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Abstract: Conopeptides are peptides in the venom of marine cone snails that are used for capturing
prey or as a defense against predators. A new cysteine-poor conopeptide, Czon1107, has exhibited
non-competitive inhibition with an undefined allosteric mechanism in the human (h) α3β4 nicotinic
acetylcholine receptors (nAChRs). In this study, the binding mode of Czon1107 to hα3β4 nAChR
was investigated using molecular dynamics simulations coupled with mutagenesis studies of the
peptide and electrophysiology studies on heterologous hα3β4 nAChRs. Overall, this study clarifies
the structure–activity relationship of Czon1107 and hα3β4 nAChR and provides an important
experimental and theoretical basis for the development of new peptide drugs.

Keywords: conopeptide; nAChR; ACh-evoked currents; allosteric inhibitor; structure–activity relationship;
molecular dynamics simulations

1. Introduction

Acetylcholine acts on nicotinic acetylcholine receptors (nAChRs) [1], which are re-
sponsible for regulating synaptic transmission in the central and peripheral nervous sys-
tems [2–5], anti-inflammation in the cholinergic system [6], and the growth of cancer
cells [7]. The nAChRs are ligand-gated ion channels in a pentameric arrangement of
seventeen different subunits (α1–α10, β1–β4, δ, γ, and ε) with a central pore [8–10], an
intracellular domain (ICD), a transmembrane domain (TMD), and an extracellular domain
(ECD). The ECD of two adjacent subunits constitutes the ligand-binding site, which consists
of loops A, B, and C of one subunit and the β-sheet of the complementary subunit.

Neuronal nAChRs are associated with cognitive activity, pain perception, learning and
memory formation, and neuronal development in humans, thus therapeutics that act on
nicotinic synaptic transmission may be useful for the treatment of pain, memory disorders,
Parkinson’s disease, schizophrenia, and nicotine addiction [5,10].

The α3β4 nAChR (Figure 1) is the predominant subtype in the autonomic ganglia,
adrenal medulla, and subsets of nerve cells in the medial habenula, nucleus interpeduncu-
laris, dorsal medulla, pineal gland, and retina [11]. Furthermore, they are associated with
nicotine addiction, drug abuse, and the development of lung cancer [12].
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nAChRs. The α3 subunit is depicted in green and the β4 subunit is depicted in cyan. 
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superfamilies based on sequence and framework homology and pharmacological families 

based on their targets [20]. Several superfamilies have been characterized, including A-, 

O-, T-, P-, I-, S-, and M- that possess two to five disulfide cross-links [21–25].  

Conopeptides have attracted attention as potential therapeutics and several have 

entered clinical trials such as the non-addictive analgesic ω-Ctx MVIIA [13]. In addition, 

α-Ctxs Vc1.1 and RgIA have been reported to exhibit analgesic properties in rat behavioral 

models of neuropathic pain [25,26]. Owing to their structural stability, relatively small 

size, and target specificity, conopeptides are regarded as ideal molecular probes for target 

validation and peptide drug discovery [27].  

Currently, most of the reported conopeptides targeting nAChRs are the widely 

studied A-superfamily α-Ctxs, which contain 12 to 18 amino acids including two pairs of 

disulfide bonds. The disulfide bridges are critical in constraining the conopeptides into a 

bioactive conformation and variations in cysteine connectivity also affect the 

pharmacological properties of conopeptides [28,29]. However, cysteine-poor conopeptide 
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to hα3β4 nAChR was predicted by molecular dynamics (MD) simulations and analogues 

of conopeptide Czon1107 were synthesized and tested on hα3β4 nAChRs heterologously 
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Figure 1. Structure of the human (h)α3β4 nAChR (PDB code: 6PV7). (A). The human (h) α3β4
nAChR structure comprises three regions, including a ligand-binding extracellular domain (ECD),
a transmembrane domain (TMD), and an intracellular domain (ICD). (B). Top view of the hα3β4
nAChRs. The α3 subunit is depicted in green and the β4 subunit is depicted in cyan.

Conopeptides that include disulfide-rich conotoxins (Ctx) and non-disulfide-rich
peptides are small peptides from the venom of marine Conus snails [13], which are used for
capturing prey or as a defense against predators [13], and act on ion channels, transporters,
G protein-coupled receptors, and enzymes [14–18]. They are categorized into superfamilies
based on sequence and framework homology and pharmacological families based on their
targets [19]. Several superfamilies have been characterized, including A-, O-, T-, P-, I-, S-,
and M- that possess two to five disulfide cross-links [20–24].

Conopeptides have attracted attention as potential therapeutics and several have
entered clinical trials such as the non-addictive analgesicω-Ctx MVIIA [12]. In addition,
α-Ctxs Vc1.1 and RgIA have been reported to exhibit analgesic properties in rat behavioral
models of neuropathic pain [24,25]. Owing to their structural stability, relatively small
size, and target specificity, conopeptides are regarded as ideal molecular probes for target
validation and peptide drug discovery.

Currently, most of the reported conopeptides targeting nAChRs are the widely studied
A-superfamily α-Ctxs, which contain 12 to 18 amino acids including two pairs of disulfide
bonds. The disulfide bridges are critical in constraining the conopeptides into a bioac-
tive conformation and variations in cysteine connectivity also affect the pharmacological
properties of conopeptides [26,27]. However, cysteine-poor conopeptide antagonists of
the nAChRs are rarely studied. Therefore, this is a new field of study on the activity of
conopeptides with one disulfide bond acting on nAChRs.

The C. zonatus Czon1107 only has a single disulfide bond and in fluorescence bioassays
on heterologous hα3β4 nAChRs expressed in SH-SY5Y cells, Czon1107 non-competitively
inhibits nicotine-evoked currents with a half-maximal inhibitory concentration (IC50) of
15.7 µM [28]. However, the allosteric mechanism of Czon1107 inhibition has not been
investigated. Thus, in this study, the binding mode of Czon1107 to hα3β4 nAChR was pre-
dicted by molecular dynamics (MD) simulations and analogues of conopeptide Czon1107
were synthesized and tested on hα3β4 nAChRs heterologously expressed in Xenopus
laevis oocytes using the two-electrode voltage clamp technique. Overall, the inhibitory
mechanism of Czon1107 in hα3β4 nAChR putatively involves hydrophobic interactions be-
tween Czon1107 residue F2 and α3 residues P264 and P271, and hydrogen bonds between
Czon1107 residue R3 and residues S225 and T280 of the α3 subunit.

2. Results and Discussion
2.1. Synthesis of α-conotoxin Czon1107 and Analogues

The peptides (Table 1) were synthesized by solid-phase Fmoc chemistry, as described
previously [29]. As Czon1107 and its analogues contain only one disulfide bond, they
can be formed directly under I2 oxidation. The fully oxidized product was separated and
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purified by reversed-phased high-performance liquid chromatography (RP-HPLC). The
molecular weight and purity were confirmed by electrospray ionization–mass spectrometry
(ESI–MS) and analytical HPLC (Figures S1–S28).

Table 1. Czon1107 and its analogues.

No. Name Sequence

1 Czon1107 GFRSPCPPFC#
2 Czon1107-G1A AFRSPCPPFC#
3 Czon1107-F2A GARSPCPPFC#
4 Czon1107-R3A GFASPCPPFC#
5 Czon1107-S4A GFRAPCPPFC#
6 Czon1107-P8A GFRSPCPAFC#
7 Czon1107-F9A GFRSPCPPAC#
8 Czon1107-G1R RFRSPCPPFC#
9 Czon1107-F2R GRRSPCPPFC#
10 Czon1107-S4R GFRRPCPPFC#
11 Czon1107-P5R GFRSRCPPFC#
12 Czon1107-P7R GFRSPCRPFC#
13 Czon1107-P8R GFRSPCPRFC#
14 Czon1107-F9R GFRSPCPPRC#

#-indicates C-terminal amidation

2.2. Molecular Dynamics (MD) Simulations of hα3β4 nAChR Bound with Czon1107

CoDock is an efficient tool for peptide docking, which integrates the shape singularity,
knowledge-based scoring function, and site constraint [30]. Using CoDock, we docked
hα3β4 nAChR (PDB code: 6PV7) with Czon1107 (PDB code: 6KN2) several times and
compared the convergence of each result. From this, we obtained the initial model (Figure 2),
suggesting Czon1107 is mostly distributed in the TMD region of hα3β4 nAChR. Three
docking models with the highest reproducibility (Figure 2C–E) were selected for the 200 ns
molecular dynamics simulation (MD) (Figure S29).
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Figure 2. Structure of the human (h)α3β4 nAChR (PDB ID: 6PV7) (A). Side view of hα3β4 nAChR
docked with Czon1107. (B). A magnified view of hα3β4 nAChR bound with nicotine (magenta).
(C–E). Postulated binding sites of Czon1107 at hα3β4 nAChR. The α3 and β4 subunits are colored
green and cyan, respectively, and conopeptide Czon1107 is orange. M2, M3, M4, and MX represent
the TMD α-helices. (F). Top view of the hα3β4 nAChR TMD docked with Czon1107.

As the three suggested Czon1107 binding sites are located at the lower half of the
receptor, only the hα3β4 nAChR TMD and ICD models were simulated. The MD simula-
tions proposed that the interaction site is located at the junction of the α3 subunit’s ECD
and TMD (Figure 2C) as it had the most favorable physicochemical environment such as
hydrogen bonds and hydrophobic interactions.
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2.3. Activity of Czon1107 Analogues at hα3β4 nAChRs

Mutational analysis is widely used to study the relationship between the sequence and
structure of peptides [28,31]. In order to identify the residues involved in the interaction
between hα3β4 nAChR and conopeptide Czon1107, an alanine (Ala)-scan mutation was
carried out on Czon1107. The activity of the synthesized Czon1107 Ala analogues at
10 µM (close to the reported IC50 of Czon1107 at hα3β4 nAChR [28]) was determined
on ACh-evoked currents at hα3β4 nAChRs (Figures 3 and S30). All peptides inhibited
hα3β4-mediated ACh currents in a reversible manner. Three of the Ala analogues (G1A,
P8A, and F9A) exhibited similar activity to Czon1107, whereas each Ala substitution of
residues from Phe at position 2 to Ser at position 4 (F2A–S4A), significantly reduced the
activity of the peptide (10–20% inhibition, p < 0.05, n = 5–6).

Mar. Drugs 2022, 20, 497 5 of 10 
 

 

In addition to the hα3β4 nAChRs, Czon1107 inhibited nicotine-evoked currents at 

hα7 nAChRs (IC50 of 77.2 ± 0.05 µM) [30]. A comparison between hα3β4 and hα7 

putatively suggested that Czon1107 residue F2 likely forms a hydrophobic interaction 

with the hydrophobic P264 residue of hα3β4 nAChR compared to the corresponding 

hydrophilic and charged D266 residue of hα7 (Figure S31). To some extent, our model also 

explains the selectivity of the spatial position between hα3β4 and hα7 nAChRs. 

 

Figure 3. The inhibitory activity of Czon1107 and its analogues (10 μM) on ACh-evoked peak 

current amplitude mediated by hα3β4 nAChRs. A. Representative superimposed ACh (300 µM)-

evoked currents mediated by hα3β4 nAChRs, obtained in the absence (control, black trace) and 

presence of 10 μM Czon1107 and its analogues (red lines). B. Bar graphs of relative inhibition by 

Czon1107 analogues (10 μM) of ACh-evoked current amplitude mediated by hα3β4 nAChRs (mean 

± SD, n = 5–8) (* p < 0.05, ** p < 0.0001). The dashed line indicates relative inhibition of wild-type 

Czon1107. 

Figure 3. The inhibitory activity of Czon1107 and its analogues (10 µM) on ACh-evoked peak current
amplitude mediated by hα3β4 nAChRs. (A). Representative superimposed ACh (300 µM)-evoked
currents mediated by hα3β4 nAChRs, obtained in the absence (control, black trace) and presence
of 10 µM Czon1107 and its analogues (red lines). (B). Bar graphs of relative inhibition by Czon1107
analogues (10 µM) of ACh-evoked current amplitude mediated by hα3β4 nAChRs (mean ± SD,
n = 5–8) (* p < 0.05, ** p < 0.0001). The dashed line indicates relative inhibition of wild-type Czon1107.

Based on the results of MD, Czon1107 is putatively embedded in a binding pocket
(Figure 4A) on the α3 subunit. In the binding model (Figure 4B,C), residue F2 forms hy-
drophobic interactions with the α3 subunit residues P264 and P271, whereas the R3 residue
is relatively crucial as it forms hydrogen bonds with α3 S225 and T280 (Figure 4E). Thus, it
is speculated that Ala substitution at both Czon1107 residues abolishes the interactions as
reflected in the significant loss of inhibitory activity on hα3β4 ACh-evoked currents. Addi-
tionally, the hydroxyl group of S4 played a role in sustaining the stability of the peptide by
forming intramolecular hydrogen bonds with the carbonyl group of F2. Thus, the reduced
activity of the S4A analogue could be attributed to peptide stability perturbation. In terms
of spatial position, Czon1107 P8 is externally oriented toward the α3 subunit, therefore
it lacks a suitable interaction force with the surroundings. Residue G1 had no obvious
interactions with the α3 subunit, thus, alanine replacement had no effect on the activity
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of the peptide. F9 and L468 formed a hydrophobic interaction and Van der Waals’ force
(VDW), and removal of the aromatic side chain of F9 resulted in a slight potency decrease
for the F9A mutant.
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Figure 4. Binding modes of Czon1107 at hα3β4 nAChR. (A). Czon1107 is embedded in the α3
subunit binding pocket via hydrogen bonds. (B,C). Top and side views of Czon1107 at the α3 subunit,
respectively. Various amino acid residues of Czon1107 form interactions with amino acids of hα3β4
nAChR. The α3(+) interface is shown in green, β4(−) in cyan and Czon1107 in orange. (D). The
substituted arginine residue of Czon1107[G1R] putatively forms H-bonds (red dashed line) with the
carbonyl and hydroxyl groups of hα3β4 threonine (T262). (E). The arginine residue (R3) of Czon1107
forms H-bonds (red dashed line) with hα3β4 threonine (T280) and serine (S225). (F). The substituted
arginine residue of Czon1107[P7R] forms H-bonds (red dashed line) possibly with the hydroxyl
groups of hα3β4 threonine (T214) and carbonyl groups of proline (P210).

To further investigate the effects of charge on electrophysiological activity and poten-
tially optimize the activity, we performed an arginine (Arg)-scan mutagenesis on Czon1107.
The replacement of residues at positions 1 and 7 with the positively charged Arg slightly
enhanced the potency of Czon1107 in inhibiting the hα3β4 nAChRs (Figure 3). Both the
G1R and P7R analogues inhibited ~50% of the ACh-evoked current amplitude compared to
~30% inhibition by Czon1107 (p < 0.0001, n = 6). The improved activity of Czon1107[G1R]
could be explained by the formation of hydrogen bonds with the carbonyl and hydroxyl
groups of T262 (Figure 4D). Furthermore, swapping P7 with Arg residue putatively formed
hydrogen bonds (Figure 4F) with the hydroxyl groups of T214 and carbonyl groups of P210.

In contrast, Arg substitution of residues F2, S4, and F9 reduced the inhibitory activity of
the peptide at hα3β4 nAChRs. In comparison to Czon1107, all three analogues inhibited the
ACh-evoked current amplitude by 5–20% (p < 0.05, n = 7–9). The hydrophobic interactions
formed between F2 and P264 and P271 were removed by the introduction of arginine at this
position, resulting in a significant decrease in activity for Czon1107[F2R]. Similarly, the F9R
mutation resulted in a decrease in inhibitory activity due to the removal of the hydrophobic
interactions and the VDW between F9 and L468. In addition, as the S4 residue is embedded
in the binding pocket, S4R mutation could introduce steric hindrance, which could be
responsible for the significant decrease in activity for Czon1107[S4R] in comparison to the
wild-type peptide. No significant change in activity at hα3β4 nAChRs was observed for
Czon1107[P5R] and Czon1107[P8R].
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In addition to the hα3β4 nAChRs, Czon1107 inhibited nicotine-evoked currents at hα7
nAChRs (IC50 of 77.2 µM) [28]. A comparison between hα3β4 and hα7 putatively suggested
that Czon1107 residue F2 likely forms a hydrophobic interaction with the hydrophobic
P264 residue of hα3β4 nAChR compared to the corresponding hydrophilic and charged
D266 residue of hα7 (Figure S31). To some extent, our model also explains the selectivity of
the spatial position between hα3β4 and hα7 nAChRs.

3. Materials and Methods
3.1. Synthesis of α-Conotoxin Czon1107 and Its Analogues

Peptides were synthesized using the standard solid-phase peptide synthesis (SPPS) as
reported previously [29]. After saturating with a mixed solution of dimethylformamide
(DMF): dichloromethane (DCM) (1:1) for 4 h, 20% of piperidine solution was used in
rink amide resin (loading amount 0.631 mmol/g) in order to remove the Fmoc pro-
tecting group (30 min). Amino acids (4.0 equivalent), (O-1H-6-chlorobenzotriazole-1-
yl)-1,1,3,3-tetramethylu-ronium hexafluoro-phosphate (HCTU; 4.0 equivalent) and N, N-
diisopropylethylamine (DIPEA; 8.0 equivalent) were added in DMF for 1 h at room temper-
ature and washed three times with DCM and DMF. After the completion of the chemical
reaction, 20% piperidine solution (30 min) was used to remove the last Fmoc protective
group and washed three times with DCM and DMF. Addition of 10 mL trifluoroacetic
acid (TFA): triisopropylsilane: water (9:0.5:0.5) were reacted at a constant temperature on a
shaker for 3 h to remove the peptide from the resin. After washing the resin with DCM
three times, the filtrate was combined. After removal of excess TFA, the peptide was then
precipitated in cold diethyl ether, washed three times with diethyl ether, and dissolved in
an H2O/acetonitrile (1:1) mixture at a peptide concentration of 0.1 mg/L. Then, the reaction
was purified by reversed-phased high-performance liquid chromatography (RP-HPLC)
(TabithaTM WD-C18 column 20 × 250 mm, 10 µm), using a gradient of buffer A (90% H2O,
10% acetonitrile, 0.05% TFA) and B (90% acetonitrile, 10% H2O, 0.05% TFA) of 100% to
40% for 1 h with a flow rate of 6 mL/ min. Subsequently, the peptide was oxidized by
adding 5 mg/mL iodoacetonitrile under a closed environment at 28 ◦C for about 2 h. After
the reaction was finished, an ascorbic acid buffer was added to quench the reaction. The
oxidized product was purified by RP-HPLC, and the separation conditions were the same
as above. This was followed by concentration under vacuum and lyophilization of the
peptide as a white powdery solid; the product was stored at −20 ◦C.

3.2. Xenopus laevis Oocyte Preparation and Microinjection

All procedures were approved by the University of Wollongong Animal Ethics Com-
mittees (project number AE2003). Female X. laevis were sourced from Nasco (Fort Atkinson,
WI, USA) and a maximum of four frogs were kept in a 15 L aquarium at 20–26◦C with
a 12 h light/dark cycle. Oocytes (Stage V–VI Dumont’s classification; 1200–1300 µm in
diameter) were removed from X. laevis by surgical laparotomy and defolliculated with
1.5 mg/mL collagenase Type II (Worthington Biochemical Corp., Lakewood, NJ, USA).
Oocytes were obtained from three frogs. Defolliculation was done at room temperature
(21–24 ◦C) for 1–2 h in OR-2 solution containing (in mmol/L) 82.5 NaCl, 2 KCl, 1 MgCl2,
5 HEPES, pH 7.4. Plasmid pT7TS constructs of hα3 and hβ4 were linearized with XbaI
(NEB, Ipswich, MA, USA) for in vitro T7 mMessage mMachine®-cRNA transcription (AM-
BION, Foster City, CA, USA). Oocytes were injected with 5 ng of hα3β4 cRNAs at α3 to β4
ratio of 1:1 (concentration confirmed spectrophotometrically and by gel electrophoresis)
using glass pipettes as described previously [32]. Oocytes were incubated at 18 ◦C in sterile
ND96 solution composed of (in mM) 96 NaCl, 2 KCl, 1 CaCl2, 1 MgCl2, and 5 HEPES at
pH 7.4, supplemented with 5% fetal bovine serum (FBS), 50 mg/L gentamicin (GIBCO,
Grand Island, NY, USA) and 10,000 U/mL penicillin-streptomycin (GIBCO).
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3.3. Two-Electrode Voltage Clamp Recording of Oocytes and Data Analysis

Two-electrode voltage clamp recordings were carried out on X. laevis oocytes express-
ing hα3β4 nAChRs. Voltage clamp recordings were performed using a GeneClamp 500B
amplifier and pClamp9 software interface (Molecular Devices, Sunnyvale, CA, USA) at a
holding potential of −80 mV at room temperature. Oocytes were impaled with two micro-
electrodes filled with 3 mol/L KCl. Voltage recording and current injection electrodes were
both made of GC150T-7.5 borosilicate cate glass (Harvard Apparatus, Holliston, MA, USA)
and had a resistance of 0.3–1 MΩ when filled with 3 mol/L KCl. Oocytes were continuously
perfused with ND96 solution (2 mL/min). Three ACh applications were then performed
with 300 µM ACh solution (half-maximal effective concentration at hα3β4 nAChR) [32].
After perfusion was stopped, oocytes were incubated with the peptide for 5 mins and then
with flowing ND96 solution, ACh was added to peptide co-application. There was a 3 min
washout time between perfusions. All peptides were tested at 10 µM, close to the reported
IC50 of wild-type Czon1107 at hα3β4 nAChRs [28]. The peptide solutions were prepared in
ND96 + 0.1% FBS. Oocytes were incubated with 0.1% FBS to ensure that the pressure of the
FBS and perfusion system had no effect on the nAChRs. Peptides were tested on the same
oocyte whenever possible. Peak ACh-evoked currents before and after peptide incubation
were quantitated using Clampfit 10.7 software (Molecular Devices, Sunnyvale, CA, USA)
and relative current amplitudes (IACh+peptide /IACh ) were applied to assess peptide activity
at hα3β4 nAChRs. The activity of the peptides was compared using an unpaired Student’s
t-test (GraphPad Prism 9 Software, La Jolla, CA, USA), and it was deemed statistically
significant with values of p < 0.05.

3.4. Docking and Molecular Dynamics (MD) Simulations

The crystal structure of the protein was retrieved from the Protein Data Bank (PDB).
Czon1107-WT was docked to the hα3β4 nAChR in the CoDockPP web server (http://
codockpp.schanglab.org.cn/, accessed on 17 November 2021). The produced top 10 docked
conformations of the Czon1107-WT were selected for further analysis and those with the
optimum binding modes were used for subsequent MD simulations to further optimize the
structure.

MD simulations were carried out in AMBER 20 software using ff19SB force field [33].
The hα3β4 nAChR bound with Czon1107 was inserted into a bilayer containing a 2:2:1
mixture of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine): POPE(1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphoethanolamine): cholesterol, similar to Grossfield et al. [34],
with a dimension of 125 × 125 × 129 Å and the system solvated with OPC water molecules.
Then, Na+ was added to the whole system to make it appear electrically neutral with an
overall concentration of 0.15 M in CHARMM-GUI (http://www.charmm-gui.org, accessed
on 18 January 2022) [35] and energy optimization of the whole system was carried out.
The temperature of the system was gradually increased to 310 K and was equilibrated for
500 Ps in NVT and NPT ensembles, respectively, with the protein and lipids restrained
with 10 kcal/mol/Å2 force. For the second heating phase, an anisotropic Berendsen weak-
coupling barostat was used to equilibrate the pressure in addition to the use of the Langevin
thermostat to equilibrate the temperature. Then, the position restraints on the membrane
were withdrawn and the system was simulated for 20 ns in NPT. The position restraints on
the protein were then gradually withdrawn in 10 steps of 5 ns MD simulations. Afterward,
an unrestrained production run was performed. In the production run, the temperature was
controlled using the Langevin thermostat and pressure was controlled using the anisotropic
Berendsen barostat. The software VMD [36] (http://www.ks.uiuc.edu/, accessed on
26 January 2022) was used to analyze the motion trajectory after MD simulations and
calculate the RMSD value of the resulting conformation.

4. Conclusions

Conopeptides such as AuIB [37], RegIIA [38] and their analogues antagonize α3β4
nAChR in a competitive manner. Some conopeptides, including the globular disulfide

http://codockpp.schanglab.org.cn/
http://codockpp.schanglab.org.cn/
http://www.charmm-gui.org
http://www.ks.uiuc.edu/
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isomer of AuIB [26], GeXIVA [39], and ImII [40], which have multiple disulfide bonds and
complex synthesis pathways, have been suggested as non-competitive nAChR antagonists.
Uniquely, Czon1107, a single disulfide bond conopeptide, also inhibits the α3β4 nAChR in
a non-competitive manner.

This study gives insight into the structure–activity relationship of Czon1107 and hα3β4
nAChR. Through molecular docking and MD simulations, the favorable binding site for
Czon1107 is putatively located at the α3 subunit. The MD simulations of the interactions
also suggest that Czon1107 residue F2 forms hydrophobic interactions with residues P264
and P271 of the α3 subunit. Furthermore, Czon1107 residue R3 interacts with residues S225
and T280 of the receptor via hydrogen bonds. These findings provide an experimental and
theoretical basis for the structure optimization and mechanisms of action of Czon1107 and
its analogues. Based on the current experimental results, multi-site mutation of Czon1107
and α3 subunit is a promising research direction for elucidating a potent conopeptide at
the α3β4 nAChR.

Supplementary Materials: The following supporting information can be downloaded at http:
//www.mdpi.com/article/10.3390/md20080497/s1, Figures S1–S28: HPLC and MS spectra of
Czon1107 and its analogues; Figure S29: RMSD of Czon1107 bound to hα3β4 nAChR after MD
for 200 ns. Figure S30: The activity of the labelled Czon1107 analogues on ACh-evoked peak current
amplitude mediated by hα3β4 nAChRs. Figure S31: Residue F2 of Czon1107 interacts with hα3β4
and hα7 nAChRs.
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