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Abstract: An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was
used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate (<1 kDa). Twenty-
four peptides with an average local confidence score (ALC) ≥ 80% from bounded components
(eluted by 1 M NaCl) were identified by LC-MS/MS. Among them, a novel peptide, TLRFALHGME,
with ACE-inhibitory activity (IC50 = 93.5 µmol·L−1) was selected. Molecular docking revealed
that TLRFALHGME may interact with the active site of ACE through H-bond, hydrophobic, and
electrostatic interactions. The total binding energy (∆Gbinding) of TLRFALHGME was estimated to
be −82.7382 kJ·mol−1 by MD simulations, indicating the favorable binding of peptides with ACE.
Furthermore, the binding affinity of TLRFALHGME to ACE was determined by surface plasmon
resonance (SPR) with a Kd of 80.9 µmol, indicating that there was a direct molecular interaction
between them. TLRFALHGME has great potential for the treatment of hypertension.

Keywords: Takifugu flavidus; ACE-inhibitory activity; affinity purification; molecular docking; antihy-
pertensive effect

1. Introduction

The angiotensin-I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypep-
tidase, plays a vital role in regulating blood pressure [1]. ACE catalyzes the conversion of
angiotensin I (Ang I) into angiotensin II (Ang II) in the renin–angiotensin system (RAS)
and degrades the vasodilating bradykinin into inactive peptides in the kallikrein–kinin
system (KKS). Numerous studies showed that ACE is one of the most important therapeutic
targets to control hypertension [2,3]. Therefore, ACE inhibitors have been widely applied
in the clinic as effective antihypertensive drugs [4]. However, the most widely prescribed
blood-pressure-lowering ACE inhibitors (captopril, enalapril, lisinopril, benazepril, and
many others) were almost obtained by chemical synthesis. These drugs usually cause
significant undesirable side effects, including low blood pressure, dry cough, headaches,
fetal disorder, and an abnormal taste [5]. Hence, the utilization of ACE-inhibitory peptides
has increasingly attracted more and more interest because they have fewer side effects and
are readily prepared.

The preparation of ACE-inhibitory peptides from protein hydrolysates has always
been an intense focus. ACE-inhibitory peptides can be separated using multiple techniques
based on their physicochemical properties, such as molecular weight, charge difference,
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binding affinity, and polar nature [6]. The conventional approaches for the isolation
and purification of ACE-inhibitory peptides from complex hydrolysates primarily rely
on multi-stage column chromatography, including size exclusion chromatography, ion
exchange chromatography, and reverse-phase high-performance liquid chromatography
(RP-HPLC) [7]. However, these preparation strategies are frequently laborious and time-
consuming. Moreover, some ACE-inhibitory peptides may not be detectable due to their
low contents [8].

Instead, affinity chromatography is effective at enriching target-binding molecules,
which has been widely used for peptide purification for decades [9]. For example, Megias
et al. purified ACE-inhibitory peptides from sunflower and rapeseed protein hydrolysates
by immobilizing ACE with the activated support 4 BCL glyoxyl-agarose. In the same study,
they obtained inhibitory peptides with IC50 50 and 150 times lower than those of the original
sunflower and rapeseed hydrolysates, respectively [10]. Moreover, Sun et al. enriched and
purified two novel ACE-inhibitory peptides, IVTNWDDMEL (IC50 = 2.08 mmol·L−1) and
VGPAGRPG (IC50 = 4.66 mmol·L−1), from Volutharpa ampullacea perryi protein hydrolysate
by using a combination of Zn-SBA-15-immobilized ACE and HPLC [11]. When the affinity
method of immobilized ACE on magnetic metal–organic frameworks (Fe3O4@ZIF-90-
ACE) was used to purify ACE-inhibitory peptides from Wakame, a novel peptide KNFL
(IC50 = 225.87 mmol·L−1) was identified [12].

Computer-aided drug discovery (CADD) has become a prominent tool in drug dis-
covery and has been widely used in drug research [13]. The application of computational
approaches includes virtual screening, docking, molecular dynamics, and quantitative
structure–activity relations [14]. Molecular docking and molecular dynamic simulation are
widely employed techniques in molecular modeling for elucidating the structure–activity
relationship of substrates. Molecular docking methodology enables the prediction of both
the binding mode and affinity of small molecules within the binding site of the target
protein [15]. Molecular dynamics simulations provide detailed insights into the binding
process’s structural aspects by exploring the molecular mechanism further [16].

Takifugu flavidus, an economically significant species of pufferfish found in coastal
regions of East Asia, is renowned for its delectable taste and high market value [17]. Pre-
vious studies have indicated that T. flavidus has the potential to function as a reservoir
of biologically active peptides exhibiting ACE-inhibitory activity and antihypertensive
properties [18]. In the present study, a Sepharose-immobilized ACE affinity purification
method was developed for the high-efficiency enrichment of ACE-inhibitory peptides. A
novel ACE-inhibitory peptide was screened from T. flavidus, and its interaction mecha-
nisms with ACE were evaluated. Molecular docking and molecular dynamic simulation
were performed to investigate the structural and dynamic characteristics of the peptide.
Furthermore, ACE–peptide interactions were quantified using an SPR method.

2. Results
2.1. ACE-MB Enzymatic Assays

Immobilization efficacy was evaluated by measuring the ACE-inhibitory activity of
Sepharose-4B-immobilized ACE. ACE-inhibitory activity of Sepharose-4B-immobilized
ACE was determined in different pH (6–10). Hippuric acid (HA), the reaction product,
was employed as a measure of ACE-inhibitory activity. As shown in Figure 1, Sepharose-
4B-immobilized ACE effectively catalyzed the production of HA from hippuryl-l-histidyl-
L-leucine (HHL). This result demonstrated the successful immobilization of ACE with
Sepharose 4B as well as the activity of the immobilized biomolecules. The enzyme activity
was calculated to be 0.2 U·mL−1 immobilized enzyme. Moreover, no significant difference
in ACE-inhibitory activity was observed in sodium borate buffers between pH 6.0 and
10.0, suggesting an increase in pH stability compared to free ACE. In order to fix receptor
enzymes, the matrix should have an open structure to prevent interactions between the
immobilized enzymes and acceptor molecules [19]. As cyanogen bromide (CNBr) reacts
with hydroxyl groups on Sepharose 4B, it forms cyanate esters or imidocarbonates. These
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groups react readily with primary amines in very mild conditions, resulting in the covalent
coupling of ACE to the Sepharose 4B [20]. The coupling procedure is relatively simple and
reproducible [21]. Therefore, CNBr-activated Sepharose 4B was shown to be an efficient
support for ACE immobilization.
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Figure 1. ACE-inhibitory activity of Sepharose-4B-immobilized ACE in different pHs.

2.2. Affinity Purification and Identification of T. flavidus Peptides

T. flavidus peptides were purified by affinity adsorption to the ACE–Sepharose 4B
column. After reaching the adsorption equilibrium, elution was performed with a linear
NaCl gradient (0–1 mol·L−1). As shown in Figure 2, the chromatogram of Sepharose 4B
without ACE did not show an absorption peak, indicating that active groups of CNBr-
activated Sepharose 4B were effectively blocked with glycine. One main elution peak
was obtained on the elution curve of ACE–Sepharose 4B with the same experimental
manipulation. The eluate was desalted and concentrated and subsequently sequenced by
mass spectrometry. As shown in Table 1, 24 peptides with ALC ≥ 80% were identified.
These peptides had lengths ranging from 4 to 12 amino acids, with molecular weights
ranging from 358.2 to 1207.6 Da.
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Table 1. Peptide sequences of elution fractions identified by LC-MS/MS analysis.

NO Peptides Sequence Length Mass (Da)

1 SATVPDPLPVVN 12 1207.6448
2 NESNPDYLVR 10 1205.5676
3 TLRFALHGME 10 1173.5964
4 NNLFDQSGTVK 11 1221.5989
5 SGVGDGDLPELT 12 1158.5405
6 KDVDVLDSVL 10 1101.5918
7 TCDKVQEVR 9 1076.5283
8 TSTPTKVL 8 845.4858
9 RSTGALAL 8 787.4552

10 TYPFPV 6 722.3639
11 ELLVQN 6 714.3912
12 DVFRVT 6 735.3915
13 FLPELT 6 718.3901
14 HPPLQ 5 590.3176
15 ELALQ 5 572.317
16 YVLL 4 506.3104
17 TLFGL 5 549.3162
18 FAVET 5 565.2748
19 LLGGGA 6 486.2802
20 TVLL 4 444.2948
21 TFTGA 5 495.2329
22 KVGL 4 415.2794
23 SAAL 4 360.2009
24 VLGA 4 358.2216

In affinity chromatography, biomolecules are separated by highly specific interactions
between a target molecule and a ligand attached to a chromatography column [22]. Affinity
chromatography is highly efficient and specific and become a potentially attractive ap-
proach for purification. Using immobilized metal affinity chromatography (IMAC-Ni2+),
Sun et al. isolated a novel ACE-inhibitory peptide (Arg-Tyr-Arg-Pro) from lizard fish and
demonstrated that IMAC may be useful for ACE inhibitor research [23]. According to Lu
et al., lizard fish protein hydrolysates were purified by metal affinity-immobilized magnetic
liposome (MA-IML), and an ACE-inhibitory peptide with an IC50 value of 108 µmol/L was
identified as VYP [24]. In the study by Liu et al., a magnetic immobilized metal affinity
chromatography matrix modified by poly (ethylene glycol) methyl ether (IMACM@mPEG)
was prepared and applied for the rapid purification of ACE-inhibitory peptides from
casein hydrolysate. A novel peptide with moderate ACE-inhibitory activity (IC50 value
of 274 mmol·L−1) was identified as LYQEPVLGPVR [25]. Our study further confirms
the feasibility and high effectiveness of affinity chromatography in the preparation of
ACE inhibitory peptides from enzymatic hydrolysates. It indicated that ACE–Sepharose
4B is an effective method for the preparation of an effective method for purification of
ACE-inhibitory peptide from T. flavidus.

2.3. The ACE-Inhibitory Activity Assay of Synthetic Peptides

The peptides were chemically synthesized and validated for their ACE-inhibitory activ-
ity in vitro. As shown in Figure 3, twenty-four peptides (1 mg/mL) showed ACE-inhibitory
activities ranging from 1.3 to 96.82%. Eight peptides (TLRFALHGME, RSTGALAL, YVLL,
TLFGL, TVLL, TFTGA, SAAL, VLGA) with activity greater than 50% inhibition were fur-
ther selected for IC50 determination. As shown in Table 2, the calculated IC50 values
ranged from 57.5 to 5837.5µmol·mL−1. TLFGL exhibited the highest ACE-inhibitory ac-
tivity (IC50 = 57.5 µmol·mL−1), followed by TLRFALHGME and YVLL, while their IC50
values were 93.5 and 153.8 µmoL·L−1, respectively. However, TLFGL contains multiple hy-
drophobic amino acids, resulting in low solubility. Therefore, TLRFALHGME was selected
for the next analysis.
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Figure 3. The ACE-inhibitory activity of synthetic peptides.

Table 2. The ACE-inhibitory activity of the top 8 peptides.

NO Peptides Sequence IC50 (µmol/L)

1 TLFGL 57.5
2 TLRFALHGME 93.5
3 YVLL 153.8
4 TVLL 582.1
5 SAAL 882.9
6 TFTGA 694.3
7 VLGA 1372.9
8 RSTGALAL 5837.5

The purified peptides with different binding affinities exhibited varied ACE-inhibitory
activities. These differences might be related to binding sites of ACE, sequence length,
and amino acid constitution [26]. It has been reported that the binding of the peptides to
the enzyme active center of ACE played a critical role in the ACE-inhibitory activity [27].
However, the inhibition mechanism of TLRFALHGME will be further explored.

2.4. Inhibitory Kinetics Study

It has been reported that ACE-inhibitory peptides inhibit in different ways, including
competitively, noncompetitively, and mixed-competitively [28]. Inhibition kinetics of
TLRFALHGME were studied using Lineweaver–Burk plots. As shown in Figure 4, the
slope changed while the y-intercept of 1/V remained unchanged for TLRFALHGME,
suggesting that TLRFALHGME served as a competitive inhibitor by competing for the
binding site on ACE. Kinetic studies indicated that TLRFALHGME possessed a competitive
inhibition mode.

2.5. Molecular Docking Simulation

In recent years, molecular docking simulations have become an important tool for
understanding the interaction mode and the structure-activity relationships of ligands with
receptors [29]. As shown in Figure 5, TLRFALHGME bonded to the enzyme active center
and occupied the substrate-binding channel of ACE. The interaction of TLRFALHGME
with ACE involves hydrogen bonds, hydrophobic interactions, and van der Waals forces.
TLRFALHGME formed twelve hydrogen bonds with the residues of the ACE active site
(Ala354, His513, His353, Lys511, Tyr523, Gln281, Asn277, Ala356, Arg124, Asp121, and
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Glu123). Moreover, TLRFALHGME showed hydrophobic contacts with Glu384, His 383,
Tyr 520, Phe 457, Val380, Thr282, Glu411, Phe391, His410, His 387, Phe512, Ser355, Ser219,
Leu139, Met223, Arg402, Trp59, and Tyr360.
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Previous studies have shown that there were at least three active site pockets in ACE:
S1 pocket (Gln281, His353, Lys511, and His513), S2 pocket (Ala354, Glu384, and Tyr523),
and S1’pocket (Glu162) [30]. In our study, TLRFALHGME formed four hydrogen bonds
with the S1 pocket (Gln281, His353, Lys511, and His513) and two hydrogen bonds with
the S2 pocket (Ala354 and Tyr523). TLRFALHGME also interacted with Glu384 residue in
the S2 pocket through a hydrophobic interaction. According to the results, TLRFALHGME
is effective in interacting with ACE at its active site and forming a stable complex, thus
leading to the inhibition of enzyme activity. Overall, our results are consistent with the
previous reports [31,32].

2.6. Molecular Dynamics Simulations

MD simulations were carried out to explore the stability of the binding tendency of
the ACE–peptide complex. RMSD is an important parameter for measuring the stability
of the protein–ligand complex [33]. It can be used to describe the conformational devia-
tions during the dynamic simulation, which can reflect the stability of the ACE–peptide
complex [34]. As shown in Figure 6, the root mean square deviation (RMSD) value of the
ACE-TLRFALHGME complex fluctuated sharply in the early stages of the simulation and
stabilized at around 0.16 nm to 0.18 nm after 25 ns. The result of the binding free energy
calculation (MM/PBSA) is shown in Table 3. The total binding energy ∆Gbinding was
calculated as −82.7 ± 9.3 kJ·mol−1, indicating the favorable binding of TLRFALHGME with
ACE. The contribution of van der Waals energy and electrostatic energy to the total binding
energy were −104.7 ± 6.6 kJ·mol−1 and −409.2 ± 35.1 kJ·mol−1. Our results indicated
that TLRFALHGME could bind ACE rapidly, forming a highly stable ACE-TLRFALHGME
complex. The van der Waals and electrostatic interactions contributed to the maintenance of
the stability of ACE-TLRFALHGME complexes, which agreed with the molecular docking
simulation.
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2.7. Surface Plasmon Resonance (SPR) Analysis

SPR was used to analyze the physical interactions between TLRFALHGME and ACE.
SPR is an optical technique based on the detection of SPR biosensor chips and is widely
used to characterize molecular interactions [35]. The binding affinity of the ACE–peptide
complex was evaluated by determination of the binding affinity (KD) using SPR [36]. ACE
was coupled with a sensor chip, and TLRFALHGME was added onto the chip at 0, 50, 200,
400, and 800 µmol·L−1 (Figure 7). Analysis of the sensogram was conducted to determine
association and dissociation rate constants: Ka = 0.247 M−1 s−1 and Kd = 0.002 s−1. The KD
value of the ACE-TLRFALHGME complex calculated from its kinetic parameters (Kd/Ka)
is 80.9 µmol·L−1.

According to SPR results, TLRFALHGME has a high binding affinity for ACE, which
validates previous molecular simulation results. Due to the relatively long dissociation time,
the kinetics of TLRFALHGME displayed the characteristics of a relatively slow kinetics;
hence, it may have a slow release and sustained drug efficacy.
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Table 3. Predicted binding free energies of ACE-TLRFALHGME complexes.

Complex Average Std. Dev. Std. Err. of Mean

∆Evdw −104.7043 6.6073 1.2958
∆Eelec −409.2481 35.1386 6.8913

∆Gpolar 446.5627 28.3400 5.5579
∆Gnonpolar −15.3484 0.3851 0.0755
∆Gbinding −82.7382 9.2771 1.8194

Note: ∆EvdW, ∆Eelec, ∆Gpolar, and ∆Gnonpolar are binding energy components of van der Waals, electrostatic,
polar, and nonpolar solvation energies, respectively.

Mar. Drugs 2023, 21, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. Surface plasmon resonance (SPR) analysis of interactions between TLRFALHGME and 
ACE. 

2.8. Antihypertensive Activity of TLRFALHGME 
After intravenous administration of TLRFALHGME, antihypertensive effects were 

evaluated on spontaneously hypertensive rats (SHR). The SHR is the most widely used 
animal model for studying human essential hypertension [37]. As shown in Figure 8, TLR-
FALHGME had good effects on lowering blood pressure. A significant reduction in SBP 
was observed between 2 and 8 h (p < 0.05), with the lowest SBP of 171 mmHg occurring 
around 4 h after TLRFALHGME was administered. The SBP then recovered to 190 mmHg 
after 8 h. 

In recent years, a number of ACE-inhibitory peptides have been demonstrated to 
have an antihypertensive effect on SHR. Li et al. identified a novel ACE-inhibitory peptide 
CSBp5 from corn silk, which exhibited antihypertensive effects in SHRs via the inhibition 
of ACE [38]. Chen et al. showed that ACE-inhibitory peptide WGAP significantly reduced 
systolic and diastolic blood pressure in hypertensive rats by up to 42.66 ± 2.87 and 28.56 ± 
2.71 mmHg [39]. In this study, we reported the effect of TLRFALHGME on lowering blood 
pressure. TLRFALHGME had great potential to be used as an antihypertension agent, 
which is comparable to the effectiveness of captopril treatment. TLRFALHGME could be 
a promising compound for further modification and optimization in order to improve its 
biological activity and pharmacokinetic properties [40]. 

 
Figure 8. SBP changes in SHRs after the intravenous administration of TLRFALHGME. 

  

Figure 7. Surface plasmon resonance (SPR) analysis of interactions between TLRFALHGME and
ACE.

2.8. Antihypertensive Activity of TLRFALHGME

After intravenous administration of TLRFALHGME, antihypertensive effects were
evaluated on spontaneously hypertensive rats (SHR). The SHR is the most widely used
animal model for studying human essential hypertension [37]. As shown in Figure 8,
TLRFALHGME had good effects on lowering blood pressure. A significant reduction in
SBP was observed between 2 and 8 h (p < 0.05), with the lowest SBP of 171 mmHg occurring
around 4 h after TLRFALHGME was administered. The SBP then recovered to 190 mmHg
after 8 h.
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In recent years, a number of ACE-inhibitory peptides have been demonstrated to
have an antihypertensive effect on SHR. Li et al. identified a novel ACE-inhibitory peptide
CSBp5 from corn silk, which exhibited antihypertensive effects in SHRs via the inhibi-
tion of ACE [38]. Chen et al. showed that ACE-inhibitory peptide WGAP significantly
reduced systolic and diastolic blood pressure in hypertensive rats by up to 42.66 ± 2.87
and 28.56 ± 2.71 mmHg [39]. In this study, we reported the effect of TLRFALHGME on
lowering blood pressure. TLRFALHGME had great potential to be used as an antihyperten-
sion agent, which is comparable to the effectiveness of captopril treatment. TLRFALHGME
could be a promising compound for further modification and optimization in order to
improve its biological activity and pharmacokinetic properties [40].

3. Materials and Methods
3.1. Materials

Takifugu flavidus were purchased from Zhangzhou City of Fujian Province, China. The
skin was shelled, husked, and used for further experimentation. Alcalase, pepsin, and
trypsin were purchased from Sinopharm Group (Beijing, China); angiotensin-I-converting
enzyme, hippuryl-l-histidyl-L-leucine (HHL), hippuric acid, and CNBr-activated Sepharose
4B were purchased from Sigma-Aldrich (St. Louis, MO, USA). Captopril was procured
from MedChem Express (Monmouth Junction, NJ, USA). All other chemicals/reagents
used were of analytical grade or HPLC grade.

3.2. Immobilization ACE onto CNBr-Activated Sepharose 4B

ACE was bonded to CNBr-activated Sepharose 4B according to procedures previously
described with slight modifications (Homaei, 2015). A total of 5 U ACE was dissolved in
0.1 mol·L−1 NaHCO3 buffer containing 0.5 mol·L−1 NaCl, pH 8.3–8.5. CNBr-activated
Sepharose 4B was washed using a cold solution of 1 mM HCl. The gel was then filtered
and washed with distilled water and 0.1 mol·L−1 NaHCO3 (0.5 mol·L−1 NaCl, pH 8.3)
successively. The filtrate was transferred to ACE solution and gently stirred overnight
at 4 ◦C. The unreacted ACE was washed away with 0.1 mol·L−1 NaHCO3 (0.5 mol·L−1

NaCl, pH 8.3). The remaining active groups were blocked with 0.2 mol·L−1 glycine (pH 8.0)
for 2 h at room temperature. The suspension was washed three times with 0.1 mol·L−1

sodium acetate (0.50 mol·L−1 NaCl, pH 4.0), followed by 0.1 mol·L−1 Tris-HCl (0.5 mol·L−1

NaCl, pH 8.0). The matrices were then packed into 5 mL polypropylene columns (Qiagen,
Germany) and named ACE-MB affinity columns.

3.3. Preparation of Peptide from T. flavidus

The peptide was prepared according to previously published methods [18]. The skins of
T. flavidus were hydrolyzed by alcalase (2000 U·g−1) for 5 h under the optimum temperature
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and pH conditions (55 ◦C, pH 8.0). The T. flavidus hydrolysates were filtered using a con-
tinuous flow ultrafilter (STAR Biotechnology Co., Ltd., Xiamen, China) with ultrafiltration
membranes (MWs < 1 kDa). Fractions with MWs < 1 kDa were collected and lyophilized.

3.4. Affinity Purification of ACE-Inhibitory Peptides

The antihypertensive peptide was dissolved in Tris-HCl (50 mmol·L−1, pH 7.4) and
loaded onto immobilization ACE affinity column pre-equilibrated with 50 mmol·L−1 Tris-
HCl buffer (pH 7.4). After loading, the column was washed with equilibration buffer
(50 mmol·L−1 Tris-HCl, pH 7.4) until the absorbance at 220 nm returned to a stable baseline.
The elution was performed using Tris-HCl (50 mmol·L−1, pH 7.4) with 1 mol·L−1 of NaCl
at a flow rate of 0.2 mL·min−1. The salt elute with UV220 absorbance peaks were collected,
desalted, and lyophilized for the next experiments.

3.5. Analysis of the Amino Acid Sequence by UPLC-MS/MS

Q Exactive mass spectrometer (Thermo Fisher, Waltham, MA, USA) was used to
analyze affinity chromatographic elute components [41]. After desalination, the sam-
ple was loaded onto an Acclaim PepMap C18 column (Acclaim PepMap RPLC C18,
75 µm i.d. × 150 mm, 3 µm). The mobile phase A contained 2% acetonitrile (with 0.1%
formic acid, v/v), while the mobile phase B contained 80% acetonitrile (with 0.1% formic
acid). Gradient elution was carried out with a gradient of 6–95% B, with a flow rate
of 300 nL·min−1. The MS data were then processed with PEAKS Studio using de novo
sequencing (Bioinformatics Solutions Inc., Waterloo, QC, Canada). The peptides were
selected with a confidence score of ALC > 80%.

3.6. Screening for ACE-Inhibitory Peptides

The peptides were prepared by the fmoc solid-phase method (purity ≥ 98% by HPLC)
at Genscript Biotech Corporation (Nanjing, China). ACE-inhibitory activity of the synthe-
sized peptides was evaluated according to the method of Ma. et al., with some modifi-
cations [27]. In brief, 50 µL of sample was added into 150 µL of 5 mmol·L−1 hippuryl-l-
histidyl-l-leucine (HHL) and incubated for 10 min at 37 ◦C. Then, the enzymatic reaction
was initiated by addition of 50 µL of 50 mU/mL ACE solution and kept at a constant
temperature of 37 ◦C for 45 min. The reaction was then terminated by adding 250 µL of
1 mol·L−1 HCl. RP-HPLC (Waters, Milford, MA, USA) was used to measure hippuric acid
(HA) formation at 220 nm. Content of reaction products hippuric acid (HA) was determined
using RP-HPLC (Waters, Milford, MA, USA) at 220 nm. The IC50 value represents the
concentration of the peptide that inhibits 50% of ACE activity under the assay conditions.

3.7. Inhibitory Kinetics Study

The inhibitory kinetics of TLRFALHGME were analyzed using Lineweaver–Burk plots
according to the protocol described by Lin et al. [42]. The reaction mixtures consisted of
100 µL of HHL (0.1, 0.5, 1, 2, and 5 mmol·L−1) as a substrate, 50 µL of 5 mmol·L−1 ACE,
and 50 µL of each sample solution (10, 20, 40 µg·mL−1 of TLRFALHGME) were assayed
in the same conditions as Method 3.6. The Lineweaver–Burk plot was drawn based on
reciprocal of initial reaction rate (1/V) against the substrate concentration (1/[S]), and the
Km and Vmax were calculated.

3.8. Molecular Simulations

Discovery Studio 2019 (NeoTrident Technology, Beijing, China) was employed to
analyze the binding affinities and modes of interaction between ACE and peptide [43]. The
molecular structures of TLRFALHGME were drawn with ChemDraw Pro 16.0 software.

The 3D coordinates of the structure of human ACE (PDB: 108A) were downloaded from
the PDB (https://www.rcsb.org/structure/1O8A (accessed on 15 August 2023)). Molecular
and protein files were converted into PDBQT format, where water molecules were excluded,
and polar hydrogen atoms were added for docking analysis. Molecular docking results

https://www.rcsb.org/structure/1O8A
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were selected based on their docking scores and binding energies. According to docking
scores and binding energies, the best docking result was selected.

MD simulations were conducted on the Yinfo Cloud Computing Platform (CCP) using
AmberTools 20 (https://cloud.yinfotek.com/ (accessed on 20 August 2023)) [44]. The
ACE-TLRFALHGME complex was simulated using the Amber ff14SB all-atom force field.
The complex was solvated in TIP3P water molecules within a dodecahedron box, ensuring
a minimum distance of 1.5 nm between the protein and the box’s edge. The simulation
consisted of two stages of energy minimization, followed by heating, equilibration, and
production. A total of 50 ns simulation time was conducted, with the molecular dynamic
parameters set according to the reference [45]. The binding-free energies (∆Gbind) were
estimated using MM-GBSA and MM-PBSA procedures in AMBER12 [46]. The following
equation was used:

∆Gbind = ∆Gcomplex −
(
∆Greceptor − ∆Gligand

)
(1)

3.9. Surface Plasmon Resonance (SPR) Assay

The affinity interaction between TLRFALHGME and ACE was verified by SPR exper-
iments [47]. In brief, 5 ug ACE was fixed on a COOH sensor chip by capture-coupling.
Afterwards, 50–800 µmol·L−1 of TLRFALHGME were injected sequentially into the cham-
ber in PBS running buffer. The SPR assay was performed at 25 ◦C on an OpenSPRTM
(Nicoya Lifesciences, Waterloo, QC, Canada). The conditions for the analysis were set
at a flow rate of 20 µL·min−1, the binding time was 240 s, and the disassociation time
was 480 s. Chips were regenerated using a regeneration buffer (0.25% SDS). A one-to-one
diffusion-corrected model was fitted to the wavelength shifts corresponding to the series
of TLRFALHGME concentrations. The kinetic constant analysis was performed using
TraceDrawer 1.9.1 software (Ridgeview Instruments AB, Uppsala, Sweden) to determine
the association constant (Ka) and dissociation constant (Kd). The affinity constant (KD)
was calculated as the ratio kd/ka.

3.10. Antihypertensive Effect In Vivo

Male SHRs (10 weeks, 220 ± 20 g body weight) were purchased from Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China). Following an acclimation
period of one week, SHRs with systolic blood pressure (SBP) higher than 180 mmHg were
randomly divided into groups of ten rats. Animals were housed at 25 ◦C under a light–dark
cycle of 12 h/12 h. TLRFALHGME was injected via tail vein at a dose of 4 mg/kg body
weight.

Under the same conditions, a saline group was used as the negative control and
captopril (5 mg·kg−1) as the positive control. The SBP of all rats was measured using a
BP-98A blood pressure monitor (Softron Biotechnology, Beijing, China) before and after
intravenous administration. The rats were all treated humanely according to the guidelines
of the National Institutes of Health and Use of Laboratory Animals and approved by
the Ethics Committee of Guangdong Medical Laboratory Animal Center (no. 20211001,
approved on 9 September 2021).

3.11. Statistical Analysis

Data were analyzed by one-way ANOVA (Analysis of Variance), and mean compar-
isons were carried out by Duncan’s multiple range test using SPSS statistics software v.20.0
(IBM SPSS Inc., Chicago, IL, USA).

4. Conclusions

In this study, an affinity chromatography of Sepharose-immobilized ACE was applied
for the purification of ACE-inhibitory peptides from T. flavidus. In total, 24 peptide se-
quences of eluted fractions were identified by LC-MS/MS and subjected to ACE-inhibitory
activity assay. One potential ACE-inhibitory peptide (TLRFALHGME) possessed the high-

https://cloud.yinfotek.com/
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est ACE-inhibitory activities with IC50 values of 93.5 µmol·mL−1. Kinetic studies indicated
that TLRFALHGME possessed a competitive inhibition mode. The results of molecular
docking, molecular dynamics, and SPR analysis confirmed the direct interaction between
the peptide and ACE. This is also in contrast to our previous work, in which we purified a
novel ACE-inhibitory peptide PPLLFAAL using semi-preparative RP-HPLC, sephadex G-
15 gel chromatography, and RP-HPLC [18]. The affinity method of Sepharose-immobilized
ACE has the advantages of specificity and efficiency, which can be widely applied to the
purification of potentially ACE-inhibitory peptides from natural sources.
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