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Abstract: Pseudomonas aeruginosa, one of the most intractable Gram-negative bacteria, has become
a public health threat due to its outer polysaccharide layer, efflux transporter system, and high
level of biofilm formation, all of which contribute to multi-drug resistance. Even though it is a
pathogen of the highest concern, the status of the antibiotic development pipeline is unsatisfactory.
In this review, we summarize marine natural products (MNPs) isolated from marine plants, animals,
and microorganisms which possess unique structures and promising antibiotic activities against
P. aeruginosa. In the last decade, nearly 80 such MNPs, ranging from polyketides to alkaloids, peptides,
and terpenoids, have been discovered. Representative compounds exhibited impressive in vitro
anti-P. aeruginosa activities with MIC values in the single-digit nanomolar range and in vivo efficacy in
infectious mouse models. For some of the compounds, the preliminary structure-activity-relationship
(SAR) and anti-bacterial mechanisms of selected compounds were introduced. Compounds that
can disrupt biofilm formation or membrane integrity displayed potent inhibition of multi-resistant
clinical P. aeruginosa isolates and could be considered as lead compounds for future development.
Challenges on how to translate hits into useful candidates for clinical development are also proposed
and discussed.

Keywords: Pseudomonas aeruginosa; anti-microbial activity; marine natural product; polyketide;
peptide; biofilm

1. Introduction

Infectious diseases have always threatened human health, survival, and development.
Antibiotics represent the first solution to combat bacterial infections. Generally speaking,
antibiotics take effects through disrupting cell wall synthesis, cell membrane integrity,
protein synthesis (e.g., 30S ribosome and 50S ribosome inhibitors), nucleic acid synthesis
(e.g., DNA gyrase inhibitors and RNA synthesis inhibitors), or folate synthesis (Figure 1) [1].
However, accompanying their use, drug-resistant bacteria have emerged. Bacteria survive
under antibiotic stress via molecular mechanisms including expression of efflux pumps,
altered outer membrane (OM) permeability, generation of inactivating enzymes, and target
modification [2]. Thereby, the difficulties of curing microbial infectious diseases increased
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again, compelling people to find new drugs and methods. The common multidrug resistant
bacteria in clinic include methicillin resistant Staphylococcus aureus (MRSA), vancomycin
resistant Enterococcus (VRE), carbapenem resistant Enterobacteriaceae, and multidrug resis-
tant Pseudomonas aeruginosa (MDR-PA) [3]. It should be noted that carbapenem-resistant
P. aeruginosa was the top category of the “priority pathogens” list published by the World
Health Organization (WHO) in February 2017 [4].

Figure 1. Antimicrobial (black lines) and resistance mechanisms (red arrows) of antibiotics [1].

As an opportunistic pathogen occurring widely in the environment (as well as the
human gut), P. aeruginosa causes infections in blood, lung, urinary tract, kidney, and other
body parts of immunocompromised patients (especially after surgery) [5,6]. As with other
Gram-negative pathogens, P. aeruginosa possesses an outer polysaccharide layer, multi-
drug efflux transporters, and shows a high level of biofilm formation, together leading
to a high probability of antibiotic-resistance [7–9]. Even worse, the outer membrane of
P. aeruginosa is much less permeable (e.g., the porin OprF has a two orders of magnitude
lower permeability than OmpF of E. coli) and its efflux pumps are more efficient in expelling
antibiotics [10]. In addition, gene mutations in P. aeruginosa result in enhanced produc-
tion of antibiotic-inactivating enzymes, overexpression of efflux pumps, and decreased
expression of porins [11–14]. Furthermore, the occurrence of bacterial persister cells give
rise to persistent infections and poor prognosis in cystic fibrosis (CF) patients [15]. Thus,
P. aeruginosa has become a devastating public health threat due to its intrinsic, acquired,
and adaptive resistance factors.

Although there are some antibiotics used as monotherapy or combination therapy in clinic
to treat P. aeruginosa infections, including aminoglycosides (e.g., tobramycin), carbapenems
(e.g., imipenem), cephalosporins (e.g., ceftazidime), fluoroquinolones (e.g., ciprofloxacin), Fos-
fomycin and polymyxins (e.g., colistin), the discovery of new antimicrobial compounds
with new modes of action and the potential to overcome resistance is still demanded. In
contrast to the rise of multi-drug resistant bacteria, little progress has been made in the
introduction of novel antibiotics into the market in the last 20 years [16]. The most recently
approved antibacterial drug in 2019, cefiderocol, is a siderophore-conjugated β-lactam
antibiotic [17]. There are several anti-P. aeruginosa agents in human clinical trials (Table 1),
but none of them has made significant progress. The antimicrobial peptide murepavadin
failed in phase III clinical trials due to higher than expected acute kidney injuries [18].
Strictly speaking, amitriptyline and QPX7728 are not antibiotics. As an efflux pump in-
hibitor and β-lactamase inhibitor, respectively, they need to be administrated with other
antibiotics. Emerging novel therapeutic strategies in discovery stages includes quorum
sensing inhibition, use of iron chelators, and electrochemical scaffolds. However, only a few
of them have entered into clinical trials [19,20]. From time to time, new antibiotics against
Gram-negative pathogens are discovered, as recently exemplified by darobactin which was
discovered from Photorhabdus symbionts of entomopathogenic nematode microbiomes and
which may share similar requirements for antibiotics with humans [21]. Therefore, there
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is an urgent need to search for new antibiotics against drug-resistant bacteria to enable
human beings to treat infectious diseases.

An investigation on global antibacterial pipeline claimed that over 70% of the projects
aiming at new targets are working on antimicrobial peptides (AMPs), natural products, and
LpxC inhibitors [22]. Marine natural products (MNPs) derived from marine organisms have
proven to be one of the most valuable sources of bioactive small molecules. The marine
environment is a special habitat rich in marine animals, plants, and microbes, which can
biosynthesize a plethora of structurally unique compounds with significant bioactivities.
Among the bioactive MNPs that have been discovered, many demonstrated antibacterial
activities with distinctive mode of action. Herein, MNPs isolated in the last decade that are
able to directly inhibit the growth or kill P. aeruginosa are summarized.

Table 1. Representative small molecules against P. aeruginosa in clinical trials a.

ID Structure Phase MOA b Indication Ref.

murepavadin III LptD inhibitor Lower respiratory
infection; Pneumonia [23]

fenretinide II – Cystic fibrosis [24]

amitriptyline II Efflux pump
inhibitor

Cystic fibrosis;
Infection;

P. aeruginosa
[25]

QPX7728 I β-lactamase
inhibitor Bacterial infections [26]

a Up to date 11 November 2021 from https://clinicaltrials.gov/. b MOA, mode of action.

2. Emerging MNPs as Promising Antibiotics for Inhibiting P. aeruginosa

Marine microbes account for over 98% of the ocean biomass. In order to survive in this
biologically competitive environment, marine organisms may produce broad anti-microbial
secondary metabolites, which are precious natural resources for the development of an-
tibiotics. It is inevitable to screen the anti-bacterial effects of MNPs. However, inhibition
of P. aeruginosa is not common. Based on the chemical structures, we have classified these
MNPs into anthraquinones, macrolides, alkaloids, peptides, and other structures.

2.1. Anthraquinones

Mayamycin (1, Figure 2), an angucycline-type antibiotic belonging to aromatic polyke-
tide, was identified from a Streptomyces sp. strain HB202 isolated from the marine sponge
Halichondria panacea through variation of the culture conditions [27]. The production of aro-
matic polyketide mayamycin suggested that HB202 possesses type II polyketide synthases
(PKS). Mayamycin glycosylated by a special aminosugar via C-glycosidic bond displayed
not only good antibacterial activity against P. aeruginosa (DSM 50071) with an IC50 value
of 2.5 µM, but also nanomolar range cytotoxicity against eight human cancer cell lines.
Metal stress strategy (100 µM of nickel) was applied to marine Streptomyces pratensis strain
NA-ZhouS1 and promoted the production of two new angucycline-type antibiotics with
lower prevailing products in traditional culture. It was indicated that nickel stress was
able to activate a silencing biosynthetic pathway. The new antibiotics stremycin A (2) and
stremycin B (3) contained 1-position O-glycosylation and 9-position C-glycosylation as well as

https://clinicaltrials.gov/
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carbamoyl group attached to sugar C [28]. Both compounds exhibited anti-bacterial activities
against P. aeruginosa with minimum inhibitory concentration (MIC) values of 16 µg/mL.

Figure 2. Chemical structures of anthraquinones 1~3 and macrolides 4~12.

2.2. Macrolides

MNPs macrolactins have been considered as good anti-microbials against both Gram-
positive and Gram-negative pathogenic bacteria by inhibiting peptidyl transferase [29].
Glycosylated 24-membered macrolactin A1 (4, Figure 2) and macrolactin B1 (5) containing
oxetane and tetrahydropyran were discovered from two marine bacterial strains Bacillus sp.
09ID194 and Streptomyces sp. 06CH80 by Shin group [30,31]. Both compounds exhib-
ited inhibitory effects against P. aeruginosa with MIC values of 32 µg/mL. Another three
24-membered macrolactin derivatives gageomacrolactins 6~8 isolated by the same group
displayed much better potency against P. aeruginosa with MIC values ranging from 20 nM
to 50 nM, whereas no obvious cytotoxic effect was observed on a panel of cancer cell
lines (e.g., HCT15 and MDA-MB-231) at the concentration of 30 µM [32]. Bacvalactones
1~3 (9~11), belonging to 24-membered macrocyclic lactone family, were obtained from
Bacillus amyloliquefaciens MTCC 12716, a symbiont of intertidal red algae Hypnea valentiae.
It was proposed that these macrocyclic lactones were generated via a tran-acyltransferase
(AT) PKS-assisted mln biosynthetic pathway. They showed better anti-P. aeruginosa ac-
tivities (with inhibition zones of 17 mm, 23 mm and 25 mm, respectively) than that of
ampicillin (7 mm) [33]. The superior anti-microbial potency of 9~10 and 11 compared
to ampicillin may attribute to the higher electronic parameter—polarizability (the ability
of a molecule to respond to an electric field and acquire an electric dipole moment) [34].
Compound 11 exhibiting the most potent anti-bacterial activities (MIC value of 1.5 µg/mL
against P. aeruginosa via microdilution method) has the highest polarizability, which may
arise from the electron-rich O-furanyl, O-isobutyl, O-propyl propionate, and two additional
methyl groups. In order to explore the mechanism of their in vitro bioactivities, molecular
docking studies of 9~11 with S. aureus peptide deformylase (SaPDF) were performed [33].
Aryl-crowned polyketdie (12) bearing a 6′-(2′′-acetylphenyl)-5′-hydroxyhexanoate group
at C-7 position of macrolactin was purified from B. subtilis associated with brown sea-
weed Anthophycus longifolius [35]. It displayed comparable anti-bacterial effect against
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P. aeruginosa to positive controls (ampicillin, gentamicin, tetracycline, etc.) with inhibition
zone of 15.7 mm and MIC value less than 13 µg/mL. It was proposed that 12 might inhibit
pathogenic bacteria through forming a hexadentate Fe3+ coordination complex similar to
siderophore mode of action [35].

Three elansolid-type of polyketide spanned 25-membered macrolides isobenzofuranyl
(13, Figure 3) and furopyranyl (14~15), were discovered from marine B. amyloliquefaciens
MTCC 12716, and anticipated to be biosynthesized through trans-AT polyketide synthase
of type I PKS. They exhibited impressive anti-microbial activities against P. aeruginosa
with MICs less than 1.0 µg/mL while the positive antibiotics (ampicillin and chloram-
phenicol) displayed the MICs more than 6.25 µg/mL [36]. Their in vitro bioactivities were
explained through physicochemical parameter and molecular docking studies with SaPDF.
Compound 14 has the high topological polar surface area [37] (tPSA, sum of surfaces of
polar atoms in a molecule to show its ability to pass membrane) of 158.1, optimal logP
value of 3.3, maximum number of hydrogen bond interactions and best drug-likeness score
(the odd for a molecule to become a drug which can be predicted by software such as
MolsoftTM) of 0.98, suggesting it is a promising lead antibiotic. Macrobrevin analogues
16~18 encompassing hexahydro-41-hydroxy-macrobrevin-31-acetate functionality were
identified from B. amyloliquefaciens MTCC12713 via a bioactivity-guided purification strat-
egy [38]. They displayed considerable anti-bacterial activities against P. aeruginosa with the
inhibition zones of 19 mm, 23 mm and 22 mm, respectively, which is superior than those of
positive antibiotics chloramphenicol, and ampicillin (11 mm). Among these polyketide-
spanned macrolides, compound 13 had the lowest MIC value (1.56 µg/mL), and its in
silico docking study with SaPDF demonstrated a binding energy of 12.61 kcal/mol as
well as an inhibition constant (Ki) of 573.34 pM, implying that it is a promising antibiotic
lead compound. Twenty-one membered macrocyclic lactones difficidin analogues 19~22,
also isolated from the marine bacterium B. amyloliquefaciens MTCC12713, disclosed their
significant bactericidal activities with clearance zone of 17 mm, 26 mm, 23 mm and 25 mm,
respectively [39]. Among them, compound 20 bearing 9-methyl-19-propyl dicarboxylate
demonstrated MIC value of 4 nM against P. aeruginosa and drug-likeness score of 0.35. More
comprehensive and in-depth studies are needed to validate their activities and investigate
the mechanisms in detail. Traditionally, macrolide antibiotics were considered as protein
synthesis inhibitors via targeting ribosome, but recent advances have revealed that they
probably function as specific translation arrest cofactors [40].

2.3. Macrocyclic Polyketide and Microketides

Two new siderophore-type hydroxyfuranyl-benzoate spanned 12-membered macro-
cyclic polyketides 23 and 24 were isolated from Shewanella algae MTCC 12715, and dis-
played broad antibacterial activities against multiple clinical pathogens including MRSA
(inhibition zones of 23 mm and 29 mm, respectively) and P. aeruginosa (inhibition zones
of 21 mm and 24 mm, respectively) [41]. In order to verify their in vitro anti-microbial
activities against MRSA, in silicon docking studies for 23 and 24 with penicillin-binding
protein 2a (PBP2a), a transpeptidase that catalyzes cell-wall crosslinking to counter the
effect of β-lactam antibiotics. Docking studies indicated that both compounds could occupy
the allosteric site of PBP2a with predicted Ki values of 17.51 nM and 3.57 nM, respectively.
Besides, compound 24 has a higher drug-likeness score of 0.91 than that of 23 [41].

A pair of epimeric polyketides 25 and 26 was discovered by our group from the
gorgonian-derived fungus Microsphaeropsis sp. RA10-14, and both compounds showed
pronounced and broad anti-bacterial activities with MIC values of 0.19 and 1.56 µg/mL,
respectively, against P. aeruginosa [42]. This result implied that S-configuration at C-11
position is more favorable for the anti-microbial effects.
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Figure 3. Chemical structures of macrolides 13~22 and macrocyclic polyketides 23~26.

2.4. Alkaloids

3,4-Diarylpyrrole alkaloids denigrins A~C (27~29, Figure 4) were isolated from the
marine sponge Dendrilla nigra utilizing a bioactivity-guided strategy [43]. Compounds 28
and 29 showed anti-microbial activities against P. aeruginosa with MIC values of 25 µg/mL
and 12.5 µg/mL, respectively, while compound 27 lacking a p-hydroxyphenyl group at
C-2 position just had a MIC value of 100 µg/mL, implying that the p-hydroxyphenyl
ring is important for the activity. More efforts are needed to illustrate their mechanism of
action. Fascaplysin (30), a bis-indole alkaloid with multiple bioactivities, was originally
discovered from marine sponge Fascaplysinopsis bergquist [44]. Zhidkov et al. designed and
synthesized a series of brominated fascaplysins, and compound 31 exhibited potent and
selective inhibitory activity toward P. aeruginosa with clearance zone more than 35 mm
at the concentration of 0.2 mg/disc [45]. It also demonstrated cytotoxic activity against
melanoma cells SK-MEL-28 with an IC50 value of 1.2 µM.

Jimemez group evaluated the anti-bacterial activities of several known pyrrole-imidazole
alkaloids isolated from the sponge Agelas dilatata against multidrug resistance (MDR)
pathogens including P. aeruginosa [46]. Bromoageliferin 32 containing two imidazoles
and two pyrroles displayed good and specific inhibitory activity against P. aeruginosa
ATCC27853 with an IC50 value of 8 µg/mL. Moreover, it was effective on four strains
of P. aeruginosa clinical isolates with a MIC value of 32 µg/mL. Preliminary structure-
activity-relationship (SAR) analysis implied that Br at the C-2 position of pyrrole A ring
was favorable, while the second Br at pyrrole B ring decreased the anti-bacterial activity.
Furthermore, compound 32 was able to inhibit biofilm formation (30~40%) of different
pathogens at the concentration of 8 µg/mL and 16 µg/mL. It also increased the survival
time (18.3 h vs. 13.5 h) at the dose of 2 mg/kg in an in vivo Galleria mellonella model
of P. aeruginosa ATCC27853 infection [46]. All of these findings make compound 32 a
promising lead for the development of novel antibiotics specifically for P. aeruginosa.

The known compounds 33~34 (Figure 4) possessing diisocyanobuta-1,3-diene were
re-isolated by Zhang group from Antarctic-derived Penicillium chrysogenum CCTCC M
2020019, and both compounds exhibited broad anti-bacterial activities [47]. Compound 33
has a MIC value of 0.125 µg/mL against P. aeruginosa, whereas the appendence of OH group
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(compound 34) decreased the anti-microbial activity obviously (MIC value of 8 µg/mL).
Meanwhile, both compounds were cytotoxic to cancer cell lines SF-268, MCF-7, HepG-2
and A549 with the IC50 values ranging from 0.26 to 5.04 µM [47].

Figure 4. Chemical structures of alkaloids 27~40.

Paulsen and coworkers designed a series of cationic amphipathic barbiturates based
on MNP eusynstyelamide (35) which is a moderate anti-microbial agent discovered from
marine Arctic bryozoan Tegella cf. spitzbergensis and the Australian ascidian Eusynstyela
latericius [48–50]. Among the synthesized derivatives, one compound (36) with a barbiturate
ring replacing dihydroxybutyrolactam ring of MNP 35 showed promising anti-microbial
activities against antibiotic susceptible pathogens and 30 multi-resistant clinical isolates
including P. aeruginosa (MIC values of 4~16 µg/mL) without obvious inhibition on human
red blood cells (EC50 = 62 µg/mL). It was also efficacious in mice infected with clinical
isolates of Escherichia coli and Klebsiella pneumoniae. Mechanism studies via nuclear magnetic
resonance and molecular dynamics simulations suggested that compound 36 took effects
through disruption of membrane integrity [48]. Dixiamycins 37~40 were obtained from a
cold-seep-derived actinomycete, Streptomyces olivaceus OUCLQ19-3 by Li group [51]. They
all have dual bicyclic substructure fused with carbazole ring connecting via different sites,
and exhibited anti-bacterial activities against P. aeruginosa with MIC values of 1.56, 1.56,
0.78 and 0.78 µg/mL, respectively [51].

2.5. Diphenyl Ethers and Phenols

Polybrominated diphenyl ethers 41 and 42 (Figure 5) were discovered from the marine
sponge Dysidea granulosa showing in vitro anti-microbial activities [52]. Compound 41 had
a MIC value of 16 µg/mL against P. aeruginosa, whereas compound 42 with one more Br
atom exhibited decreased inhibition against Gram-negative bacteria. The known diphenyl
ethers 43 and 44 were re-isolated from marine algae-derived Aspergillus versicolor OUCMDZ-
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2738 cultured with 10 µM of histone deacetylase inhibitor vorinostat in order to regulate the
expression of gene clusters which may generate novel MNPs [53]. They specifically inhib-
ited P. aeruginosa with MIC values of 17.4 and 13.9 µM, respectively. Phenolic polyketides
45~47 were obtained from antarctic sponge-derived fungus Penicillium sp. HDN151272
and can be oxidized to quinones 45′~47′ easily [54]. Compounds 46 (mixed with 46′) and
47 (mixed with 47′) demonstrated potent anti-P. aeruginosa activities with MIC values of
1.56 and 6.25 µg/mL, respectively, whereas the MIC value of compound 45 (mixed with
45′) was more than 50 µg/mL.

Figure 5. Chemical structures of phenols 41~52.

Polyketides 48~50 sharing a 2,4-dihydroxy-6-methylbenzoic acid fragment were iso-
lated from the mangrove endophytic fungus Phoma sp. SYSU-SK-7 by She group displaying
potent anti-microbial activities against P. aeruginosa with MIC values of 3.27, 1.67 and
2.10 µg/mL, respectively [55]. Compounds 51 and 52, connecting two phenol groups by
carbonyl group and spiro ring, respectively, was isolated by Shao group from soft coral-
derived fungus Aspergillus sp., and demonstrated good anti-microbial activities against
P. aeruginosa with MIC values of 7.53 and 3.78 µM, respectively [56].

2.6. Peptides

AMPs as a diverse group of bioactive small peptides were believed to have broad-
spectrum activity and less favorable physiochemical properties (e.g., stability and bioavail-
ability). AMPs can kill bacteria alone or synergize with conventional antibiotics. They
are able to disrupt membrane integrity, suppress biofilm formation and modulate the
host immune responses [57]. New findings and perspectives suggest that AMPs can be
remarkably specific, and inferior stability of AMPs means less environmental persistence
as well as fewer evolution of antibiotic resistance [58]. Resistance to AMPs results from
multiple nonspecific mechanisms such as secretion of proteases and activation of efflux
pumps, but AMPs still demonstrate less probability of resistance evolution since they kill
bacteria faster and interact with bacterial cell surface rather than directly mutagenic [59,60].
Along with the advances on drug delivery and formulation, AMPs hold great potential
combat MDR [61]. Epinecidin-1 (53, Figure 6) is a 20-amino-acid peptide produced by
orange-spotted grouper Epinephelus coioides, playing an important role in protecting fish
against Gram-positive and Gram-negative bacteria [62]. Moreover, it was found to be able
to inhibit P. aeruginosa ATCCS19660 strain and MDR P. aeruginosa R strain with the MIC90
(the MIC at which 90% of growth was inhibited) values of 50 and 3.12 µg/mL, respectively.
Then, its anti-bacterial efficacy in mouse infection models induced by P. aeruginosa was
evaluated [63]. Compound 53 increased the survival rate of infected mice obviously and
decreased the bacterial burden in all explored organs without systemic toxic effects. Besides,
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it was able to reduce the proinflammatory cytokines at protein and mRNA level. All of
the results indicated that compound 53 is a promising lead compound as next generation
antibiotic for treating MDR infections.
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Myxinidin (54, Figure 6) is a 12-amino-acid peptide discovered from acidic epidermal
mucus extract of hagfish Myxine glutinosa L. displaying anti-P. aeruginosa activities with the
MBC (minimum bactericidal concentration) values about 7~10 µg/mL [64]. A complete Ala
scanning was executed for compound 54, and the results showed that amino acids at C2, C4,
C6, C8, and C12 positions are essential for the anti-bacterial activity [65]. On the contrary,
replacement of amino acids at C1, C3, C5, and C11 positions with alanine increased its
anti-microbial activities against P. aeruginosa. Surprisingly, introduction of tryptophan at
the N-terminal and substitution of amino acids at C3, C4, and C11 positions with arginine
(peptide 55) achieved the best potency. Meanwhile, they did not exhibit hemolytic activity
at the concentration of 200 µM, suggesting they are promising lead antibiotics with fewer
side effects.

Skipjack Hemoglobin β chain-related peptide 56 was obtained from the liver of
skipjack tuna Katsuwonus pelamis, which demonstrated anti-microbial activity against
P. aeruginosa with a MIC value of 19 µg/mL without hemolytic activity, even though it
cannot cross the bacterial membrane effectively [66]. The C-terminus amidated analogue
57 showed an improved anti-P. aeruginosa activity with a MIC value of 5.0 µg/mL.

Sphistin (58, Figure 6), a 38-amino acid peptide based on a histone H2A identified
from the mud crab Scylla paramamosain, exhibited broad anti-microbial activities with-
out obvious cytotoxicity at the concentration of 100 µg/mL [67]. Its truncated fragment
Sph12-38 (59) gained stronger anti-bacterial effects, and can not only disrupt the membrane
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integrity but also bind to Aeromonas sobria genome DNA at 6 µM [68]. Both the original
peptide 58 and its fragment 59 displayed anti-P. aeruginosa activities with the MICs of 24
and 12 µM, respectively. Conspicuously, when combined with azithromycin or rifampicin
in vitro, both peptides displayed significant synergistic effects against P. aeruginosa with
fractional inhibitory concentration (FIC, a measure of synergy) index ranging from 0.225 to
0.375 [69]. Surprisingly, mechanism study illustrated that combination of peptide 58 with
azithromycin damaged the bacterial cell membrane completely and caused the leakage
of cytoplasmic contents while the leakage was not observed in the case of combination
of 58 with rifampicin. The in vivo efficacy of peptide 59 in combination with rifampicin
or azithromycin was evaluated in a mouse wound model infected by P. aeruginosa. Com-
pared to the phosphate-buffered saline (PBS) group, peptide 59 in combination with either
rifampicin or azithromycin led to a complete recovery within five to seven or four to five
days, while peptide 59 alone or the antibiotic alone could not shorten the healing time.

Tachyplesin I (TPI, 60) is a 14-amino acid β-hairpin anti-microbial peptide with two
disulfide bonds originally isolated from the hepatocytes of Tachypleus tridentatus [70].
Replacement of all L-amino acids with D-amino acids in TPI generated TPAD (61) which
retained the anti-microbial activity (MIC values about 8 µg/mL against P. aeruginosa)
and showed improved enzymatic stability as well as decreased hemolytic activity [71].
Mechanism study revealed that the activation of the quorum sensing E. coli regulators B
and C (QseC/B) two-component system induced the bacterial resistance to peptide 61,
while the combination of 61 with QseC/B inhibitor obviously increased the bactericidal
effect against several multidrug-resistant bacteria.

Gageotetrins A−C (62~64, Figure 6), rare linear lipopeptides consisting of a 3-hydroxy
fatty acid and di- or tetrapeptide, were isolated from a marine-derived B. subtilis, and exhib-
ited good anti-microbial activities against P. aeruginosa with MIC values of 0.02-0.06 µM by
broth dilution assay [72]. It was speculated that 3-hydroxy fatty acid plays an important role
for the anti-bacterial activities of compounds 62~64. Furthermore, none of them are toxic
to human cancer cells at 30 µg/mL. The first-in-class glyco-hexadepsipeptide polyketide
mollemycin A (65) containing two piperazic acids was isolated from a marine-derived Strep-
tomyces sp. CMB-M0244, which displayed impressive broad anti-bacterial activities against
both Gram-positive and negative bacteria (IC50 values of 10~50 nM) [73]. For P. aeruginosa,
it has an IC50 value of 50 nM. Besides, it was able to inhibit drug-resistant malaria parasite
Plasmodium falciparum with single-digit IC50 value without obvious cytotoxicity against
mammalian cell line. Aminobenzoic peptides 66 and 67 were obtained from Ascidian-
derived endophytic fungus Aspergillus clavatus AS-107, demonstrating good anti-bacterial
activities against P. aeruginosa with MIC values of 32.7 and 8.8 µg/mL, respectively [74].

2.7. Pyran Polyketides

Polyene pyrone polyketides 68~70 (Figure 7), attaching a furanose or 2,5-dioxabicyclo
[2.2.1]heptane pyrone backbone, were obtained from a marine fungus Penicillium sp.
BB1122, which displayed anti-microbial activity against P. aeruginosa with MIC values
of 4 µg/mL [75]. It was proposed that they may take effects via inhibiting RNA poly-
merase and disturbing RNA synthesis similar to myxopyronins. Pyran containing aromatic
polyketides 71~74 were isolated from a marine Penicillium sp. RO-11 displaying potent
anti-microbial activities against P. aeruginosa with MIC values of 5.2, 1.4, 4.7 and 2.9 µg/mL,
respectively [76].

2.8. Polyether

Ecteinamycin 75 (Figure 7) was a polyether antibiotic discovered from a marine-
derived Actinomadura sp. (strain WMMB499), displaying potent anti-bacterial activity
against Clostridium difficile NAP1/B1/027 in vitro (MIC = 59 ng/mL) and in vivo (mouse
model, 30 ng ecteinamycin in 100 µL by oral gavage) [77]. Towards P. aeruginosa, compound
75 exhibited inhibited activity with a MIC value of 8.0 µg/mL. It was revealed that com-
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pound 75 took effects as an ionophore antibiotic via potassium transport dysregulation
based on E. coli chemical genomics results.

Figure 7. Chemical structures of pyran polyketides 68~74, ecteinamycin 75 and sesterterpenoids
76~79.

2.9. Terpenoids

Natural products terpenoids have long been discovered with great potential to inhibit
microbes via multiple molecular mechanisms involving anti-quorum sensing and mem-
brane disruption [78]. Ophiobolin sesterterpenoids 76~79 (Figure 7) were obtained from a
deep-sea-derived fungus Aspergillus insuetus SD-512 by Wang group [79]. They all have a
polycyclic ophiobolane skeleton and a double-bond-containing side chain. Compounds
77~79 demonstrated good anti-microbial activities against multiple pathogens including
P. aeruginosa (MIC values of 8 µg/mL), Vibrio alginolyticus (MIC values of 4 µg/mL) and
Vibrio vulnificus (MIC values of 8 µg/mL), while compound 76 with a 16-trans configuration
did show obvious anti-microbial activity (MIC > 32 µg/mL) [79].

3. Conclusions

Oceans are a unique resource for bioactive natural products with great structural diver-
sity and complexity. In a habitat in which microbes constitute >98% of the biomass, many
organisms produce antibacterial secondary metabolites to secure survival of the species.
MNPs have an inherent high potential to contribute to the discovery and development
of novel antibiotics to overcome drug resistance. Their unique chemical structures and
explicit anti-bacterial activities probably imply cryptic and novel modes of actions. Thereby,
they represent promising treatment of infections caused by Gram-negative bacteria such
as P. aeruginosa, which has become one of the most threatened pathogens to human health
without effective therapies.

In this review, we summarized MNPs discovered in the last decade that possess great
potential to be developed as lead compounds for next-generation antibiotics. It is very
interesting that for the MNPs we discussed here, most polyketides (e.g., anthraquinone,
macrolides, macrocyclic polyketide and pyran polyketides) were discovered from various
marine microbes including Bacillus sp., Aspergillus sp., and Penicillium sp., while alkaloids
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were mainly derived from marine invertebrates (e.g., marine sponge) and peptides were
chiefly isolated from marine vertebrates (e.g., fish) (Figure 8). A variety of compounds
showed impressive in vitro anti-bacterial activities against P. aeruginosa such as MNPs
13~15 (MIC < 1 µg/mL), 20 (MIC = 4 nM), 25 (MIC = 0.19 µg/mL) and 39~40 (0.78 µg/mL).
Several of them (e.g., 32) displayed good in vivo anti-microbial efficacies in infected animal
models. Surprisingly, even though a good amount of MNPs as promising anti-bacterial
compounds have been harvested, few novel antibiotics has been launched to the market in
the last few decades. Undoubtedly, there are still many obstacles that have to be overcome
to develop these hits or lead compounds into clinical drugs. Firstly, most of the MNPs are
biologically evaluated preliminary via straightforward assays without further exploration.
Thus, secondary assays to confirm their activities are indispensable. Secondly, scaling up
of MNPs, which are usually obtained in a limited amount via organic total synthesis or
biosynthesis, is needed to provide enough material for more comprehensive investigations
on mode of actions and efficacy profiling. Thirdly, nearly all of the approved marine drugs
are administrated intravascular, suggesting that the physiochemical properties of MNPs,
such as metabolic stability and aqueous solubility, needs to be improved. Even if these
MNPs cannot advance into the market, their novel and privileged scaffolds may still be
utilized to design anti-bacterial agents. Fourthly, considering P. aeruginosa, we have to be
aware about the uniqueness of the microbe and the underlying molecular mechanisms of
antibiotics, which will enable us to kill P. aeruginosa using monotherapy or combination
therapy [80]. Additionally, the key factors influencing the transport and accumulation of
small molecular antibiotics must be taken into account. It seems that the recent predicted
compound accumulation rules do not apply to P. aeruginosa [81]. Finally, rather than kill
or inhibit P. aeruginosa directly, indirect strategies (e.g., quorum-sensing inhibitors and anti-
biofilm formation) able to enhance the potency of existing antibiotics should be taken into
consideration [82–84]. In a word, MNPs are anticipated to play important roles and help
take a lead in the arms race between bacteria and antibiotics.

Figure 8. Representative marine organisms producing antibiotics.
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