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Abstract: Oxidative stress and abnormal glucose metabolism are the important physiological mech-
anisms in the occurrence and development of diabetes. Antioxidant peptides have been reported
to attenuate diabetes complications by regulating levels of oxidative stress, but few studies have
focused on peptides from marine bone collagen. In this study, we prepared the peptides with a
molecular weight of less than 1 kD (HNCP) by enzymolysis and ultrafiltration derived from Harpadon
nehereus bone collagen. Furthermore, the effects of HNCP on blood glucose, blood lipid, liver struc-
ture and function, oxidative stress, and glucose metabolism were studied using HE staining, kit
detection, and Western blotting experiment in streptozocin-induced type 1 diabetes mice. After
the 240 mg/kg HNCP treatment, the levels of blood glucose, triglyceride (TG), and low-density
lipoprotein cholesterol (LDL-C) in streptozotocin-induced diabetes mice decreased by 32.8%, 42.2%,
and 43.2%, respectively, while the levels of serum insulin and hepatic glycogen increased by 142.0%
and 96.4%, respectively. The antioxidant enzymes levels and liver function in the diabetic mice were
markedly improved after HNCP intervention. In addition, the levels of nuclear factor E2-related
factor 2 (Nrf2), glucokinase (GK), and phosphorylation of glycogen synthase kinase-3 (p-GSK3β)
in the liver were markedly up-regulated after HNCP treatment, but the glucose-6-phosphatase
(G6Pase) and phosphoenolpyruvate carboxykinase1 (PEPCK1) were down-regulated. In conclusion,
HNCP could attenuate oxidative stress, reduce blood glucose, and improve glycolipid metabolism in
streptozocin-induced type 1 diabetes mice.

Keywords: diabetes; collagen peptides; Nrf2; glucose metabolism; oxidative stress

1. Introduction

Diabetes mellitus is a syndrome characterized by the disorder of sugar and lipid
metabolism. Diabetes is known as a “silent killer” due to a large number of chronic com-
plications [1,2]. Low levels of in insulin in the body and a decline in glucose metabolism
will lead to an increase in blood glucose [3]. At present, some enzymes related to glu-
cose metabolisms, such as glucokinase (GK) [4], phosphoenolpyruvate carboxykinase1
(PEPCK1) [5], and glucose-6-phosphatase (G6Pase) [6], have been confirmed to be asso-
ciated with diabetes. Under long-term high hyperglycemia, a large number of reactive
oxygen species (ROS) are accumulated in the body, resulting in cell damage and tissue
dysfunction. The liver is damaged due to the long-term accumulation of hyperglycemia [7],
which can cause metabolic abnormalities and dysfunction, and eventually lead to non-
alcoholic fatty liver and other complications [8,9]. Studies have shown that diabetes and
its complications are closely related to oxidative stress and glucose metabolism caused by
high glucose, but the mechanism is still unclear [10,11].
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Because oxidative stress is closely related to diabetes, one of the potential strategies
for preventing and treating diabetes is to reduce oxidative stress levels [12]. Studies have
reported that some bioactive peptides have dual antioxidation and hypoglycemic functions,
such as peptides from yeast hydrolysates [13], milk protein-derived hydrolysates [14], and
egg-yolk protein hydrolysates [15]. In the past decades, bioactive peptides from marine
organisms have attracted extensive attention due to their various biological properties, in-
cluding antioxidant [16–18], antihypertensive [19], antidiabetic [20], immunoregulation [21],
and antifatigue [22] properties. The Bombay duck (Harpadon nehereus), an important edi-
ble fish in China, is widely distributed in the coastal areas of China. The meat of Harpadon
nehereus is soft, tender and smooth, and rich in protein (up to 70% of the dry weight) [23].
The bones of the Harpadon nehereus are discarded because they are not edible, but they
are rich in collagen and calcium, causing a waste of resources. Therefore, the preparation
of collagen peptides with nutritional or medical value from Harpadon nehereus bones can
greatly improve the economic value of Harpadon nehereus.

Nuclear factor E2-related factor 2 (Nrf2) plays a backbone role in cellular antioxidant
defense. Nrf2 regulates the expression of antioxidant enzyme genes by binding to anti-
response elements (ARE) [24]. In addition to Nrf2, the ARE binding site is also the target
gene for NAD(P)H quinone oxidoreductase 1 (NQO1) and heme-oxygenase (HO-1) [25].
The activation of the Nrf2-ARE signal pathway has been shown to reduce the production of
free radicals and oxidative stress, playing a protective role in the kidney [26,27]. However,
it has not been elucidated yet whether collagen peptides from Harpadon nehereus bones
have preventive and therapeutic effects on streptozocin-induced diabetes. Therefore,
the purpose of this study was to evaluate the therapeutic effect and explore the potential
mechanism of collagen peptides from Harpadon nehereus in streptozocin-induced diabetic
mice, laying a theoretical foundation for the application of collagen peptides in diabetes
prevention.

2. Results
2.1. Preparation of HNCP and Its Antioxidative Activity

The hydrolysates of bone collagen from Harpadon nehereus were analyzed by high-
performance liquid chromatography (HPLC) with chromatographic column TSK-GEL
2000SWXL. The ribonuclease A, aprotinin, bacitracin, and glycine-glycine-glycine were
used as the standard substances. As shown in Figure 1A, all the standard substances were
eluted within 20 min. According to the relationship between the logarithm of relative
molecular mass (lg Mw) and retention time (t) of each standard, the standard curve was
obtained: lg Mw = −0.4105t + 7.3036, R2 = 0.997. The molecular weight logarithm showed
a good correlation with the retention time under the chromatographic conditions. Thus,
the standard curve was used to evaluate the molecular weight distribution of peptides
in the hydrolysates of the bone collagen from Harpadon nehereus. Figure 1B shows that
the molecular weight (Mw) of the hydrolysates by protease was mostly distributed below
3 kDa. According to the range of the molecular weight, the peptides were divided into five
components, which were respectively named HNCP (Mw < 1 kDa), HNCP 1 (1~3 kDa),
HNCP 2 (3~5 kDa), HNCP 3 (5~10 kDa), and HNCP 4 (Mw > 10 kDa). The content and
DPPH• scavenging rate of HNCP were 37.3% and 44.1%, respectively, both of which were
the highest among all components (Figure 1C,D). The amino acid analysis (Table 1) showed
that HNCP was rich in glycine (Gly, 336.2 residues), alanine (Ala, 117.3 residues), and
proline (Pro, 116.0 residues) but low in hydrophobic amino acids such as phenylalanine
(Phe, 12.3 residues), isoleucine (Ile, 12.3 residues), and tyrosine (Tyr, 4.2 residues). In
addition, the contents of hydroxyproline (Hyp) and glutamic acid (Glu) were more than
70 residues/1000 residues.
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Figure 1. The HPLC diagram of standards (A) and hydrolysates of bone collagen from Harpadon 

nehereus (B); The DPPH• scavenging activity (C) and content (D) of each component in the hydrol-

ysates. Values with different letters (a–d) indicate significant differences between groups (p < 0.05). 

Table 1. Amino acid composition of HNCP. 

Amino Acid Residues/1000 residues 

Aspartic acid (Asp) 47.4 

Threonine (Thr) 29.2 

Serine (Ser) 34.8 

Glutamic acid (Glu) 71.4 

Glycine (Gly) 336.2 

Alanine (Ala) 117.3 

Valine (Val) 26.1 

Methionine (Met) 11.6  

Isoleucine (Ile) 12.3  

Leucine (Leu) 27.8  

Tyrosine (Tyr) 4.2  

Phenylalanine (Phe) 12.3  

Lysine (Lys) 22.0  

Histidine (His) 6.0  

Arginine (Arg) 37.3  

Proline (Pro) 116.0  

Hydroxyproline (Hyp) 76.5  

Hydroxylysine (Hyl) 11.9  

2.2. Effects of HNCP on Glucose Metabolism in Diabetic Mice 

The intervention effect of HNCP on glucose metabolism in STZ-induced type 1 dia-

betic mice was investigated. The blood glucose of mice in the Con group (the normal mice 

group) remained at a normal level all the time and was markedly lower than that of 

Figure 1. The HPLC diagram of standards (A) and hydrolysates of bone collagen from Harpadon ne-
hereus (B); The DPPH• scavenging activity (C) and content (D) of each component in the hydrolysates.
Values with different letters (a–d) indicate significant differences between groups (p < 0.05).

Table 1. Amino acid composition of HNCP.

Amino Acid Residues/1000 Residues

Aspartic acid (Asp) 47.4
Threonine (Thr) 29.2

Serine (Ser) 34.8
Glutamic acid (Glu) 71.4

Glycine (Gly) 336.2
Alanine (Ala) 117.3
Valine (Val) 26.1

Methionine (Met) 11.6
Isoleucine (Ile) 12.3
Leucine (Leu) 27.8
Tyrosine (Tyr) 4.2

Phenylalanine (Phe) 12.3
Lysine (Lys) 22.0

Histidine (His) 6.0
Arginine (Arg) 37.3
Proline (Pro) 116.0

Hydroxyproline (Hyp) 76.5
Hydroxylysine (Hyl) 11.9

2.2. Effects of HNCP on Glucose Metabolism in Diabetic Mice

The intervention effect of HNCP on glucose metabolism in STZ-induced type 1
diabetic mice was investigated. The blood glucose of mice in the Con group (the normal
mice group) remained at a normal level all the time and was markedly lower than that of
diabetic mice. After intervention with HNCP as shown in Figure 2A, the blood glucose
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levels gradually decreased and were significantly lower than those in the DM group
(STZ-induced model group). Compared with that in the Con group, the serum insulin
content in the DM group was significantly decreased (p < 0.05). Remarkably, the serum
insulin levels of diabetic mice after HNCP intervention increased significantly to the
level of the Con group (Figure 2B), but there was no significant difference between the
80 mg/kg and 240 mg/kg HNCP groups.
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Figure 2. Effects of HNCP treatments on blood glucose (A), serum insulin (B), glucose tolerance
(C,D), and glycogen levels (E,F) in STZ-induced type 1 diabetic mice. Values with different letters
(a–d) indicate significant differences between groups at the same time (p < 0.05); Values with different
letters (α–γ) indicate significant differences between different times in the same group (p < 0.05).

The oral glucose tolerance test was used to measure glucose tolerance in the diabetic
mice, which can evaluate the secretory function of pancreatic β cells and reflect the ability
to regulate blood glucose. After glucose intragastric administration, blood glucose rose
rapidly to the highest levels in all groups and then declined (Figure 2C). At 120 min, the
blood glucose levels in the Con group returned to normal but remained at a high level
in the diabetic mice. However, high levels of blood glucose in the diabetic mice were
significantly decreased by the HNCP intervention. Compared with the Con group, AUC
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increased significantly in the DM group (Figure 2D). The AUC value of the HNCP group
was significantly lower than that of the DM group (p < 0.05). However, there was no
significant difference in the AUC values of different doses of HNCP.

Glucose is mainly stored in the body as glycogen, which maintains the stability of
blood glucose by synthesis or decomposition. Glycogen contents in diabetic mice were
analyzed, and the results are shown in Figure 2E,F. Lower levels of liver and muscle
glycogen were observed in the DM group relative to that of the Con group (p < 0.05). It
was observed that the glycogen levels of two organs were significantly increased (p < 0.05)
after metformin (MET) and HNCP treatments. However, the high-dose HNCP (240 mg/kg)
group did not show higher glycogen levels than the low-dose (80 mg/kg) HNCP group.
These results indicate that HNCP can promote glycogen synthesis in diabetic mice and
increase the ability of glucose uptake in the blood.

2.3. Effects of HNCP on Blood Lipids in Diabetic Mice

The liver plays an important role in all stages of lipid metabolism, synthesis, and
transport. Diabetes often leads to impaired liver function, which leads to dyslipidemia and
accelerates liver damage. To investigate the improvement effects of HNCP on dyslipidemia,
the contents of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol
(HDL-C), and low-density lipoprotein cholesterol (LDL-C) in serum were measured. As
depicted in Figure 3A–D, serum TG, TC, and LDL-C contents in the DM group were
significantly increased compared with the Con group (p < 0.05), while HDL-C content was
significantly decreased (p < 0.05). HNCP intervention reversed the change trends of serum
TG, TC, LDL-C, and HDL-C in the diabetic mice. In particular, the levels of TC, LDL-C, and
HDL-C in the high-dose (240 mg/kg) HNCP group returned to the same levels as those in
the Con group. There were significant differences in LDL-C and HDL-C levels between the
two concentrations of HNCP groups, showing a concentration-dependent relationship, but
no such relationship was observed for TC and TG levels. These results suggest that HNCP
can effectively mitigate dyslipidemia in diabetic mice.
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Figure 3. Effects of HNCP treatments on the contents of TG (A), TC (B), LDL-C (C), and HDL-C (D) in
serum of STZ-induced type 1 diabetic mice. Values with different letters (a–c) represent significant
differences between groups (p < 0.05).
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2.4. Improvement of HNCP on Liver and Pancreas Injury in Diabetes Mice

H&E staining in the liver and pancreas was performed to investigate the effects of
HNCP treatment on the histological alterations of the liver and pancreas. As shown in
Figure 4A, cells in the Con group were of a regular shape with clear boundaries, but
more serious necrosis was observed in the DM group relative to that of the Con group.
Meanwhile, hepatocytes were swollen and disordered, and some hepatocytes around the
central vein were vacuolated in the DM group. However, it was observed that the adipose
vacuoles and swelling of hepatocytes were significantly alleviated after MET and HNCP
administration. Pancreatic islets (black arrow in Figure 4B) in the pancreas of mice in the
Con group were normal in shape, clear in outline, and abundant in quantity. In the DM
group, the volume and morphology of pancreatic islets were clearly changed. Blurred
outlines, scattered structures, and a reduced number of pancreatic islets were observed.
After the intervention of HNCP, the shape of pancreatic islets changed regularly, and the
outline became clearer relative to that in the DM group.

Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are important
indicators of liver function. To determine the improvement effects of HNCP treatment
on liver function in the diabetic mice, the levels of plasma AST and ALT were measured
(Figure 4C,D). AST and ALT levels in the DM group were observed to be higher than those
of the Con group (p < 0.05). The high levels of ALT and AST were markedly decreased after
MET and HNCP treatments, but there was no significant difference between the groups. It
can be seen from the above results that HNCP can alleviate the liver injury of STZ-induced
diabetic mice.

2.5. Effects of HNCP on Hepatic Oxidative Damage in Diabetic Mice

According to the above experiments, HNCP has a free-radical scavenging ability
in vitro. The effects of HNCP on the activities of catalase (CAT), superoxide dismutase
(SOD), and glutathione peroxidase (GSH-Px), as well as the content of malondialdehyde
(MDA), were determined to investigate whether HNCP can alleviate the oxidative stress
level in diabetic mice. As shown in Figure 5A–D, the activities of CAT, SOD, and GSH-Px
in the DM group were significantly lower than those in the Con group (p < 0.05), while the
content of MDA was significantly higher (p < 0.05). Meanwhile, the activities of CAT, SOD,
and GSH-Px were remarkedly increased in the HNCP groups in comparison with the DM
group. The levels of CAT, SOD, GSH-Px, and MDA in the 240 mg/kg HNCP group were
similar to those in the Con group. These results suggested that HNCP could effectively
alleviate oxidative stress in the liver of STZ-induced type 1 diabetic mice.
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Figure 4. Effects of HNCP treatments on the liver structure (A, 200×), pancreas structure (B, 100×),
and the levels of AST (C) and ALT (D) in STZ-induced type 1 diabetic mice. Different lowercase
English letters (a–c) in (C,D) represent significant differences between groups (p < 0.05).
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(D) in the liver of STZ-induced type 1 diabetic mice. Values with different letters (a–c) represent
significant differences between groups (p < 0.05).
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2.6. Effects of HNCP on Nrf2 Signaling Pathway

Nrf2 is an important endogenous transcription factor for cells to resist oxidative stress,
which can regulate the expression levels of antioxidant genes such as heme oxygenase (HO-
1) and NAD(P)H: quinone oxidoreductase 1 (NQO1). To elucidate the potential mechanism
underlying HNCP-mediated alleviation of oxidative stress, the levels of Nrf2 and its related
proteins (NQO1 and HO-1) expressions in the liver of STZ-induced diabetic mice were
assessed by Western blot. As shown in Figure 6A–E, the levels of nuclear Nrf2 (n-Nrf2)
in the DM group had no significant difference compared with the Con group, but the
240 mg/kg HNCP treatment significantly enhanced n-Nrf2 expression relative to that in
the DM group (p < 0.05). Furthermore, the level of total Nrf2 (t-Nrf2) in the 240 mg/kg
HNCP group was significantly higher than that in the DM group. The expression levels
of downstream target proteins HO-1 and NQO1 in the 240 mg/kg HNCP group were
significantly higher than those in the DM group, which was consistent with the n-Nrf2
level. These results indicated that HNCP might promote the transcription of Nrf2 into
the nucleus to activate the Nrf2 signaling pathway, thereby increasing the expression of
antioxidant enzymes such as HO-1 and NQO1.
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Figure 6. Effects of HNCP treatments on the expression of Nrf2 signaling pathway-related proteins in
the liver of the STZ-induced diabetic mice (A). Analysis of protein expression levels of n-Nrf2/c-Nrf2
(B), t-Nrf2 (C), HO-1 (D), and NQO1 (E). Values with different letters (a–d) represent significant
differences between groups (p < 0.05).
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2.7. Effects of HNCP on the Expression of Glucometabolic-Related Proteins

Glucokinase (GK), phosphoenolpyruvate carboxykinase1 (PEPCK1), and glucose-6-
phosphatase (G6Pase) are key enzymes in glucose metabolism and play an important role
in regulating blood glucose. Glycogen synthase kinase-3 (GSK-3β) can regulate the activity
of glycogen synthase (GS) in the insulin signaling pathway. To evaluate the effects of
HNCP on glycometabolism in STZ-induced type 1 diabetic mice, the protein expressions of
GK, PEPCK1, G6Pase, and GSK-3β in liver tissues were assessed. As shown in Figure 7,
the expression levels of G6Pase and PEPCK1 were significantly up-regulated in the DM
group relative to that in the Con group, while the GK and phosphorylation of GSK-3β
were significantly down-regulated. After HNCP intervention, the expression levels of
G6Pase and PEPCK1 in the liver of the diabetic mice were decreased, while the GK and
phosphorylation of GSK-3β were increased. The results indicated that HNCP treatment
could significantly improve glucose metabolism disorder in STZ-induced diabetes mice.

Mar. Drugs 2023, 21, x FOR PEER REVIEW 10 of 18 
 

 

 

Con DM MET 80 240
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
K

/β
-A

ct
in

 r
a
ti

o
 

HNCP (mg/kg)

a

b

c

d

ad

B

 
Con DM MET 80 240

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
E

P
C

K
1

/β
-A

ct
in

 r
a

ti
o

HNCP (mg/kg)

a

b

a

c

a

C

 

Con DM MET 80 240
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

G
6

P
a

se
/β

-A
ct

in
 r

a
ti

o
 

HNCP (mg/kg)

a

b

c

d

c

D

 
Con DM MET 80 240

0

5

10

15

20

25

 p
-G

S
K

-3
β

/G
S

K
-3

β
 r

a
ti

o
 

HNCP (mg/kg)

a

b

c c

a

E

 

Figure 7. Effects of HNCP treatments on the expression of glucose metabolism-related proteins in 

STZ-induced type 1 diabetic mice (A). Analysis of GK (B), PEPCK1 (C), G6Pase (D), and p-GSK-3β 

(E) levels. Different letters (a–d) represent significant differences between groups (p < 0.05). 

3. Discussion 

Marine by-products such as skin and bone of fish are rich sources of collagen. Marine 

collagen hydrolysates have demonstrated antioxidant and anti-diabetic activities [28,29]. 

The amino acid composition and molecular weight of peptides in the hydrolysate were 

found to be the key factors for antioxidant activity. It was reported that small molecular 

peptides with 2–20 amino acid residues from marine by-products had the most potent 

antioxidant activities [30]. Thus, we compared the antioxidant activities of different-mo-

lecular-weight components of collagen hydrolysates from Harpadon nehereus bones. As ex-

pected, the small molecular (Mw < 1 kDa, HNCP) had the highest content and DPPH 

scavenging activity (42.0% at 5 mg/mL) among all the components with different molecu-

lar weights. The peptide fractions < 3 kDa from brown Lens culinaris protein hydrolysates 

showed about 23% of DPPH scavenging rate at a 5 mg/mL concentration, which was sig-

nificantly lower than that of HNCP [31]. Moreover, the total amino acid compositions 

showed that HNCP is rich in Gly, Ala, and Pro but low in Phe, Ile, and Tyr. Several studies 

have shown that peptides containing hydrophobic amino acids such as Phe, Tyrosine, Iso, 

and Pro exert a higher antioxidant activity [32]. Therefore, the antioxidant activity of 

HNCP might be predominantly due to the high contents of Pro. 

Figure 7. Effects of HNCP treatments on the expression of glucose metabolism-related proteins in
STZ-induced type 1 diabetic mice (A). Analysis of GK (B), PEPCK1 (C), G6Pase (D), and p-GSK-3β
(E) levels. Different letters (a–d) represent significant differences between groups (p < 0.05).

3. Discussion

Marine by-products such as skin and bone of fish are rich sources of collagen. Marine
collagen hydrolysates have demonstrated antioxidant and anti-diabetic activities [28,29].
The amino acid composition and molecular weight of peptides in the hydrolysate were
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found to be the key factors for antioxidant activity. It was reported that small molecular
peptides with 2–20 amino acid residues from marine by-products had the most potent
antioxidant activities [30]. Thus, we compared the antioxidant activities of different-
molecular-weight components of collagen hydrolysates from Harpadon nehereus bones. As
expected, the small molecular (Mw < 1 kDa, HNCP) had the highest content and DPPH
scavenging activity (42.0% at 5 mg/mL) among all the components with different molecular
weights. The peptide fractions < 3 kDa from brown Lens culinaris protein hydrolysates
showed about 23% of DPPH scavenging rate at a 5 mg/mL concentration, which was
significantly lower than that of HNCP [31]. Moreover, the total amino acid compositions
showed that HNCP is rich in Gly, Ala, and Pro but low in Phe, Ile, and Tyr. Several studies
have shown that peptides containing hydrophobic amino acids such as Phe, Tyrosine, Iso,
and Pro exert a higher antioxidant activity [32]. Therefore, the antioxidant activity of HNCP
might be predominantly due to the high contents of Pro.

Diabetes is a metabolic disease characterized by high blood glucose levels and metabolic
disorders. According to statistics, there were 529 million people living with diabetes world-
wide in 2021 [33]. Accumulating evidence shows that the pathological and functional
damage of organs induced by diabetes is an important cause of death, while the high
level of oxidative stress is closely related to organ damage and dysfunction [34,35]. Thus,
antioxidant peptides from marine collagen have gained widespread interest as a potential
drug to combat oxidative stress in diabetes patients. In this study, high-dose STZ-induced
type 1 diabetes mice were used to study the effect of HNCP on diabetes and the underlying
mechanisms. It was observed that a 240 mg/kg HNCP administration decreased the blood
glucose levels by 44.5% after 120 min and increased insulin secretion by 142.0% in STZ-
induced diabetes mice, which were significantly higher than those by peptides from red
deer antlers (about 30%) [36]. In addition to regulating insulin secretion, glycogen synthesis
and decomposition are also important ways to regulate blood glucose levels. Our study
found that HNCP treatment could increase the synthesis of liver glycogen and muscle
glycogen in STZ-induced diabetes mice, indicating that HNCP might improve the glucose
tolerance of diabetic mice. This speculation was supported by glucose tolerance tests as
shown in Figure 2C. These results indicated that HNCP had a significant therapeutic effect
on STZ-induced diabetes mice by improving the insulin level and synthesis of glycogen.

Diabetes often affects liver function, which in turn leads to abnormal lipid metabolism.
The study on lipid metabolism showed a higher serum lipid concentration including TG,
TC, and LDL-C in STZ-induced diabetes mice than those in the Con group. The levels
of TG, TC, and LDL-C were significantly lower in the HNCP-treated mice, whereas the
HDL-C levels were higher. In particular, TG decreased by 42.2% after the 240 mg/kg
HNCP treatment, while no significant decrease in TG levels was observed in diabetic mice
treated with peptides from red deer antlers [36]. These findings suggested that HNCP
administration could improve the lipid metabolism disorder of STZ-induced diabetes mice.
Similar results were reported in collagen peptides from skate (Raja kenojei) skin [37]. We
assumed that the blood glucose-lowering effects of HNCP might positively contribute to
the lipid levels. The liver is the major organ responsible for glucose and lipid metabolism.
Abnormal blood glucose and lipid levels indicate the presence of liver damage. In addition,
the insulin level is an important indicator of pancreatic function. Our previous study
demonstrated that abnormal blood glucose, insulin, and lipid levels were present in STZ-
induced type 1 diabetes mice, and HNCP ameliorated the abnormality of these indicators.
Thus, the effects of HNCP on liver and pancreatic damage were evaluated. H&E staining
showed that HNCP treatment attenuated the cell swelling and apoptosis in the liver and
pancreas. In addition, HNCP supplementation significantly reduced the serum ALT and
AST levels in the STZ-induced diabetes mice. ALT and AST are biological indicators of liver
pathological changes [38]. High levels of ALT and AST in serum are often accompanied by
liver damage [39]. Therefore, these results indicated that HNCP treatment could alleviate
hepatic damage in diabetic mice.
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In the process of diabetes, hyperglycemia causes a surge of free radicals in the body,
which contributes to liver damage. Therefore, oxidative stress is one of the typical patho-
physiological features of diabetes. In the present study, lower levels of antioxidant enzymes
(SOD, CAT, and GSH-Px) and higher levels of lipid peroxidation product (MDA) were
observed in the DM group compared with those in the Con group. However, HNCP
administration markedly decreased the MDA level and increased the levels of SOD, CAT,
and GSH-Px in STZ-induced diabetes mice. These results indicated that HNCP significantly
reduced oxidative stress by increasing the expression of antioxidant enzymes in diabetes
mice, thus alleviating liver damage as shown in Figure 4. Our results are consistent with
the previous studies wherein the marine peptides mitigated oxidative stress by increasing
the levels of antioxidant enzymes such as CAT, SOD, and GSH-Px [40–42]. It has been
reported that peptides with a high proportion of hydrophobic amino acids tend to have
strong ability to enhance antioxidant enzyme activities [43]. Therefore, the reason that
HNCP improves the activities of antioxidant enzymes may be related to its high proportion
of Pro.

The increase in the expression of antioxidant enzymes can enhance the antioxidant
capacity of the body to remove excess free radicals, which are regulated by the upstream
signaling molecule Nrf2. Under the intervention of some substances, Nrf2 is dissociated
from Keap1 into the nucleus and binds to the antioxidant response elements, resulting
in the transcription of antioxidant enzymes. Thus, the level of nuclear Nrf2 (n-Nrf2) is
positively correlated with the antioxidant capacity of the body. A large number of studies
have reported that Nrf2 activation can effectively suppress intracellular oxidative stress in
diabetes and mitigate its complications [44–46]. In our study, HNCP treatment significantly
increased the n-Nrf2 expression and downstream proteins HO-1 and NQO1 in STZ-induced
diabetes mice. Accordingly, we assumed that the attenuating effects of HNCP on oxidative
damage in diabetic mice might positively contribute to the activation of Nrf2-mediated
antioxidant pathways.

Glucose metabolism is directly related to blood glucose concentration. The above
experiments confirm that HNCP can reduce the blood glucose of diabetic mice by increasing
the content of liver and muscle glycogen. To further explore the hypoglycemic mechanism
of HNCP, the effects of HNCP on the expression of proteins related to glucose metabolisms
such as GK, G6Pase, PEPCK1, and GSK-3β were investigated. Numerous studies have
shown that GK expression and GSK-3β phosphorylation are generally significantly reduced
in the liver of diabetic patients [47], while G6Pase and PEPCK1 are usually significantly
increased [48]. Our results showed that the expression levels of G6Pase and PEPCK1
in hepatocytes were significantly increased, but GK and GSK-3β phosphorylation were
significantly decreased in STZ-induced diabetic mice. However, HNCP administration
significantly improved this phenomenon. This result indicated that HNCP could improve
the expression levels of glycogenesis and gluconeogenesis enzymes in diabetic mice, which
might be attributed to improvements in blood glucose levels and insulin secretion.

To date, many compounds have been reported to improve diabetes symptoms or
complications by mediating oxidative stress and glucose metabolism. Peptides derived
from seaweed protein revealed antioxidant and antidiabetic properties [20]. The collagen
peptides from Oreochromis niloticus skin have also been reported to exhibit antioxidant and
hypoglycemic effects [49]. In this study, HNCP, the small peptides (Mw < 1 kDa) derived
from the collagen hydrolysate of Harpadon nehereus bones, exhibited the antioxidant effect
by activating an Nrf2/ARE pathway and a hypoglycemic effect by improving the glucose
metabolism in STZ-induced diabetic mice. Further studies are needed to isolate the peptides
and identify those sequences, and subsequently, verify the activities of these peptides.

4. Materials and Methods
4.1. Chemicals and Reagents

Harpadon nehereus were purchased from Zhoushan aquatic products market. Pa-
pain was purchased from Aladdin Reagent Co., LTD (Shanghai, China). The antioxidant
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enzymes kits were from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
Streptozocin (STZ) was purchased from Sigma Company (Saint Louis, Missouri, USA).
Citrate-sodium citrate buffer and 4% paraformaldehyde were purchased from Ranger
Technology Co., LTD (Beijing, China). The insulin ELISA kit was purchased from Wuhan
Illarite Biotechnology Co., LTD (Wuhan, China). RIPA lysate was purchased from Biyun-
tian Biotechnology Research Institute (Shanghai, China). The antibody of β-Actin and
horseradish peroxidase (HRP) were purchased from Biyuntian Biotechnology Co., LTD
(Shanghai, China). The remaining antibodies were purchased from Proteintech Group, Inc
(Wuhan, China). The reagents used in the Western blot were purchased from the reagent
supplier Ningbo Hangjing Biotechnology Co., LTD (Ningbo, China).

4.2. Preparation of Collagen Peptides from Harpadon nehereus Bone

Under the conditions of pH 8, 55 ◦C, enzyme dosage of 5500 U/g, and enzymolysis
time of 4 h, papain was selected for the enzymolysis of the bone collagen of Harpadon
nehereus. The molecular weight (Mw) distribution of polypeptides in the hydrolysate
was analyzed by HPLC. Ultrafiltration membranes with interception diameters of 10, 5, 3,
and 1 kDa were used sequentially. The filtrate of each part was collected and freeze-dried
for the determination of the DPPH free-radical scavenging rate according to the method
by Abdelmawgood [50]. Based on the DPPH scavenging rate and content, peptides with
Mw < 1 kD (HNCP) were calculated for animal experiments.

4.3. Laboratory Animals

Male C57BL/6J mice weighing 18 ± 2 g were fed in the SPF animal laboratory of
Zhejiang Ocean University for 7 days under a 12 h dark/light cycle, with free access
to food and water. The mice were randomly divided into a control group (Con) and
an experimental group according to body weight. Mice in the experimental group were
intraperitoneally injected with STZ (55 mg/kg/d) for 5 days to establish the type 1 diabetes
model. The fasting blood glucose level of the mice was continuously monitored on the
7th day after the injection. Excluding 2 mice with failed modeling, the remaining mice
with successful modeling were randomly divided into 4 groups: diabetic model group
(DM, n = 8), positive drug group (MET, n = 8), low-dose HNCP group (n = 7), and high-
dose HNCP group (n = 7). They were given sufficient drinking water and food, and the
bedding material was changed in time. The Con group and the DM group were fed the
same amount of distilled water every day. The MET group was given a metformin solution
by gavage at a dose of 160 mg/kg, and the low-dose HNCP and high-dose HNCP groups
were fed the HNCP solution by gavage at a dose of 80 mg/kg and 240 mg/kg, respectively.
Excluding one dead mouse in the DM group, all the mice were euthanized by cervical
dislocation after 4 weeks of feeding [51]. Blood was collected from the eyeballs, and tissues
such as liver, kidney, epididymis fat, and pancreas were quickly extracted and stored at
−80 ◦C. All animal experiments were carried out in accordance with the guidelines of the
Animal Protection and Utilization Committee of the China Animal Protection Commission
(No. 2021029).

4.4. Measurement of Blood Glucose, Insulin, and Glycogen

Water and fasting were prohibited 8 h before blood glucose measurement. Blood was
collected with a disposable needle tail vein for measurement of blood glucose using a blood
glucose test paper and blood glucose meter (Bayanjin flagship store). The obtained blood
was immediately centrifuged at 4 ◦C and 8000 r/min for 5 min. Insulin content in the upper
serum and glycogen content in the liver/muscle were measured using the mouse insulin
enzyme-linked immunosorbent assay kit (NanJing JianCheng Bioengineering Institute,
Nanjing, China) and the anthracenone method, respectively [52].
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4.5. Oral Glucose Tolerance Test (OGTT)

The oral glucose tolerance test (OGTT) was performed according to the method of
Wang et al. [53] with minor modifications. After four weeks of administration, the mice
fasted overnight during the fifth week. Each mouse was given a 40% glucose solution
by gavage at a dose of 2 g/kg. After feeding the glucose, the blood was collected and
measured for blood glucose at 0, 30, 60, and 120 min using a blood glucose test paper
(Bayanjin flagship store). The blood glucose time curve was drawn, and the area under the
curve of blood glucose response (AUC) was calculated.

4.6. Determination of Lipid-Related Indexes in Mice

The contents of TG, TC, HDL-C, and LDL-C in the serum were measured using an
enzymatic method [54] provided by the kits (TG, TC, HDL-C, and LDL-C kits) (NanJing
JianCheng Bioengineering Institute, Nanjing, China).

4.7. Histological Evaluation of Liver and Pancreas

Liver and pancreas tissues were fixed with 4% paraformaldehyde for 24–48 h and
dehydrated using anhydrous ethanol. The fixed tissues were embedded with paraffin and
cut into 3 µM thick sections. The sections were stained with standard hematoxylin-eosin
(H&E), and then the morphological changes of the liver and pancreas were captured by a
light microscope [55].

4.8. Detection of ALT, AST, MDA, CAT, SOD, and GSH-Px Levels in Liver

The liver tissue was ground into homogenate in cold saline and centrifuged at
12,000 r/min for 10 min. The levels of ALT, AST, MDA, CAT, SOD, and GSH-Px in the
supernatant were determined by the kits from NanJing JianCheng Bioengineering Institute
(ALT, AST, MDA, CAT, SOD, and GSH-Px kits) [56]. The protein concentration in the
tissue homogenate was measured using the BAC protein detection kit (NanJing JianCheng
Bioengineering Institute, Nanjing, China).

4.9. Western Blot

The liver tissue (0.1 g) that had been ground into a fine powder was mixed with the
lysate (RIPA lysis buffer: protease inhibitor mixture: phosphatase inhibitor = 50:1:1) and
incubated on ice for 30 min with agitation every 6 min. After centrifugation at 12,000 rpm
for 10 min, protein was extracted from the cytoplasm and nucleus using a protein extraction
kit from NanJing JianCheng Bioengineering Institute (Nanjing, China) [57]. After extraction,
the total proteins concentrations in the liver were measured with a BCA protein assay kit
(NanJing JianCheng Bioengineering Institute, Nanjing, China). The protein sample was
diluted to a suitable concentration with a buffer at a ratio of 1:4. The mixture was boiled in
the water bath for 10 min and then centrifuged at 12,000 r/min for 10 min. The supernatant
was collected and stored at −80 ◦C as a standby.

A PVDF membrane was immersed in 5% BSA solution prepared using TBST (con-
taining 0.1% Tween-80) and closed at room temperature for at least 1 h. They were then
incubated overnight with the corresponding primary antibody against Nrf2 (1:2000), β-
Actin (1:1000), H3 (1:8000), HO-1 (1:2000), NQO1 (1:20,000), GK (1:2000), PEPCK1 (1:10,000),
G6Pase (1:2000), GSK-3β (1:20,000), and p-GSK-3β (1:5000) at 4 ◦C. The membrane was
then incubated with horseradish peroxidase (HRP) (1:500)-labeled secondary antibody at
room temperature for 1 h. An enhanced chemiluminescence (ECL) kit (NanJing JianCheng
Bioengineering Institute, Nanjing, China) was used to detect the strength of specific bands.

4.10. Statistical Analysis

All experiments were conducted in parallel 3 times. The software GraphPad Prism8.0
was used for one-way ANOVA. The comparison between groups was performed using the
Tukey method, and the results were expressed as Mean ± SD.
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5. Conclusions

In this study, small-molecule peptides (Mw < 1 kD) were prepared from the bone
collagen of Harpadon nehereus (HNCP). HNCP showed a remarkable antioxidant activity by
activating the Nrf2 pathway to increase the level of antioxidant enzymes such as SOD, CAT,
HO-1, GSH-Px, and NQO1. In addition, HNCP significantly increased glucose tolerance
and insulin secretion in STZ-induced type 1 diabetic mice, thereby reducing blood glucose
levels. HNCP can also improve glucose metabolism in STZ-induced type 1 diabetic mice by
regulating the expression levels of glycosynthesis- and gluconeogenesis-related enzymes
such as GK, PEPCK1, G6Pase, and GSK-3β. This is the first time of preparing antioxidant
and hypoglycemic peptides from marine bone collagen. Our results indicated that HNCP
may be a potential diabetes treatment. However, further research into the sequences of
peptides with these effects is required.
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