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Abstract: Plant bacterial pathogens can be devastating and compromise entire crops of fruit and
vegetables worldwide. The consequences of bacterial plant infections represent not only relevant
economical losses, but also the reduction of food availability. Synthetic bactericides have been the
most used tool to control bacterial diseases, representing an expensive investment for the producers,
since cyclic applications are usually necessary, and are a potential threat to the environment. The
development of greener methodologies is of paramount importance, and some options are already
available in the market, usually related to genetic manipulation or plant community modulation, as in
the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being
used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agri-
culture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several
studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens,
some of these compounds are known for their eliciting ability to trigger priming defense mechanisms.
The present work aims to gather the available information regarding seaweed extracts/compounds
with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting
the extracts from brown algae with protective properties against microbial attack.

Keywords: agriculture; antibacterial potential; biotechnology; epigenetics; phenolic compounds;
priming elicitors; sulfated compounds

1. Introduction

Plant pests represent a growing problem concerning not only producers but also
the scientific community due to the annual losses of crops and the consequent high eco-
nomic impact on the food market [1]. From the total expenses in the agricultural industry,
31 billion USD (near to a quarter of the total) are used to mitigate plant pests [2]. The
economic impact of bacterial phytopathogens can reach over 1 billion USD a year [3,4]. In
addition to the increase of microbial infections in agricultural species, the increase in the
world population (growth of 9 billion people estimated for the next 30 years [5,6]) is also a
huge concern due to the possible unavailability of food supplies for future generations [3].

Among the most relevant phytopathogens, the damage caused by bacterial microor-
ganisms must be highlighted [5]. These types of infections have been classified as one of
the most damaging to crops, due to their harmful effects on plants, damaging fruits and
leaves [6] or the whole plant system [7]. Since their first report in 1932, which accounted
for 25–75% of the losses of peach, reports of infections caused by phytopathogenic bacteria
have increased [4]. The lack of current totally efficient/safe techniques/products allows
the proliferation of bacteria and their adaptation to overcome the plant’s intrinsic defense
pathways [8]. In addition, there are external factors that contribute to the acquisition of ad-
vantageous characteristics by these pathogens. Current climatic changes occurring all over
the world can raise perfect niches with suitable conditions for the genetic improvement and
expansion of phytopathogenic bacteria [9–11]. Based on the assumptions of Harvell [12]
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about the constant increase of temperature, the maintenance of plant pathogens through
different seasons is expected and may also contribute to the adaptation of different bacterial
species to different environments [11]. Some bacterial phytopathogens present a high
capacity for adaptation and physiological versatility, allowing their survival even in the
absence of a host plant [13].

The use of synthetic agrochemicals possessing antibiotic properties is currently the
most effective approach against phytopathogenic bacteria [6]. However, this kind of prod-
uct presents several limitations. It demands a continuous application to be efficient, which
not only can be expensive for the farmers but also environmentally harmful for the non-
target species [14,15]. In addition, the use of these agrochemicals is not completely efficient
due to the great capacity of bacteria to create resistance to the applied products, overcoming
their initial toxicity [16,17]. This scenario leads to a constant search for innovative, more
efficient, and sustainable options, in order to protect the crops and the remaining non-target
biodiversity while being safe for human consumption [18].

As a sustainable option, biocontrol arises as a promising methodology, characterized
by the introduction of an antagonist species in the affected environment that competes
with the target phytopathogenic bacteria [19,20], limiting the bacterial phytopathogen
population [21,22]. Several studies presented a wide range of microbial options, including
growth-promoting bacteria beneficial for the plant [19,23–25] and bacteria naturally present
in the plant microbiota, such as Rhizobacteria, with antibacterial properties [26]. Bacillus,
Pseudomonas [27,28], Enterococcus [29], Burkholderia [30], Lactococcus, Streptomyces, Klebsiella,
and Escherichia [25] are among the genera with biocontrol potential. Secondary metabolites
like Non-Ribosomal Peptides (NRPs) have been associated with biocontrol through the acti-
vation of mechanisms associated with plant defense [28], while environmental factors, such
as humidity, temperature, and pH of the soil, are important parameters that can affect the
success of biocontrol, which makes this method suitable only in specific occasions [20,31].
Additionally, the competition with bacterial species naturally present in the microbiota
of the host, as well as their age, are determinants to promote/repress the expression of
genes [32] that play a crucial role in biocontrol action [33–35].

Genetic manipulation aiming at plant improvement has also been employed with
good results demonstrated in the reduction of infection symptoms [36]. However, the
appearance of transgenic species with a specific high resistance can be a problem, due to
their ineffectiveness against the attack of multiple bacteria, in addition to the consumer’s
reluctance to accept genetically manipulated species [8].

In this context, looking at the available solutions and respective limitations, the con-
tinuous development of new, effective, and safer methods to combat infection and the
emergence of bacterial phytopathogens are crucial. Pursuing sustainable and eco-friendly
alternatives to the present problem, marine habitats are an interesting source of bioactive
and valuable compounds known to be applied with different industrial purposes [37–39] is
an interesting starting point.

Seaweeds are spread all over the ocean [37,40] and are one of the most attractive and
richest sources of bioactive compounds in the marine environment [41]. Several studies
point to a set of macroalgae compounds possessing different properties, such as phenolic
compounds, polysaccharides, and derivatives, lipids, sterols, pigments [42], terpenoids,
lectins, alkaloids, including halogenated compounds, among others [43–45]. Their ex-
ploitation is already vast in some industries, encompassing the food, cosmeceutical, and
agricultural industries [42], but the search for other bioactivities has also been growing. One
of them is the antimicrobial activity from algae compounds against phytopathogens [41,46],
which remains poorly described against bacterial phytopathogens when compared with
the amount of data reported regarding antibacterial activity against human pathogens [47].
Several compounds’ families have exhibited antimicrobial activity against a wide range of
phytopathogens, such as pigments (carotenoids), fatty acids, sterols, terpenes, polysaccha-
rides, phenolic compounds, proteins, and peptides [44,45,48].
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On the other hand, an improvement of plant resistance against these microbial phy-
topathogens has been suggested [49]. It is known that, since early times, seaweeds have
been applied in agriculture due to the valuable advantages they confer to crops as growth
promoters, rendering high-quality products with healthier and visually more attractive
characteristics [50–53]. In addition, there are approved and commercial products based
mostly on the brown alga Ascophyllum nodosum that are applied for a wide range of agri-
cultural purposes [51]. This species is nutritionally rich, improving the soils where the
plants are growing and can be helpful to regulate the plant in hostile conditions such as
high salinity soils, drought stress, and low temperature tolerance, which can confer strong
roots, increasing antioxidants, nutrient uptake, and consequently high-quality fruits [51].
Their capacity to improve plant growth and stimulate the defense pathways against biotic
and abiotic threats are the most reported in the literature [54–56]. Accounting for the
security of some bioactive algae extracts to plants, the currently commercialized, and also
other species, are currently being explored as potential elicitors to stimulate the natural
mechanisms of resistance against bacterial invasion [57]. This protective role of algae
extracts, usually associated with the presence of polysaccharides, phenolic compounds [6],
and sulfated compounds [58] in crops, has been mostly demonstrated through the elicita-
tion of priming events. This complex process consists of the stimulation of natural plant
defense mechanisms, improving the plant responses against microbial attacks, through
the expression of specific pathogenesis-related genes, responsible for plant defense and
the consequent control of the damages [58]. Some of these genes can be translated into
enzymes with degradative capacity over microbial compositional components, avoiding
their development. Additionally, some of the resulting products of this degradation can act
as activators of disease resistance [6], resulting in a “cyclic” defense mechanism.

Considering the problematic bacterial infections in plants and the lack of efficiency
and/or sustainability and safety of the current methods, macroalgae-derived compounds
appear as promising antibacterial/eliciting tools. Then, this review aims to gather the
maximum available information regarding seaweed extracts presenting not only potential
against bacterial phytopathogens but also studies demonstrating the plant eliciting capacity
to face these bacterial invasions and molecular mechanisms involved.

2. Material and Methods

This literature revision includes the available information regarding the antibacte-
rial and/or plant-priming activity of seaweed until 26 October 2022, using the SCOPUS
database (www.scopus.com). The search was performed using a combination of the follow-
ing words: “Antibacteria* AND (Plant* OR crop* OR agricultur* OR veget* OR phytopatho*)
AND (Macroalga* OR seaweed)”, to compile the works aiming at the algae extracts with an-
tibacterial potential/activity against bacterial phytopathogens. In addition, for the review
of works reporting the priming promotion of macroalgae extracts on plants, the following
combination of words “Microb* OR bacter* AND (Fitness OR immun* OR defen* OR elicit*)
AND (Plant* OR crop* OR agricultur* OR veget* OR phytopatho*) AND (Macroalga* OR
seaweed)” were used.

3. Phytopathogenic Bacteria

Currently, more than 200 phytopathogenic bacteria species have been reported [59,60],
and the majority of these pathogens are phytobacteria [61] included in the phylum Pro-
teobacteria [8]. Some species of plant pathogenic bacteria have a great capacity to adapt to
different environments, allowing the extension of host possibilities. Species belonging to
Pseudomonas spp. (highlighting Pseudomonas aeruginosa) are a good example of this, being
able to infect even different kingdoms and constituting a threat also for humans [62].

From the bacterial species known to be aggressive phytopathogens, it is important to
highlight not only the Pseudomonas genus, due to its high pathogenicity, but also other rele-
vant genera, such as Ralstonia, Agrobacterium, Xanthomonas, Erwinia, Xylella, Pectobacterium,
Dickeya [63], Pantoea, Burkholderia, Acidovorax, Clavibacter, and Streptomyces [4]. Table 1

www.scopus.com
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compiles some of the most concerning bacterial phytopathogenic genera/species, as well
as their main hosts.

Table 1. Summary of the most economically damaging phytopathogenic bacteria species (*—Species
or genera included in the top ranking defined by Kannan and colleagues [4] as the most relevant
bacterial phytopathogens).

Genera Species Hosts References

Agrobacterium * Agrobacterium tumefaciens * (syn.
Rhizobium radiobacter)

Wide range of agriculturally and economically relevant
species, including vines, shade and fruit trees, woody
ornamental plants, herbaceous perennials, and other

monocots and (mainly) dicotyledonous (host
list undefined).

[3,61,64–75]

Clavibacter Clavibacter michiganensis subsp.
michiganensis Tomato [3,76,77]

Corynebacterium *

Corynebacterium fascians Wide range of ornamental and consumable
vegetal species [72,78]

Corynebacterium michiganense Solanaceous host plants [72,79–81]

Corynebacterium sepedonicum Potato [72,82,83]

Curtobacterium

Curtobacterium flaccumfaciens pv.
flaccumfaciens Bean [72,84]

Curtobacterium flaccumfaciens pv.
poinsettiae Poinsettia [72,84]

Dickeya
Dickeya dadantii * Wide range of economically relevant plant species,

highlighting the tropical and subtropical species [4,63,85]

Dickeya solani * Potato [4,63]

Erwinia * Erwinia amylovora * Fruits of diverse hosts (pear, apple), Rosaceae family [3,4,64–72]

Pectobacterium
Pectobacterium atrosepticum * Potato [4,63]

Pectobacterium carotovorum * Diverse crop species [4,72]

Pseudomonas *

Pseudomonas aeruginosa Tobacco, soybean, bean, cucumber, tomato, and
other crops [3,62,64–71]

Pseudomonas syringae pv.
lachrymans Cucumber [72,86–90]

Pseudomonas marginalis Wide range of vegetables (such as tomato, parsnip) and
ornamental plants (e.g., Zantedeschia spp.) [72,91–95]

Pseudomonas syringae pv.
morsprunorum

Stone fruit of Prunus species (cherries, plum, apricots,
peaches) [72,92,96–98]

Pseudomonas savastanoi pv.
sacastanoi *

Oleaceae family plants and oleander
(Nerium oleander) [72,92,99–101]

Pseudomonas syringae * Prunus species [3,4,72]

Pseudomonas syringae pv. tomato * Tomato [72,102,103]

Ralstonia solanacearum* (syn.
Pseudomonas solanacearum)

Wide range of species including solanaceous plants,
weeds, crops, shrubs, and trees [3,4,61,72,76,104]

Staphylococcus Staphylococcus aureus Arabidopsis thaliana [105,106]

Xanthomonas *

Xanthomonas axonopodis * Orange, cassava, tomato, pepper, crucifers, cotton, rice,
beans, grapes, and others [3,4,64–71,76]

Xanthomonas campestris * Cruciferous plants (including species economically
important) [4,72,107]

Xanthomonas citri subsp. citri Citrus species (including the economical varieties) [61,108,109]

Xanthomonas euvesicatoria Solanaceous species [61,110–112]

Xanthomonas oryzae pv. Oryzae * Rice species [4,113,114]

Xanthomonas phaseoli Common bean [72,115]

Xylella Xylella fastidiosa * Olive, citrus species [3,4,116,117]

‘Candidatus Liberibacter’ * - Citrus species [118]
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Xanthomonas spp. is one of the most important phytopathogenic groups responsible for
large economic losses, which led to their intensive study [3] (European and Mediterranean
Plant Protection Organization-EPPO). These groups of species are host-specific, which can
be related to the virulence mechanisms based on different secretion systems expressed [64].
The importance of these systems goes further than their pathogenicity. The T6SS and T4SS
(type 6 and type 4 secretion systems) are present in almost all Xanthomonas species and are
related to bacterial persistence in the environment, and protection against soil predators
and bacterial competition [64]. Agrobacterium spp., has been responsible for the losses of
economically relevant crops like vineyards and fruit orchards, namely, apple, pear, peach,
cherry, grape, apricot, plum, and nuts trees, as well as vegetables and ornamental plants [4].
For the Erwinia genus, their easy spread, for example through insects, and their role in
the detriment of fruit are the two main factors contributing to their position at the top of
phytopathogenic bacteria [3].

Besides their intervention in Erwinia transmission, insects are also responsible for the
dispersion of the aggressive citrus disease, Huanglongbing disease (citrus greening), caused
by the Gram-negative “Candidatus Liberibacter”; this genus is responsible for the phloem
vessels infections [118–120]. The term “Candidatus” refers to the impossibility to cultivate
and grow this bacteria group in laboratory conditions [118], which is also difficult to detect
as it is only possible through molecular methods such as PCR-based techniques [120,121].
There are three major species of this group mainly dispersed in Asia, Africa [122,123], and
America [124,125] that can be transmitted by different vectors. In Europe, the dispersion of
these species is also a concern since there are already reports of the presence of vectors in
the Atlantic Coast of Portugal and northwest of Spain [118,126,127].

Also, among the species included in Table 1, Pseudomonas syringae should be high-
lighted, due to its high capacity to colonize plant tissues of a wide range of hosts [3], as
well as it being the causative agent of bacterial canker in citrus and tomato, Clavibacter
michiganensis, that appears as a problematic phytopathogenic bacterium [3,76].

The main goal of this work is to gather information regarding alternative methods
to control diseases caused by phytopathogenic bacteria, focusing on macroalgae-derived
extracts/compounds with antibacterial and/or priming potential. Complementary data
regarding the studies focused on antibacterial activity against generalist pathogens and/or
human bacterial pathogens are presented in the supplementary material (Tables S1–S6).

4. Phytopathogenic Antibacterial Potential of Seaweeds

Despite the considerable list of phytopathogenic bacteria reported in the section above
(Table 1), the studies relying on macroalgae potential against this microbial group focus
mainly on species belonging to the Xanthomonas and Erwinia genera. The pathogenicity
of both genera leads to enormous losses of food every year, compromising the fruits, the
root (in the case of Solanaceae organisms [128]), or the whole plant [129]. Besides these
genera, some studies also address the susceptibility of Ralstonia solaneacearum, P. syringae,
and Agrobacterium tumefaciens when exposed to macroalgae extracts (Table 2).

Table 2. Species of seaweed demonstrating antibacterial activity against relevant phytopathogenic
bacteria (compilation of the available information in Scopus until 26 October 2022). Detailed informa-
tion regarding the extraction methodology of the compounds and the techniques used to evaluate the
antibacterial activity can be found in supplementary material (Tables S1–S6).

Species Macroalgae Source Antibacterial Activity Test References

Agrobacterium tumefaciens
Cystoseira humilis var. myriophylloides

Agar diffusion technique [130]
Laminaria digitata

Bacillus subtilis

Cladophora glomerata

Disc diffusion technique [131]Chara vulgaris

Spirogyra crassal
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Table 2. Cont.

Species Macroalgae Source Antibacterial Activity Test References

Erwinia carotovora
Lessonia trabeculata Liquid-dilution method [132]

Ulva lactuca Agar diffusion technique [133]

Erwinia chrysanthemi

Bifurcaria bifurcata

Agar diffusion technique [128]

Codium decorticatum

Cystoseira humilis var. myriophylloides

Ellisolandia elongata

Ericaria selaginoides

Fucus spiralis

Gelidium corneum

Gelidium sp.

Gracilaria cervicornis

Gymnogongrus crenulatus

Halopitys incurva

Laminaria digitata

Osmundea pinnatifida

Plocamium cartilagineum

Sargassum vulgare

Ulva intestinalis

Ulva sp.

Pseudomonas syringae

Lessonia trabeculata
Liquid-dilution method [132]

Macrocystis pyrifera

Sargassum wightii Disc diffusion technique [133]

Ralstonia solaneacearum

Brown seaweed Field studies [7]

Cladophora glomerata

Disc diffusion technique [131]Chara vulgaris

Spirogyra crassal

Staphylococcus aureus

Cladophora glomerata

Disc diffusion technique [131]Chara vulgaris

Spirogyra crassal

Xanthomonas campestris

Cladophora glomerata

Disc diffusion technique [131]Chara vulgaris

Spirogyra crassal

Ulva lactuca Agar diffusion assay [133]

Xanthomonas oryzae pv. oryzae

Chnoospora minima

Agar diffusion assay [129,134,135]

Gracilaria blodgettii

Gracilaria edulis

Hypnea musciformis

Hypnea valentiae

Padina boergesenii

Spyridia hypnoides

Turbinaria conoides

Ulva flexuosa

Ulva lactuca

Sargassum wightii
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Table 2 is focused on research performed in in vitro conditions since it is the way
to demonstrate and confirm the existence of antibacterial activity against microbial phy-
topathogens as their inhibition or suppression of disease symptoms in vivo experiments could
also be a result of the triggering of plant defense mechanisms, belonging to priming events.

The complexity of metabolites produced by seaweeds and their respective bioactiv-
ities [41] are influenced by a myriad of factors, including the season and localization of
algae [132,136], the species and life-cycle stage [137], the storage conditions and drying
process [138], and the method and the solvent used to extract the compounds [128,129,139].
The refinery process of extraction is also important in the search for bioactivities [140]. In
the works performed by Kumar and Rengasamy [134] and Rao and Parekh [141] the highest
antibacterial activity against Gram-positive and Gram-negative bacteria was obtained after
analyzing different fractions of the extracts, while the crude dry biomass did not exhibit
the same potential.

The nature of the solvent used can be a determinant factor in obtaining efficient an-
tibacterial activity. The antibacterial potential of numerous aqueous extracts from red
and brown macroalgae was observed against S. aureus [139], but to a lesser extent when
compared with extracts obtained from different solvents, such as butanol and chloro-
form. However, the antibacterial activity of aqueous extracts from brown, red, and green
macroalgae was completely absent when tested against Erwinia chrysanthemi [128]. This
is possibly explained by the structural differences in the cell wall of Gram-negative and
Gram-positive bacteria (Figure 1) [142]. Erwinia chrysanthemi (Gram-negative) [143] is a
bacterium with an external bilayer, composed of lipopolysaccharides with a fine pepti-
doglycan layer in the middle, while S. aureus (Gram-positive) [144] only possesses one
peptidoglycan layer, becoming more susceptible to the entrance of compounds and conse-
quent cell disruption [142,145,146]. In addition, the main compound of the Gram-positive
cell wall, peptidoglycan, is a more susceptible sugar to degradation than the complex
composition of the Gram-negative cell wall, as already mentioned in other works [147].
Still, E. chrysanthemi was successfully inhibited by a dichloromethane extract from the same
macroalgae used to produce the aqueous extracts [128] mentioned above. This situation
unveils the clear interference of the solvents used to extract different bioactive compounds
and consequently distinct activities and modes of action.

The use of chloroform to extract all kinds of fatty acids from red seaweeds has been
reported as a suitable method to find antibacterial activity [139]. Lipophilic extracts and N-
containing compounds, terpenes, and phenolic compounds present in aqueous/methanolic
extracts can also be responsible for the active compounds possessing antibacterial activity
present in the Rhodophyta group [130,148,149].
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The potential of lipophilic compounds is not restricted to one algae group. Free fatty
acids from brown algae are known to exhibit the relevant antibacterial activity against
species associated with plant diseases [150]. The presence of phenolic acids (and their
by-products) in N-butanol extracts of brown algae can contribute to the antibacterial
activity presented [151] since this group includes a wide range of compounds with great
antibacterial activity reported [46,146]. A compound of oil kind, a sulfonoglycolipid, was
also isolated from Sargassum wightii, presenting antibacterial activity against the Gram-
negative X. oryzae pv. oryzae [135]. Another algae compound that has also been highlighted
is palmitic acid, which has been related with the antibacterial activity presented by algae
extracts [135,152–155]. Using a mixture between non-polar solvents, methanol and toluene
(3:1 v/v), Kumar and Rengasamy [129] also obtained lipophilic extracts from red and brown
algae, possessing antibacterial activity against the phytopathogenic bacterium X. oryzae pv.
oryzae. In addition, the work of Jiménez and colleagues [132] demonstrated the potential of
polar compounds found in the ethanolic extracts from the brown alga Lessonia trabeculate.
Villouta and Santelices, (1986) against two relevant tomato phytopathogenic bacteria,
Erwinia carotovora (Jones, 1901) Bergey et al., (1923) and P. syringae.

Also, in Lakhdar’s study, a clear influence of the seaweed group was demonstrated,
showing a greater predominance of antibacterial activity in brown and red algae when
compared to the green algae group [128]. In the studies performed by Kumar and Ren-
gasamy [134], macroalgae from the three different groups exhibited antibacterial activity
against Xanthomonas oryzae pv. oryzae. The active substances may be related to polar
compounds present in brown algae extracts and non-polar in red and green algae [129].
Specifically, this potential can be associated with the presence of phenolic compounds in the
brown algae, which possess a high affinity for methanol [156], the solvent used to extract
these bioactive compounds [129]. In addition, the antibacterial activity observed from the
non-polar fractions obtained from red and green algae may be related to the presence of
fatty acids [157] and unsaponifiable lipids [158]. The three classes of compounds referred
have already demonstrated their antimicrobial activity against Gram-positive [139] and
Gram-negative [141] bacteria.

Brown algae have a diverse range of compounds possessing a variety of promising
bioactivities, among them is the antimicrobial activity against Gram-negative and Gram-
positive phytopathogenic bacteria (Table 2). Extracts from brown algae showed a high
inhibitory capacity against R. solanacearum, an important bacterium involved in the bacterial
wilt disease of potato crops [7], and antibacterial activity against Xanthomonas campestris
pv. vesicatoria [6] and A. tumefaciens [130], the causative agents of bacterial leaf spot and
crown gall, respectively, which promote catastrophic losses in tomato cultures. Among the
various algae and solvents tested, the methanol extracts obtained from Cystoseira humilis
var. myriophylloides (then identified as Cystoseira myriophylloides) and Laminaria digitata
contained the most effective compounds in the growth control of the crown gall causative
agent [130]. This capacity was associated with the high abundance of phenolic compounds
and pigments. As reported above, the phenolic compounds are one of the biggest and
most complex groups abundant in macroalgae extracts that exhibited antibacterial activity
against phytopathogenic bacteria. Some authors associated this potential with the presence
of phenolic aromatic rings and hydroxyl groups promoting their binding with bacterial
molecules, disturbing their cell viability [46,159]. In addition, various phenolic groups
have been found in seaweed extracts, with antibacterial activity demonstrated through
in vitro methodologies from a wide range of seaweed, including Anthophycus longifolius and
Gracilaria gracilis (highlighting the abundancy of flavonoids), with activity against Bacillus
subtilis [160,161]; Caulerpa peltata, Caulerpa scalpelliformis, Sargassum aquifolium, Colpomenia
peregrina, Ellisolandia elongata, Punctaria latifolia, Punctaria plantaginea, Scytosiphon lomentaria,
and Zanardimia typus with inhibition capacity against Staphylococcus aureus [139,162–164];
Sarconema filiforme against Pseudomonas sp. [165]; Sargassum muticum against B. subtilis,
Escherichia coli and S. aureus [166]; Sargassum tenerrimum against B. subtilis, E. coli, P. aerug-
inosa, and S. aureus [167–169]; Sargassum cristaefolium against E. coli and S. aureus [164];
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Gracilaria corticata, S. wightii, and Ulva lactuca against P. aeruginosa and S. aureus [170,171].
In cases of resistant bacteria, some macroalgae extracts have shown higher effectiveness
when combined with artificial chemical products, such as antibiotics, demonstrating a
positive synergistic activity between the antibiotics and the natural compounds present in
the extracts. This situation was already observed in the study by Santos and co-workers,
where the addiction of a B. bifurcata extract strongly enhanced the inhibitory potential of
rifampicin and tetracycline against the antibiotic-resistant E. coli and S. aureus bacteria [150].

Putative Mechanisms of Antibacterial Action

Some generalist mechanisms have been proposed to understand the action of seaweed
compounds against bacteria. The main target of antibacterial compounds is the bacterial
cell membrane, also mentioned above, but there are other bacterial components that are
crucial to guarantee their survival, such as their inner molecules, focusing on proteins and
nucleic acids. A relevant group of seaweed compounds strongly referred to in previous
work are fatty acids. These compounds negatively influence the regular synthesis of lipids
and other essential bacterial compounds responsible for the maintenance of microbial
integrity [172]. An important component affected by abnormalities in fatty acid synthesis is
the cell membrane, leading to the lysis of the cell [46]. Seaweed polysaccharides, including
sulfated polysaccharides [173], also have been suggested as suitable compounds to elimi-
nate bacteria, due to their capacity to bind to receptors in the cell surface, promoting the
increase of permeability, protein damage, and interferences with bacterial DNA [174].

Although the complexity of the bacterial membrane varies, containing components
with different affinities due to their polarity levels, there are important groups of com-
pounds present in macroalgae that can easily bind with polar fractions, as well as non-polar
portions of the membrane due to their amphipathic conformation, as with the case of
terpenes and peptides [175–177]. In addition, a review from 2011, clearly exposes the great
antibacterial potential of peptides as well as their mechanisms. Their interference with
external proteins and lipids affects Gram-negative and Gram-positive bacteria, provoking
disorders in the bi-layer membrane conformation [46,175].

Additionally, there is a group of polyphenols restricted to brown seaweed that confers
to Phaeophyceae seaweed an advantage in antibacterial potential, as reported throughout
previous work [146]. One of the most mentioned phenolic compounds, is phlorotannins,
a chemical group strongly related to the antimicrobial capacity of seaweed extracts, due
its affinity to linking with bacterial constituents (e.g., proteins) and the cell membrane,
making it more susceptible to cell lysis. Another way of action is related to the suppression
of expression of genes responsible for antibacterial resistance, such as that demonstrated
in a study performed using a compound extracted from a brown seaweed (Eisenia bicy-
clis), where the silencing of mecI, mecR1, and mecA gene expression turned the bacteria
susceptible to methicillin [46,178].

5. Seaweed Potential as Plant-Priming Agent

The sessile characteristics of plants allow them to develop intrinsic mechanisms to
avoid the negative effects caused by stresses of different natures. Focusing on the defense
pathways developed by the plants to escape from microbial pathogen invasion, there is a
set of processes combining genetic factors, biochemical processes, and the morphology of
the plants [179,180] leading to the improvement of their robustness under external stresses.
The resistance of plants against microbial invasion is called “cross protection” [181,182]
and encompasses at least three different types of plant defenses: the systemic acquired
resistance (SAR) and the induced systemic resistance (ISR) [182], both included in the
systemically induced resistance of the plant [183], and the mycorrhiza-induced resistance
(MIR) [180,184]. The SAR defense demands the general accumulation of the hormone
salicylic acid (SA) in the plant, which can lead to the induction of the pathogenesis-related
(PR) gene expression [180,182]. The ISR is a more specific mechanism to protect plants
from microbial attack [182,185,186] and can be triggered by high concentrations of jasmonic
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acid (JA) and ethylene (ET) [179,183]. Mycorrhiza-induced resistance is a defense process
that relies on the ancestral symbiotic relationships established between fungi and plant
roots [187]. This symbiosis is beneficial to the plant since the fungus can provide nutrients
and other compounds to promote plant growth, contributing also with their own defense
mechanisms against a diversity of stresses [184,186].

Priming, a phenomenon of induced resistance in plants [180], is characterized by the
triggering of defense pathways against biotic or abiotic stresses, allowing them to improve
and augment the response in case of adverse conditions [180,188], and conferring more
protection for future events and/or generations [180,188,189]. The result from previous
contacts of the plant or prior generations with elicitors or “priming stimuli” [180] will
promote the rapid activation of the defense mechanisms [190–192] and the ability to retain
them through the next generations [190–192], helping to efficiently face similar threats in
the future [188]. One of the primary defense responses elicited in plant cells is the massive
production of reactive oxygen species (ROS), promoting small and localized events of
oxidative bursts in plant tissues [193]. Currently, it is known that these toxic events have
been important to establish the SAR mechanism and/or other priming mechanisms, in
damaged plant cells and/or under stress conditions [180,194,195].

After the first exposure to determined stress, the plant stress memory acquires a
modification called “stress imprint” [196]. This signal recognition is due to the storage
information of the plant that mainly relies on epigenetic processes [188,196], defined as
structural modifications promoted by changes in the gene expression, while the immutable
nature of the nucleotide sequence is ensured [197–199].

The occurred modifications in the plants can be categorized based on the duration of
modifications promoted by the stress imprint, in somatic, intergenerational, and transgener-
ational memory (Figure 2) [200]. The somatic memory is associated with the term “mitotic
stress memory”, due to its mitotic transmittance [201], and it is a short-term stress imprint
limited to the current generation, preserving their capacity for reactivation along different
stages of the life cycle [188]. Then, if the generation can transmit the stress imprint to the
first generation, but this inheritable condition is lost to the second and next generations, it
is termed intergenerational memory [200]. The longer-lasting modifications transmitted to
future generations are defined as transgenerational memory and play a relevant role in the
evolution of a species [188,202].
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by epigenetic events.

The epigenetic mechanisms involve a wide range of phenomena, such as chromatin
remodeling, which possesses a central role in the stress responses [203], DNA cytosine
methylation, nucleosome positioning, covalent modification of histones (posttranslational
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modification of histones) [204], and noncoding RNA-mediated regulation (RNA interfer-
ence, RNAi). Such modifications are regulated by epigenetic regulators [188,197], which
can be enzymes and other molecules, with the capacity to redefine the transcriptional
mechanisms [188,203–205]. The action of the regulators is not “single-independent”, but it
mainly occurs through their interaction, which is usually modulated through small non-
coding RNAs [201], assuming a major relevance in the case of stress exposition [188,206].
The mechanism of response associated with stress memory is also dependent on the nature
of the stress, its persistence and damage degree, and the plant species affected [188].

6. Seaweed Elicitors

Elicitors are an important part of the priming process since they mediate the plant response
to stress, crucial in case of microbial attack [57]. These elicitors can be external compounds
produced by other organisms, such as microbial biota, pathogens, predators [180], marine
organisms [207], or stimulated by abiotic factors [190–192,198]. They are known to trigger
mechanisms to avoid cellular and tissue damage in plants, reducing the disease symptoms.

Algae-derived compounds are known to be beneficial to plants [208,209], contributing
to an improvement of plant nutritional profile [210] and defense against biotic and abiotic
stresses [207,209]. Using the Scopus database, a compilation of the studies regarding the
priming potential of macroalgae-derived extracts was performed and is detailed in Table 3.

There is a wide range of compounds capable of inducing systemic acquired resistance
such as proteins, peptides, oligosaccharides, polysaccharides, fatty acids, glycoproteins,
lipids [60,211–213], acid β-aminobutyric acid [57,214,215], among others. Some of these molecu-
les are present in the composition of seaweed and have been proposed as “bio-elicitors” [216],
highlighting the oligosaccharides, polysaccharides, peptides, proteins, and lipids [6].

The analysis of Table 3 shows a strong majority of extracts from brown algae associated
with the capacity to initiate defense mechanisms in plants to fight bacterial invasions.

Ascophyllum nodosum is one of the most explored brown alga [217] and some of its
compounds are already commercialized as biostimulants, due to their high potential to
promote the healthy development and growth of plants [6,54,58]. Also, the extracts obtained
from this alga present the capacity to exhibit phytoprotection in case of bacterial attack,
leading to a reduction of disease symptoms. This capacity is not limited by the host plant
and can be observed in different plant species [6]. Despite the fact that the mechanisms
of “how” elicitors lead to the resistance against microbial invasions are not completely
described [179], it is known that the resistant plants mainly exhibit high levels of phenolic
compounds, such as tannins and flavonoids [6,218].

The studies described below focus their research on specific compounds or molecules
in an attempt to understand eliciting behavior in plants since knowledge of this field
is still scarce. Small oligogalacturonides are a molecular group present in brown algae
and their eliciting activity has been reported through different plant groups [219–224].
One of the reasons for that is associated with the β-1,3 linkages of the molecules that can
be recognized as defense signals by plants [225]. One of the oligogalacturonides most
studied, and also present in A. nodosum, is laminarin [225–227]. This linear β-1,3 glucan
can strongly trigger the activity of the PR proteins [225], phenylalanine ammonium lyase
(PAL), and lipoxygenase [58,225], and promote the up-regulation of caffeic acid and O-
methyltransferase (both involved in the regeneration process due to their inclusion in
the lignin synthesis [228]). The influence of laminarin in SA accumulation on plants is
controversial. Some studies observed an increase of SA in plants when stimulated with
that compound [47,225], but other studies observed the inhibition of SA accumulation. SA
is derived from the phenylpropanoid pathway and some studies established a correlation
between SA accumulation and the increase in phenylalanine ammonia-lyase (PAL), a
defense enzyme [229] that is a precursor of SA [230]. This correlation was also observed in
the study by Klarzynski [225], where the accumulation of SA was reported, but no direct
correlation was proved. This lack of strictness may be expected, once PAL is also a precursor
for other molecules, such as the intermediates to the lignin formation [230]. More detailed
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studies, including the chemical characterization of the present compounds, are crucial to
understanding the molecular pathways that promote or suppress SA accumulation.

Table 3. Compilation of studies available on Scopus database approaching the priming poten-
tial/activity of seaweed extracts against bacterial phytopathogens (*—Seaweed extract with bioactive
compounds concentrated; A—Purified seaweed compound used in the study).

Species Seaweed Extract/Solvent References

Agrobacterium tumefaciens
Fucus spiralis Aqueous extract [130]

Cystoseira myriophylloides Aqueous extract [130]

Erwinia carotovora subsp. carotovora Laminaria digitata Purified laminarin A [225]

Pseudomonas aeruginosa
Ascophyllum nodosum - [231]

Ascophyllum nodosum Stella Maris® [227]

Pseudomonas syringae Ascophyllum nodosum Stella Maris® [227]

Pseudomonas syringae pv. tabaci

Cystoseira myriophylloides Aqueous extract [71]

Fucus spiralis Aqueous extract [71]

Laminaria digitata Aqueous extract [71]

Pseudomonas syringae pv. tomato

Ascophyllum nodosum Aqueous extract [179]

Ascophyllum nodosum Chloroform extract [179]

Ascophyllum nodosum Ethyl acetate [179]

Kappaphycus alvarezii Aqueous extract [232]

Staphylococcus aureus Ascophyllum nodosum Essential oils [231]

Xanthomonas campestris Ascophyllum nodosum Stella Maris® [227]

Xanthomonas campestris pv. malvacearum Sargassum wightii Aqueous extract (Dravya) [233]

Xanthomonas campestris pv vesicatoria

Ascophyllum nodosum Alkaline extract (commercial product) [6,56]

Acanthophora spicifera Alkaline extract [234]

Gelidium serrulatum Alkaline extract [235]

Sargassum filipendula Alkaline extract [235]

Sargassum vulgare Alkaline extract [234]

Ulva lactuca Alkaline extract [235]

Xanthomonas oryzae pv oryzae Kappaphycus alvarezii Aqueous extraction * [232]

Alginate, one of the most commercialized phycocolloids, is the most abundant compo-
nent present in brown algae, being part of the cell walls and intercellular matrix [236]. Its
extended use by the food industry has demonstrated the safety of its consumption, turning
this compound attractive to the agricultural field [216]. Alginate and alginate-derivative
compounds extracted from brown algae demonstrated their effectiveness at activating the
defense mechanisms of plants [237,238], and consequently conferring resistance against
microbial phytopathogens [229,239]. The depolymerization of alginate originates from a
digested agent, the oligo-alginate, that possesses eliciting activity and other agricultural
benefits already reported in a wide range of studies. Zhang et al. demonstrated the capacity
of alginate oligosaccharide to increase the expression of resistance genes and SA content in
A. thaliana, to protect the plant against the P. syringae pv. tomato infection [240]. In another
work, the degraded alginate proved to be beneficial for plant growth, in addition to the
protection conferred to tobacco plants from microbial phytopathogens, proposing a hypo-
thetical connection between these two plant mechanisms [241]. This hypothesis is based on
the binding of molecules of bacterial presence recognition by the plant host, denominated
by MAMPs (microbial-associated molecular patterns), to receptors that also can interact
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with BAK1 (BRI1-associated receptor kinase, coreceptor in plasma membrane), proving
a dependence between these two phenomena that are apparently independent [242,243].
Then, the existence of receptors for oligo-alginates in the plasma membrane is proposed
to somehow interact with the coreceptor BAK1, activating both the plant stimulation
growth and defense response against bacterial invasion [241,244]. More specifically, an
oligo-alginate of D-mannuronic has been associated with the induction of PAL activity,
involved in the SA-dependent defense response [245,246].

A study from 2011 studied the mechanism of A. nodosum in a model plant, A. thaliana [179].
Using plants with different mutant genes related to the accumulation of SA or involved
in the mediation of JA response, it was observed that no differences in the susceptibility
of the plant to Pseudomonas syringae pv. tomato was found. However, the susceptibility
to this phytopathogen increased in plants with the mutant gene jar1 [179], attributed to
the inability to create JA-Ile bonds [247] and consequently the failure to protect the plant
against the pathogen. The mechanism proposed is based on the binding of algae sterols
(usually, present in brown algae, including A. nodosum) to nonspecific lipid transfer proteins
(nsLPTs), which are proteins that can transport lipids due to the presence of hydrophobic
cavities present in a wide range of plants, as A. thaliana [248]. The importance of lipid
molecules, such as jasmonic acid or oxylipins, to promote the expression of nsLTP genes
in plants [249] was already defined as crucial to activate their defense pathways against
microbial pathogens [250].

Also, another macroalgae group of relevance regarding the induction of defense
pathways in plants is Rhodophyta. The eliciting activity of red algae in plants against
bacterial phytopathogens was demonstrated in studies performed by Ramkissoon [235],
and more recently by Ali et al. [234]. The alkaline extracts of A. spicifera and G. serrulatum
were able to reduce the damage and presence of Xanthomonas campestris pv. vesicatoria in
sweet pepper [234] and tomato plants [235]. In this study, high values of defense enzymes,
phenolic compounds, and the upregulation of gene expression related to plant growth
hormones were found. This eliciting potential has been assigned to the wide range of
carrageenans usually present in red algae [211,216,251,252]. This group of sulfate polysac-
charides includes a high degree of variability, and the position and number of sulfate ester
groups determines the subgroup of these chemical compounds, λ-carrageenan being the
one that contains a higher sulfate content (41%), followed by ι-carrageenan (33%) and
κ-carrageenan (20%) [253,254]. In another work, Mercier and colleagues demonstrated the
high efficiency of this family of sulfate linear galactan to promote the signaling cascade of
plant defense [57,215]. In addition to the relevance of the presence of sulfated groups to pro-
mote their solubility in water [253], the number and position of ester sulfate groups of the
carrageenans can also be a determinant factor to define, which of the defense mechanisms
is activated [234]. Usually, the most sulfated carrageenans have been related as promoters
to induce the ISR response [215], while the less sulfated ones have been pointed out as
the responsible agents for SA signaling activation [234,235]. This was demonstrated by
Sangha et al. [255], who reported a higher expression of genes associated with the JA signal-
ing (AOS, PDF1.2, and PR3), in plants elicited by λ-carrageenan. However, the same study
pointed out the relevance of the application of the right carrageenans type in the defense
mechanisms of the plant: the use of less sulfated carrageenan, ι-carrageenan, enhanced the
susceptibility of A. thaliana to the necrotrophic fungal pathogen [255]. An unusual behavior
of carrageenans was exhibited in a later study by Sangh and co-workers [256], in which
a higher activity of ι-carrageenan to induce the expression of genes associated with JA
(PDF1.2) and SA (PR1) defense pathways was demonstrated, while the κ-carrageenan only
promoted the expression of PDF1.2 in a reduced extent, and the λ-carrageenan did not
affect the expression of the defense pathways. The controversial results from the above
assays indicated that the association of sulfation level with the eliciting pathways of plants
is not linear, which can denote that the sulfation level of these polysaccharides is only
one important characteristic among other parameters involved in the expression of plant
defense genes when interacting with carrageenans [255].
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Green algae are a less-reported group with agricultural applications. However, the
few studies existing also reported some eliciting activity from the polysaccharides usu-
ally present in the Chlorophyta group [257]. Based on that, El Modafar and co-workers
searched for the potential of glucuronan and ulvan, a non-sulfate homopolymer and a
sulfated polysaccharide, respectively, which are the main components of the cell wall of
Ulva lactuca [258,259]. The sulfate homopolymer, ulvan, exhibited high eliciting activity in
tomato seedlings, while glucuronan (glucuronic acids β-(1,4)) did not significantly affect
the PAL activity, a precursor for the SA pathway [251]. Surprisingly, the sulfate compound,
ulvan, which also is one of the mainly water-soluble polysaccharides [260], demonstrated
stronger eliciting activity when compared to other polysaccharides (carrageenan, laminarin,
and alginate). It is important to highlight that this eliciting activity can be related to the
sulfate portion of the compound. The desulfation of ulvan led to the inability of this com-
pound to promote PAL activity [251]. However, some studies are controversial regarding
the defense responses triggered in plants. A study by Ramkissoon et al. [235] demonstrated
that a U. lactuca extract promoted JA/ET signaling in tomato plants, defending that the
presence of the sulfate polysaccharide ulvan is responsible for that.

Considering the complexity of the plant defense mechanisms, as well as all the factors
that can affect the chemical composition of an extract, it is possible that slight modifications
on the compounds may trigger such different responses in plants. The behavior of a diverse
group of sulfate oligosaccharides based on just a few studies is not enough to define a
generalist pathway, as was suggested in the past when it was proposed that the sulfated
oligosaccharides were able to activate JA/ET signaling pathways in plants [235]. In the
same way that there are some studies supporting this hypothesis [235,261], there are also
studies demonstrating a positive relationship between sulfated oligosaccharides and the
induction of genes related to SA plant response [251,262].

7. Conclusions

The constant increase in bacterial phytopathogens and their paramount impacts on
agricultural production have boosted the search for effective methodologies while ensuring
the security of the environment. From all the studies analyzed, the search for antibacterial or
priming activity in extracts obtained from seaweeds seems to be one promising and suitable
method to address the current demands of society for effective, green, and sustainable tools.

The analyses of studies reporting activity against bacterial phytopathogens demon-
strate that brown seaweed is the group with the highest success in this area. This may be
associated with the high diversity of their compounds; phenolic compounds being mostly
associated with the antibacterial activity and the sulfated groups associated with the prim-
ing activity. The mechanisms underlying these processes are still not fully understood. The
integration of data from different studies regarding the interaction between the compounds
and the plant is crucial to fully deciphering the mechanism and also the means to enable
the integration of different compounds into the same treatment for enhanced productivity
and a wider array of protection.

Thus, despite all the work performed, this compilation demonstrates an urgent de-
mand for more detailed studies, to obtain more accurate responses underlying the antibac-
terial activity and/or priming potential of seaweed extracts to aid the development of
marine-based solutions from the sea to the farm.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21010023/s1, Table S1: Detailed information of antibacterial
activity reported from disc/well diffusion technique; Table S2: Detailed information of antibacterial
activity reported from disc diffusion method modified (bacterial-agar medium); Table S3: Detailed
information of antibacterial activity reported from liquid-dilution method; Table S4: Detailed in-
formation of antibacterial activity from microdilution method; Table S5: Detailed information of
antibacterial activity reported by a spectrophotometric method; Table S6: Detailed information about
antibacterial activity from field studies [263–296].
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