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Abstract: We recently demonstrated the monthly variation and antioxidant activity of mycosporine-
like amino acids (MAAs) from red alga dulse in Japan. The antioxidant activity of MAAs in acidic
conditions was low compared to that in neutral and alkali conditions, but we found strong antioxidant
activity from the heated crude MAA fraction in acidic conditions. In this study, we identified and
characterized the key compounds involved in the antioxidant activity of this fraction. We first isolated
two MAAs, palythine, and porphyra-334, from the fraction and evaluated the activities of the two
MAAs when heated. MAAs possess absorption maxima at around 330 nm, while the heated MAAs
lost this absorption. The heated MAAs showed a high ABTS radical scavenging activity at pH 5.8–8.0.
We then determined the structure of heated palythine via ESI-MS and NMR analyses and speculated
about the putative antioxidant mechanism. Finally, a suitable production condition of the heated
compounds was determined at 120 ◦C for 30 min at pH 8.0. We revealed compounds from red algae
with antioxidant activities at a wide range of pH values, and this information will be useful for the
functional processing of food.

Keywords: red alga dulse; mycosporine-like amino acids; palythine; antioxidant activity

1. Introduction

Marine organisms, e.g., dinoflagellates, cyanobacteria, and macroalgae, synthesize
and accumulate mycosporine-like amino acids (MAAs) as natural compounds to protect
themselves from UV radiation damages [1,2]. MAAs are secondary metabolites of low
molecular weight (<400 Da), with maximum absorption values ranging from 310 to 360 nm
and high molar extinction coefficients (28,100 to 50,000 M−1 cm−1) [3,4]. It was previously
reported that 97% of the light energy absorbed by shinorine and porphyra-334 is converted
into heat [5]. In addition, these compounds hardly photodegrade and show high stability.
In cyanobacteria and red algae, MAAs also have a role as nitrogen storage substances. It is
thought that MAAs are degraded in the cell to release nitrogen atoms when needed, but
the mechanism is not yet understood [6]. To date, no toxicity of MAAs from red algae or
cyanobacteria to human cells has been reported [4,7]. Many functions of MAAs have been
reported, including as sunscreens [4], anticancer agents for melanoma cells [7], activators
of fibroblasts cell proliferation [1], antiphotoaging compounds [8], and antioxidants [9,10].

We previously studied dulse (Palmaria palmata) harvested in Usujiri, Hakodate, Japan [11]
and revealed that it contains abundant protein [12]. The major protein component, phy-
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coerythrin (PE), is a potential source of peptides for angiotensin I converting enzyme
inhibition [13,14] and chromophores with antioxidant activity [15]. We then prepared
xylooligosaccharides from xylan, a cell wall component of the dulse [16–18]. In addition,
we recently found that MAAs are relatively abundant in Japanese dulse, and the monthly
variation in their content was clarified [19,20]. We also revealed that two major MAAs from
the dulse, palythine, and porphyra-334, show high activity in alkaline conditions and low
activity in acidic conditions [20]. The foods we consume have various pH levels. Hence,
it is important to understand the effect of pH on the antioxidant function of MAAs when
using them as food ingredients for their antioxidant properties.

Furthermore, Yoshiki et al. (2009) reported that the heating of the compound porphyra-
334, one of the major MAAs of red algae, produces strong antioxidant activity [21]. However,
this antioxidant activity was shown under only one pH condition (2-morpholinoethanesulfonic
acid buffer at pH 6.0). Therefore, in this study, we prepared two major MAAs (palythine
and porphyra-334) from Japanese dulse [19] and investigated the effects of heating and
pH on their antioxidant activities. In addition, the novel structure of the heated product of
palythine was determined by ESI-MS and NMR analyses, and its antioxidant mechanism
was deduced. Furthermore, we clarified the optimal condition for the preparation of heated
MAAs. We believe that these results are useful information to enhance the functionality of
red algae as food materials.

2. Results and Discussion
2.1. Antioxidant Activity of Heated Crude MAAs

We first evaluated the antioxidant activity of the heated crude MAAs using DPPH
and ABTS radical scavenging and ferrous reducing power assays (Figure 1). Antioxidant
activities of crude MAAs treated at 60–105 ◦C were decreased in the three assays, except for
DPPH radical scavenging at 105 ◦C. However, the activities increased in the sample treated
at 120 ◦C. The DPPH radical scavenging activity was 2.0-fold higher in the treated sample
than in the untreated sample (Figure 1a). The increases were also confirmed by the assays
of ABTS radical scavenging and ferrous reducing power, i.e., 1.1- and 1.2-fold higher than
that of the untreated sample (Figure 1b,c).
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Figure 1. Antioxidant activity of crude MAAs. (a) DPPH radical scavenging activity, (b) ABTS
radical scavenging activity, and (c) ferrous reducing power. Crude MAAs were heated at 60, 75, 90,
105, and 120 ◦C. Antioxidant activity is expressed as ascorbic acid equivalents (µmol AA eq./1 g
sample). Three assays were performed at pH 7.4. Data are the mean values ± standard errors of three
independent experiments. W/O: without heat treatment.

Many antioxidant active compounds have been identified from algae and plants, e.g.,
catalase [22], phycoerythrin [15], fucoidan [23], ascorbic acid [24], insoluble antioxidants [25,26],
phlorotannins [27,28], catechins [29], scytonemin [30], and phenolic compounds (e.g., gen-
tisic acid, protocatechuic acid, and gallic acid) [31]. These compounds have been shown
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to be unstable following heating processes, such as sun drying, storage, boiling, and
roasting [32,33]. Gallic acid is especially unstable, with an initial thermal decomposition
temperature of 68 ◦C [34]. Therefore, the decrease in the activity in the heated crude MAAs
was due to the thermal decomposition of antioxidants. On the other hand, the activity of
a sample from Neopyropya yezoensis containing MAAs was enhanced at 100–120 ◦C [21].
Therefore, we purified MAAs, prepared heated MAAs, and evaluated the samples’ antioxi-
dant activities.

2.2. ABTS Radical Scavenging Activity of Heated MAAs

We purified palythine and porphyra-334 from crude MAAs and prepared heated paly-
thine and heated porphyra-334. Their ABTS radical scavenging activities were measured at
pH 5.8, 6.6, 7.4, and 8.0 (Table 1). The IC50 values of heated palythine were improved at
the tested pHs. The activities at pH 7.4 and 8.0 were 2.7- and 1.8-fold higher than those
of palythine, respectively. The IC50 values of heated porphyra-334 were also improved
compared with that of porphyra-334, i.e., improvements 2.2-fold at pH 7.4 and 3.3-fold at
pH 8.0. MAAs showed low antioxidant activity in acidic conditions (pH 5.8 and 6.6). The
activities of heated MAAs were improved from those of untreated MAAs and superior to
those of ascorbic acid.

Table 1. IC50 value of ABTS radical scavenging assay of heated MAAs.

Compounds
pH

5.8 6.6 7.4 8.0

(µM)

Palythine * >72.0 >72.0 23.4 12.0
Heated palythine 11.4 8.7 8.7 6.7

Porphyra-334 * >72.0 >72.0 27.5 20.8
Heated porphyra-334 12.8 13.4 12.4 6.3

Ascorbic acid * 19.1 19.4 12.4 8.9
Values are expressed as means of three independent experiments. * Data from reference [14].

2.3. Structural Changes of Heated MAAs

Although the antioxidant activities of MAAs decreased in acidic conditions, heated
MAAs showed high activities at a wide range of pH (Table 1). Therefore, we expected
structural changes in MAAs and evaluated them using HPLC, spectrum analysis, and
ESI-MS. Palythine and porphyra-334 were eluted at the retention times of 4.79 and 7.73 min,
respectively [14]. However, the heated samples lost their absorption at around 330 nm and
were eluted at 12.72 min for heated palythine and 14.53 min for heated porphyra-334, with
absorption maxima (λmax) of 210 and 225 nm, respectively (Figure 2).
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porphyra-334. Spectra in figures show the peaks from 12.72 min (a) and 14.53 min (b).

We then purified the heated compounds via HPLC and subjected them to ESI-MS
analysis (Figure S1). Heated palythine and heated porphyra-334 showed the prominent
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ion peaks of deprotonated molecules ([M − H]−) at m/z 225.1 and 327.1, respectively
(Figure 3). Comparing molecular weight between the MAAs and heated MAAs, heated
MAAs lost 18 Da, which corresponded to the molecular weight of water. The m/z of
heated porphyra-334 corresponded to the previously reported Nori antioxidant compound
(NAC) [21]. Therefore, we focused on the heated palythine, which has not previously been
described, and attempted to determine its structure.
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2.4. NMR Analyses of Heated Palythine

The 1H-NMR spectrum of heated palythine indicated a good correlation with the
chemical shift of palythine [3], except for the chemical shifts of H-4 and H-6, which were
shifted to lower magnetic fields (4.58–4.66 ppm) (Table 2, Figure S2). The 13C-NMR spec-
trum of heated palythine showed four peaks in the saturated carbon region (29.0, 47.4, 63.5,
and 65.8 ppm), while palythine had six peaks (33.5, 35.7, 47.0, 58.9, 67.3, and 71.2 ppm)
(Figure S3). Heated palythine showed six peaks in the unsaturated carbon region (127.0,
141.2, 144.4, 160.9, 165.9, and 178.2 ppm) and palythine showed four peaks (125.9, 158.7,
161.5, and 174.6 ppm). Therefore, the chemical structure of heated palythine indicated the
formation of a double bond between C-4 and C-5 or between C-5 and C-6 (Figure 4). The
dehydration pattern of palythine was consistent with that of porphyra-334 [24], implying
that other imino-MAAs show a similar dehydration pattern.

Table 2. NMR data of palythine and heated palythine in D2O.

Position
Palythine * Heated Palythine

δ1H (ppm) δ13C (ppm) δ1H (ppm) δ13C (ppm)

1 - 161.5 - 165.9
2 - 125.9 - 127
3 - 158.7 - 160.9

4
2.60 (d)

33.5 4.58 (s) or 4.66 (s) 144.42.75 (d)
5 - 71.2 - 141.2

6
2.58 (d)

35.7 4.58 (s) or 4.66 (s) 292.86 (d)
7 3.48 (s) 67.3 3.81 (s) 65.8
8 3.56 (s) 58.9 3.87 (s) 63.5
9 3.95 (s) 47 4.13 (s) 47.4
10 - 174.6 - 178.2

Numbers of positions correspond to Figure 4. * Data from reference [3]. -, Not detected.
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2.5. Presumed Stabilization Mechanisms of Heated MAAs

In this study, heated MAAs showed antioxidant activity at a wide range of pH values
compared with MAAs. The difference in the chemical structures is the formation of a double
bond (Figure 4). Namely, MAAs are dehydrogenated at the methylene of C-4 and C-6;
meanwhile, the heated MAAs were found to have a resonance-type double bond between
C-4 and C-5 or between C-5 and C-6 (Figure 4b). We presumed these to be stabilization
mechanisms based on the structural differences.

The activities of imino-MAAs are greatly affected by pH [35–37]. Namely, the delo-
calization mechanism of radical electrons in the cyclohexene group depends on the pH.
The radical electron cannot widely delocalize in MAAs in acidic conditions, resulting in
weak antioxidant activity (Figure 5a). On the other hand, the radical electrons of MAAs
were already delocalized in alkali conditions (Figure 5b), showing stronger antioxidant
activity than that in acidic conditions. Because of the double bonds in heated MAAs, radical
electrons were delocalized in acidic and alkali conditions (Figure 5c,d). The delocalization
of radical electrons in heated MAAs in the alkali condition increased, resulting in enhanced
antioxidant activity (Table 1).
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2.6. Efficient Production of Heated MAAs

Heated MAAs showed strong antioxidant activities with a wide range of pH values.
The optimum production conditions of heated MAAs were determined by pH, heating
time, and temperature. The amounts of heated MAAs were evaluated by the HPLC peak
area (Figure 6). Conversion was well progressed at 120 ◦C compared to the samples at
90 ◦C. In addition, the reaction at pH 8.0 was suitable for the conversion. The residual
MAAs after heating at 120 ◦C for 30 min (pH 8.0) were evaluated, showing that palythine
and porphyra-334 remained at 0% and 4.3%, respectively. From these results, dehydration
of MAAs was determined to progress at high temperatures and in alkali conditions.
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As shown in Figure 2, the maximum absorption wavelength of MAAs shifted to the
shorter wavelength side upon heat treatment. However, there is little information on any
other physical properties and health functionalities of heat-treated MAAs. In the case of
NAC, dried nori products contain little NAC, while roasted nori products contain 1–2%
per dry weight, suggesting that the roasting process converts much of the porphyra-334
into NAC [21]. Because of the long history of eating roasted seaweed in Japan, NAC is
considered a safe compound.

2.7. Character of Heated Usujirene

Usujirene is one of the MAAs found in dulse (P. palmata) from Usujiri, Hakodate,
Japan. Usujirene is easily hydrolyzed and converted into palythine [38–41]. We predicted
that heated usujirene would be eventually converted into heated palythine. Therefore, we
purified usujirene and evaluated the heated product. Usujirene was eluted at 13.36 min with
λmax at 357 nm [19], while heated usujirene lost absorption at 357 nm. Instead, peak elution
at 12.69 min with a λmax at 210 nm was obtained (Figure 7). The peak pattern corresponded
to heated palythine, suggesting that the usujirene was converted into palythine and then
dehydrated into heated palythine.

Dehydration by heating does not occur in all MAAs. For example, mycosporine-
glycine, classified as an oxo-MAA, is converted into glycine and 6-deoxygadusol [38,39].
Further, 6-Deoxygadusol is also a strong antioxidant compound, indicating that the heating
processes of algae increase antioxidant compounds.
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3. Materials and Methods
3.1. Algal Material

Dulse samples (P. palmata) were collected in Usujiri, Hakodate, Japan (41◦56′ N, 40◦56′ E)
at a depth of 1 m from the surface of the sea on 25 February 2019. Dulse was washed
thoroughly with tap water and lyophilized in a dry chamber using a freeze dryer (FD-1,
EYLA, Tokyo, Japan) under a vacuum of 65–70 Pa and a trapping temperature of −45 ◦C
for 12 h. Dried dulse was powdered using a Wonder Blender WB-1 (Osaka Chemical Co.,
Osaka, Japan).

3.2. Preparation of Crude MAAs

Crude MAAs were prepared according to the method described by Nishida et al.
(2020) [19]. Namely, the dulse powder was suspended in 20 volumes (w/v) of distilled water
at 4 ◦C for 6 h. After centrifugation (27,200× g, 10 min), the supernatant was lyophilized.
The extract was then resuspended in 20 volumes (w/v) of methanol at 4 ◦C for 2 h. After
centrifugation (27,200× g, 15 min), the supernatant was evaporated and lyophilized. The
dried sample was labeled as crude MAAs and used for the following analyses.

3.3. Preparation of Purified MAAs from Dulse

MAAs were purified from crude MAAs [19]. Namely, crude MAAs were dissolved in
HPLC-grade water containing 0.1% trifluoroacetic acid (TFA) (v/v), followed by sequential
filtration through 0.22 and 0.20 µm membrane filters. The filtrated MAA solution was
subjected to HPLC with a Mightysil RP-18GP column (5 µm, 10 × 250 mm) (Kanto Kagaku,
Tokyo, Japan) and eluted with an isocratic solvent of 0.1% TFA for 7 min and a linear gradi-
ent of acetonitrile (0–70%) containing 0.1% TFA for 13 min at a flow rate of 4.73 mL/min,
with the column oven temperature at 40 ◦C. Elution was detected at 330 nm. The fractions
(retention time of 4.42, 4.79, 7,73 and 13.36 min) were collected and evaporated to obtain
purified palythine, porphyra-334, and usujirene.

3.4. Heat Treatment of MAAs

Crude MAAs were dissolved in 0.1 M phosphate buffer (pH 7.4) at a concentration of
5 mg/mL and heated at 60, 75, 90, 105, or 120 ◦C for 30 min with a dry bath (thermostat)
(MD-02N, Major Science, Saratoga, CA, USA). The samples were cooled in a refrigerator to
4 ◦C and then kept at −30 ◦C until analyses.

Purified palythine and porphyra-334 were dissolved in 20 mM phosphate buffer
(pH 7.4), and then the solutions were autoclaved (MLS-2420, SANYO Electric, Osaka,
Japan) at 121 ◦C for 20 min.
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3.5. Assay of Antioxidant Activity

Three methods of assessing antioxidant activity (DPPH and ABTS radical scavenging
assay and ferrous reducing power assay) were employed. DPPH radical scavenging assay
was performed according to the method of a previous study [7] with some modifications.
First, 0.5 mL of sample or control (distilled water) was mixed with 0.5 mL of 0.2 M phos-
phate buffer (pH 7.4) and 0.75 mL ethanol containing 0.5 mM DPPH. The mixtures were
reacted for 20 min at room temperature in the dark. Because a slight precipitate was pro-
duced after the reaction, the solutions were centrifuged at 4 ◦C, 2000× g for 10 min, and the
absorbance at 517 nm was measured. Since MAAs are water-soluble compounds, we used
ascorbic acid, which is also a water-soluble antioxidant. This was also because ascorbic acid
is often used as a positive control in antioxidant research in the food and cosmetic fields.

The ABTS radical scavenging assay was performed according to the method of a
previous study [19]. The ABTS·+ solution was prepared by mixing an equal volume
of 14.8 mM ABTS and 5.2 mM potassium persulphate and incubating for 12 h at room
temperature in the dark. The absorbance at 734 nm of ABTS·+ solution was adjusted to
1.00 ± 0.02 by adding 0.2 M phosphate buffer (pH 5.8, 6.6, 7.4, or 8.0). The assay was
conducted as follows: 50 µL of sample or control (distilled water) was mixed with 950 µL
of the ABTS·+ solution or the phosphate buffer. The mixture was then incubated for 2 h
at room temperature in the dark. After incubation, the solution was centrifuged at 4 ◦C,
2000× g for 5 min, and the supernatant absorbance was measured at 734 nm. Ascorbic acid
was used as a standard compound.

The ferrous reducing power assay was performed according to the method of a
previous study [42]. First, 0.4 mL of sample or control (distilled water) was mixed with
0.4 mL of 0.2 M phosphate buffer (pH 7.4) and 0.4 mL of 1% potassium ferricyanide. The
mixture was incubated for 20 min at 50 ◦C. Subsequently, 0.4 mL of 10% trichloroacetic acid
was added to the mixture. Measures of 0.8 mL of samples were extracted and then mixed
with 0.96 mL of 0.017% ferric chloride and incubated for 10 min at room temperature. The
absorbance of solutions was measured at 700 nm using ascorbic acid as a standard.

3.6. Spectrophotometric Analysis of Heat-Treated MAAs

The thermal derivatives of MAA solutions were analyzed in the UV-visible ray absorp-
tion spectrum using a spectrophotometer (200–400 nm, UV-1800, Shimadzu, Kyoto, Japan).

3.7. ESI-MS Analysis of Heat-Treated MAAs

The mass-to-charge ratios of thermal derivatives of MAAs were determined via the
electrospray ionization-ion trap mass spectrometry (ESI-MS) method using a Thermo
Scientific Exactive (Thermo Scientific, Waltham, MA, USA). For ESI-MS analysis, the
compounds were dissolved in an appropriate amount of ultrapure water. The detection
was performed in the negative mode.

3.8. 1H- and 13C-NMR Analyses of Heat-Treated Palythine

The purified thermal derivative of palythine was analyzed and its structure con-
firmed through 1H- and 13C-NMR analysis in a Bruker AVANCE Neo (Bruker, MA, USA)
(500.13 MHz for 1H-NMR and 125.77 MHz for 13C-NMR) at 300 K. For NMR analysis, the
compound was dissolved in D2O (99.8% deuterium) at a concentration of 50 mg/mL, and
TSP (trimethylsilyl propanoic acid) was used as an internal standard.

3.9. Efficient Production of Heated MAAs

Efficient production conditions of heated MAAs were determined for pH, heating
time, and temperature. Palythine and porphyra-334 were dissolved in 0.1 M phosphate
buffer (pH 5.8, 7.0, or 8.0) at the concentrations of 0.32 and 0.16 mM, respectively. The
MAA-containing solution was heated at 90 or 120 ◦C for 5, 10, 20, or 30 min with a dry bath
(thermostat) and then cooled in a refrigerator at 4 ◦C.
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4. Conclusions

One of the functions of MAAs is antioxidant activity. However, the activity varies
with the pH. We found that heated MAAs showed a high activity across a broad pH range.
The structure of heated palythine was determined by ESI-MS and NMR, showing that an
additional double bond occurred in the cyclohexene group. The putative delocalization
mechanism of radical electrons was speculated to have produced the double bond that con-
tributed to the stabilization of the antioxidant compounds. MAAs were effectively converted
into heated MAAs under high temperatures and in alkali conditions. The information is
useful for algae food processing using antioxidant compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/md20030184/s1, Figure S1: ESI-MS of heated palythine, Figure S2:
1H-NMR of heated palythine, Figure S3: 13C-NMR of heated palythine.
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