTH trial was designed to examine the effects of Epanova® on reducing rates of car-
diovascular events in statin-treated patients with hypertriglyceridemia [124]. STRENGTH
involved a randomized, placebo-controlled, double-blind study between 13,078 patients in
a 1:1 ratio treatment of 4 g/day of n-3 PUFA carboxylic acids (Epanova®) versus 4 g/day of
a corn oil placebo. Participants were 62.5 years old, consisting of 35% female participants.
A corn oil placebo was chosen for this trial over mineral oil and liquid paraffin because it
has a reduced incidence of gastrointestinal adverse effects and provides adequate calorie
management. The criteria to participate in the STRENGTH trial included patients with high
cardiovascular risk (CVR), determined atherosclerotic cardiovascular disease (ASCVD),
established diabetes with an addition risk factor, or other high-risk primary prevention pa-
tients based on risk factor assessments and age factors, triglyceride levels ranging between
180 and 500 mg/L, and high density-lipoprotein cholesterol (HDL-C) levels of <42 mg/dL
(men) or <47 mg/dL (women) [121]. Additionally, participants were required to be on
100% statin therapy four weeks prior to the trial’s commencement date and low-density
lipoprotein cholesterol (LDL-C) levels had to be <100 mg/dL [121,124].

The primary endpoints of the trial were the composite of cardiovascular mortality,
nonfatal myocardial infarction, nonfatal stroke, unstable angina, and revascularization [121].
An interim analysis led to the early termination of the trial due to a perceived low clinical
benefit of treatment versus the placebo. There were 1384 validated initial primary endpoint
occurrences out of the predicted 1600 primary events among the almost 13,000 patients who
completed the trial. In total, the primary endpoint occurred in 12% of the treated cohort
(n = 785) versus 12.2% (n = 795) of the corn oil cohort. Furthermore, gastrointestinal adverse
events occurred more frequently in the Epanova® group versus the corn oil cohort (24.7%
versus 14.7% respectively). Likewise, atrial fibrillation was more frequently observed in the
Epanova® group compared to the corn oil group (2.2% versus 1.3%) [121].

The addition of n-3 PUFA carboxylic acids to individuals on statin therapy with high
cardiovascular risk compared to those on corn oil resulted in no meaningful change in a
composite outcome of major adverse cardiovascular events. Therefore, the data reported
do not support the use of these n-3 PUFAs to reduce cardiovascular risk.

4.3. What Can We Learn from the STRENGTH and REDUCE-IT Trials

The role of n-3 PUFA supplementation and heart health strikes up great controversy
due to heterogeneity between different clinical trials. This is clearly evident among some
of the largest clinical trials. The most obvious examples include the more recent apparent
successful reduction in cardiovascular risk observed in the REDUCE-IT trial and the
apparent failure to reduce cardiovascular risk observed in the STRENGTH trial [125]. Some
of these differences are presented in Table 3. There are several reasons why the results of
these two important trials may differ.

To begin with, both trials opted to use different formulations of n-3 PUFAs, as was
previously alluded to. The REDUCE-IT trial provided participants with a 2 g dose of
IPE (Vascepa) po bid or an equivalent style placebo containing mineral oil; participants
were on a medically controlled 100% statin treatment [104]. Whereas the STRENGTH trial
provided participants with Epanova®, which is a 1 g supplement that delivers 850 mg
of n-3 PUFAs in the form of carboxylic acids versus a corn oil placebo. It is clear that
the type, form, and dosing of the n-3 PUFAs differed between the trials. Another major
difference is the absorption of the two products. IPE needs to be converted in the liver by
hepatic conversion. In contrast, Epanova® is a carboxylic acid that has been exposed to
additional manufacturing processes that allows the product to be consumed without the
requirement of further hydrolyzation by pancreatic lipases [124]. This posed the question
of whether differing levels of bioavailability were at play. Indeed, higher serum EPA
levels were measured in the REDUCE-IT cohort (144 µg/mL) versus the STRENGTH
cohort (89 µg/mL) [126]. This is one potential reason for the observed disparity in findings
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between the trials. It was also questioned whether DHA may pose some harm in the
STRENGTH trial, thus explaining the differing outcomes. However, a secondary analysis
of the STRENGTH cohort indicated that there was no significant increase in benefit or any
adverse outcomes in individuals with the highest levels of serum EPA or DHA [127].

Table 3. Comparisons between the STRENGTH and REDUCE-IT trials.

Clinical Trial STRENGTH REDUCE-IT

Number of participants 13,078 8179

Population High CVR, elevated TG levels, low HDL levels High CVR, elevated TG levels, Diabetes

Treatment DHA/EPA carboxylic acids (4 g/d) (Epanova®) Icosapent-ethyl ester (4 g/d)

Placebo Corn oil Mineral oil

Follow-up Median 3.5 years 4.9 years

Primary Endpoint
Nonfatal stroke and MI, cardiovascular death,

nonfatal MI, coronary revascularization or
unstable angina

Nonfatal stroke and MI, cardiovascular
death, coronary revascularization or

unstable angina

95% CI of Primary Endpoint 0.99, 0.90–1.09 0.75, 0.68–0.83

Abbreviations: CI = Confidence Interval.

As aforementioned, it is also important to acknowledge that the placebos used in
both trials were different from each other, and this may indeed affect outcomes due to
the potential negative effects of mineral oil on cardiovascular health [103,126]. Therefore,
using mineral oil as a placebo may affect trial outcomes and raise the cardiovascular risk
of those in the placebo group, falsely indicating a beneficial effect in the treatment group.
However, these arguments are still being debated [103]. A cohort study using patients
from the Copenhagen General Population Study (CGPS) was conducted to mimic the trial
design of both studies to explain differences in observed CRP and serum lipid levels [128].
Patients who met the inclusion criteria took part in trial designs that emulated both the
STRENGTH (n = 6862) and REDUCE-IT (n = 5684) studies. The authors of this study
concluded that the contrasting results of both trials were likely due to a difference in the
effect of the placebo oil used and not of the treatments assessed, as the mineral oil increased
serum lipids and CRP [128]. However, this only partly explains the perceived benefit seen
in the REDUCE-IT trial. Approximately, an additional 13% risk reduction may be due
to a potential benefit of IPE, chance, or other factors [126]. Another way that both trials
differed is in their enrollment criteria. While both trials needed patients with elevated
lipid levels for study admission, REDUCE-IT only required mild hypertriglyceridemia
(135–499 mg/dL) [105], whereas the STRENGTH trial required triglyceride levels between
180 and 500 mg/dL [121]. While minor, differences in enrollment may bias trial outcomes.

Several n-3 PUFA products on the market are generally recognized as safe (GRAS).
However, both trials indicated that there was an increased incidence of atrial fibrillation
among participants [126]. Therefore, at a population level, it is important that incidence of
atrial fibrillation is continually monitored.

4.4. Marine Oil Polar Lipids: Innovations and Human Health

The majority of fish oil products on the market are neutral n-3 PUFA products. PL
products are less frequently available due to the loss of PLs during the degumming pro-
cesses conducted in industrial production of fish oil [129]. Although n-3 PUFAs have been
extensively studied for their potential health benefits, particularly in terms of CVD, PLs may
be more effective as carriers of n-3 PUFAs due to their increased bioavailability [16,18,129].
Krill oil is an example of a product that contains a high proportion of n-3 PUFAs bound
to phospholipids [130,131]. The 72-hour bioavailability of 700 mg DHA with EPA in krill
oil was assessed in comparison to that of fish oil and krill meal within a randomized trial
containing 15 healthy participants. In this study, when considering the primary endpoint,
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DHA along with EPA contained increased bioavailability in the krill oil sample compared
to that of fish oil and krill meal. However, in terms of secondary endpoint, the results
were conflicting. The bioavailability of the samples did not differ, which suggests that
the phospholipids were not absorbed any better than that of the triglycerides [132,133].
Hence, further studies are ultimately required to confirm this hypothesis. In addition, a
study undertaken by Lapointe, et al. [134] concluded that the bioavailability of the sample
containing DHA and EPA in the form of that of PL esters was greater than that of the cohort
containing n-3 PUFAs in the ethyl ester form.

Although not an extensive list, several studies in Table 4 indicate that marine PLs
may counteract thrombosis and inflammation [18,135]. One study showed that oil extracts
from fish such as sea bass, plaice, coley herring, and rainbow and golden trout exhibited
antiaggregatory properties against PAF-induced rabbit platelet aggregation in vitro [136].
All six fish are widely consumed in Europe. In a more recent study, fish oil obtained
from salmon, herring, and boarfish, along with their processing by-products exhibited
antithrombotic effects, against PAF and thrombin-induced human platelet aggregation
due to their polar lipid content in vitro. Indeed, neutral lipids from the same fish did not
exhibit the same level of antiplatelet activity despite their n-3 PUFA compositions [137].
Similar studies in human platelet aggregation studies against PAF and thrombin in vitro
with salmon polar lipids [138] and food-grade salmon polar lipids [139] have shown that
marine oils rich in PLs may exert favorable antiplatelet effects.

Fish fatty acid composition can change due to a variety of factors [140], and many re-
searchers have shown that fish oil compositions change in response to diet alterations [141,142].
Food processing by-products are often used in animal feed. One such by-product is olive
pomace (OP), which exhibited anti-PAF effects in vitro [143,144]. In one study, both sea
bass (Dicentrachus labrax), and gilthead sea bream (Sparus aurata) were fed diets containing
OP [145]. The results of this study indicated the PLs of the gilthead sea bream consisted
of PAF inhibitors known to inhibit PAF both in vivo and in vitro likely accruing to a great
extent due to the OP feed. However, incorporation of OP within fish feed at 8% appeared
to negatively affect mortality and growth rate within sea bass, but a 4% OP diet was more
tolerable. Oils obtained from these fish exhibited antiplatelet actions against PAF in vitro.
To determine what lipids were responsible for the observed activity, Nasopoulou, et al. [146]
isolated a number of lipid fractions to elucidate the structures and biological activity of the
PLs purported to be responsible for the cardioprotective activity observed in vitro. Seven
lipid fractions extracted from the fish that consumed the OP diet exhibited potent inhibitory
actions against PAF-induced platelet aggregation, in comparison with that of those fed with
the conventional fish oil (FO) diet. Moreover, the balance of PL fractions of fish, which were
consuming the OP diet resulted in a large increase in inhibitory activity against platelet
aggregation as opposed to their respective PL fractions obtained from fish fed the FO diet.
This likely suggests that antiplatelet properties of the OP were likely increased in the fish
flesh and oils through the OP diet. Indeed, when the OP-fed gilthead seabream (0.06%)
fish oil was fed to hypercholesterolemic rabbits, a reduction in plaque size was observed
versus the cholesterol diet (1%) control rabbits, indicating a potential anti-atherosclerotic
effect of the fish PL [147]. These affects may also in part be due to the observed modulation
of PAF metabolic enzymes including PAF-acetylhydrolase (PAF-AH) both in vitro and
in vivo [147,148].

When assessed in healthy human volunteers, OP-fed fish consumption did not signifi-
cantly affect multiple cardiovascular markers with the exception of an elevated PAF-CPT
(1-alkyl-2-acetyl-sn-glycerol-choline-phosphotransferase) and reduced arachidonic acid
levels in red blood cells [149]. However, this study is still rather promising considering this
was a healthy population. Further studies in patients with higher CVD risk may indicate
whether consumption of such functional foods may benefit patient cardiovascular health.
Collectively, these studies further highlight the role that both PAF and its metabolism play
in atherosclerosis and the role that future fish PL-based therapeutics may play in the battle
against CVD. Indeed, multiple studies have demonstrated potential antiplatelet properties
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of fish oil PLs in vitro against PAF and various platelet agonists [137–139,150–152] and in
various models of CVD in vivo [145,153]. However, it should be noted that PL sources
characterized by lower levels of n-3 PUFAs such as dairy and meat also exhibit antiplatelet
effects to a similar extent [21,154,155], indicating the promise of developing PL-based
therapeutics generally.

Table 4. An overview of some of the studies investigating marine polar lipids possessing antiplatelet
and anti-inflammatory activities in vitro and in vivo. While there has been much advancement in
this field, further research is required.

Marine Lipid Sources Experiments Conducted Results Reference

Salmon fillet
(Salmo salar)

Investigation of the in vitro inhibition by
salmon PL extract against PAF and

thrombin-induced platelet aggregation in
human PRP.

Salmon PL, TNL, and TL fractions from
PE and PC showed high inhibitory activity

against PAF and thrombin-induced
platelet aggregation. These fractions had

high concentrations of n-3 PUFAs.

[138]

Salmon fillet
(Salmo salar)

Examination of the antiplatelet effects of raw
and cooked salmon fillet PLs using different

techniques against PAF-, thrombin-, collagen-,
and ADP-induced platelet aggregation in

human PRP.

All PL extracts exhibited potent
antiplatelet effects. The extract was

abundant in n-3 PUFAs.
[156]

Salmon fillet
(Salmo salar)

Investigation of the in vitro inhibition by
salmon food grade PL extracts against PAF-

and thrombin-induced platelet aggregation in
human PRP.

Food grade salmon extracts inhibited both
PAF- and thrombin-induced platelet

aggregation. The extract was abundant in
n-3 PUFAs.

[139]

Salmon, herring, and boarfish
by-products

(Salmo salar, Clupea harengus, and
Capros aper)

Examination of the in vitro inhibition of PAF-,
thrombin-, collagen-, and ADP-induced

platelet aggregation in human PRP by fish
by-products isolated from salmon, herring,

and boarfish.

All PL extracts were abundant in n-3
PUFAs and exhibited potent antiplatelet
effects against various platelet agonists.

[137]

Salmon PL extract
(Salmo salar)

Assessment of the antineuroinflammatory
actions of salmon PLs in cell culture.

Salmon PLs demonstrated potential
anti-inflammatory and antioxidant actions

DI TNC1 rat astrocytes stimulated with
amyloid-beta or LPS as a control by

downregulating PAF receptor expression
and reducing oxidative stress.

[157]

Sardines and cod liver oil (Sardina
pilchardus and Gadus morhua)

Investigation of the antiplatelet in vitro
properties of TL, TNL, and TPL in WRP.

TPL strongly inhibited PAF-induced
platelet aggregation. [151,158]

Sea bream and sea bass
(Sparus aurata and

Dicentrarchus labrax)

Investigation of the in vitro antiplatelet
properties of TL, TNL, and TPL in WRP.

Inhibition of PAF-induced
WRP aggregation. [159]

Sea bream and sea bass
(Sparus aurata and

Dicentrarchus labrax)

Assessment of the anti-atherogenic effects of
PL consumption in 12 male

hypercholesterolemic rabbits versus a control
group not receiving PL.

The PL-enriched diet modulated PAF
metabolism and reduced circulatory PAF
levels, which may be linked to a reduction
in atherosclerotic plaques in these rabbits.

[145,147]

Dulse
(Palmaria palmata)

Assessment of dulse PL and their inhibitory
effects versus LPS-induced NO production.

PLs downregulated iNOS activity
demonstrating anti-inflammatory

properties.
[160]

Various algae-derived lipids
(Chondrus crispus, Palmaria palmata,

Porphyra dioica, Pavlova lutheri)

Various algae-derived lipids were assessed for
anti-inflammatory activity in LPS-stimulated

THP-1 macrophages in cell culture.

All lipids exhibited anti-inflammatory
activity via mediating toll-like receptors,

chemokines, and NF-κB.
[161]

Fresh and fried cod
(Gadus morhua)

Test the PAF-like and anti-PAF properties of
lipid fractions of fresh and fried cod, against
PAF-induced platelet aggregation in WRP.

Lipid fractions (TPL and TNL) from fried
and fresh cod showed inhibitory activity

as well as slight platelet aggregation,
indicating presence of both PAF agonists

and inhibitors.

[162]

Abbreviations: ADP, adenosine diphosphate; iNOS, inducible nitric oxide synthase; LPS, liposaccharide; n-3
PUFAs, omega-3 polyunsaturated fatty acids; NF-κB, nuclear factor kappa B; NO, nitric oxide; PAF, platelet-
activating factor; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PL, polar lipids; THP-1, acute mono-
cytic leukemia cell line; TL, total lipids; TNL, total neutral lipids; TPL, total polar lipids; WRP, washed rab-
bit platelets.
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A significant proportion of the n-3 PUFA composition of fish is obtained through
dietary sources including microalgae, phytoplankton, and cyanobacteria [163]. Therefore,
microalgae are becoming increasingly popular as a source of high-value compounds with
interesting bioactivity and chemical diversity. That said, the knowledge and understanding
around their PLs’ characteristics remains largely limited [164]. Algae contain lipids such
as n-3 PUFAs with antioxidant potential [161,165], which are sometimes attributed to the
presence of glycolipids that are also known to exhibit antitumor and anti-inflammatory
properties [166,167]. Indeed, it has been suggested to bypass the extraction of fish oil
entirely and to instead focus on the production of n-3 PUFA supplements and nutraceuticals
from microalgae and macroalgae, as they are a source of high-value lipids. Moreover,
recent studies have suggested there is an abundance of therapeutic and pharmacological
potential in relation to Spirulina biomass. Strong in vitro anti-thrombin and anti-PAF
activities have been reported for extracts containing n-3 PUFA-rich PL fractions of Spirulina
subsalsa [168] and Chlorococcum sp. [169]. Macroalgae are also under investigation for
their PL composition [170,171]. Both Palmaria palmata and Grateloupia turuturu are rich
sources of EPA Palmaria palmata, and PL extracts from these macroalgae exhibit antioxidant
effect [172,173].

Other exciting marine sources for PL include sea urchins [174]. Lipids from the edible
gonads of the sea urchin (uni) have been extensively studied [175]. Furthermore, there
is the potential to use other parts of the sea urchin for the development of novel lipid-
based products. For example, the sea urchin body wall, dermis, and epidermis of the
endoskeleton, are thought to inhibit MAPK p38, COX-1, and COX-2, indicating potential
anti-inflammatory effects [176]. Indeed, other sea creatures including tunics like Halocynthia
aurantium [177] appear to harbor PLs with potential cardioprotective effects. The vast array
of creatures in the oceans that contain abundant and novel PLs means that there is a vast
area of PL research yet to be explored.

Another area of research that has gained attention is the formulation of oils that
use combinations of fish oils with oils from other sources, including plant extracts like
chamomile oil, schisandra oil, or motherwort oil. One study showed that the immunomod-
ulatory and antioxidant capacity of fish oil was improved when combined with chamomile
and schisandra oil in vitro and in vivo, indicating potential synergistic effects of the fixed
combination of oils [178]. This is a relatively underexplored area of research regarding fish
PLs, which warrants further investment in research.

Despite all of these promising areas of research, further investigation is required to
establish many of the PL-related findings in vivo. More clinical trials are also required
to further investigate PLs and their effects on cardiovascular health. There are limited
examples of PLs used for treatment of human conditions. However, although not related to
CVD, a PL-rich pulmonary surfactant known as poractant alfa has been used in Russia and
elsewhere to treat premature neonates with respiratory distress syndrome in combination
with standard therapies [179], indicating that there is certainly scope for such products to
be brought to market.

Lastly, studies investigating marine PLs use a variety of lipid sources and isolation
methods to bioprospect for a variety of potential bioactivities that may be beneficial for
human health. These have been extensively reviewed [16,67,180]. However, the majority
of these studies have been conducted using non-food-grade solvents that are toxic for
human consumption, which, even if evaporated, may leave residues that are potentially
dangerous in the oils. Some studies have investigated the use of food-grade extraction
protocols in marine and non-marine lipids sources and noted differences in biological
activity between conventional extraction methods and food-grade extraction methods
for PL extracts due to differences in product composition [139,181,182]. Therefore, it is
important that future studies consider the use of food-grade solvent extraction procedures
when bioprospecting for potential bioactives in novel sources to ensure that such products
may be safely evaluated in vivo. Indeed, it may also be worth considering the evaluation
of such products using simulated gastrointestinal digestion (SGID) protocols also.
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5. Conclusions and Future Research Directions

In this review, we investigated the evidence surrounding marine oil consumption and
cardiovascular health. In particular, we focused on n-3 PUFA and PL supplementation
and their capacity to reduce cardiovascular risk. In the n-3 PUFA research space, many
large clinical trials have been conducted with variable results because of differing trial
design, placebos used, doses, and the form of n-3 PUFA consumed. An in-depth review
of the REDUCE-IT and STRENGTH trials was conducted. Generally, while n-3 PUFAs
may provide some cardiovascular benefits, large-scale trials have failed to conclusively
support their use for cardiovascular risk reduction. This is largely due to differences in
trial design, placebo use, and the different forms of n-3 PUFAs that have been assessed.
The consumption of n-3 PUFA supplements is high worldwide but likely poses limited
risk for adverse events. Trials largely expressed concerns about the increased incidence of
atrial fibrillation, which should be monitored closely at a population level. This review
also evaluated the role and potential of n-3 PUFAs withing dietary PLs and their potential
cardiovascular benefits for risk reduction, through the examination of both in vitro and
in vivo studies. Evidence regarding PL supplementation, although promising, is limited
and further research is required. Given the large gaps within the literature remaining for
both n-3 PUFAs and PLs, it is difficult to draw concrete conclusions. In designing future
studies, we suggest that the form of n-3 PUFA used needs to be taken into account along
with the choice of placebo. Studies investigating PL forms of n-3 PUFAs are also warranted
in humans to determine whether the polar head group conveys greater bioavailability of
n-3 PUFAs, thus increasing their efficacy and potency.
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