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Abstract: The design and development of innovative multifunctional wound dressing materials in
engineered biomaterials is essential for promoting tissue repair. In this study, nanofibrous wound
dressing materials loaded with anti-inflammatory ingredients were manufactured by a promising
electrospinning strategy, and their capability for treating diabetic wounds was also investigated.
A scaffold blend consisting of an Enteromorpha polysaccharide and polyvinyl alcohol (PVA) was
fabricated. The in vitro and in vivo studies confirmed the efficacy of PVA/EPP1 fiber. We found that
PVA/EPP1 fiber accelerated the repair of a full-thickness skin wound in diabetic mice. The results
suggest that this scaffold could effectively shorten the wound healing time by inhibiting inflammatory
activity, which makes it a promising candidate for the treatment of hard-to-heal wounds caused
by diabetes.

Keywords: enteromorpha polysaccharide; anti-inflammatory; diabetic wound healing

1. Introduction

Nowadays, hard-to-heal wounds are one of the most severe diabetic complications,
ultimately resulting in limb loss and disability. A lot of diabetic foot ulcers (DFUs) occur
every year, and approximately 10% of these require amputation surgeries of lower limbs [1].
Wound dressings have been extensively employed to treat diabetic wounds in clinics.
Importantly, recent advances have improved the healing efficacy of conventionally-utilized
wound dressing materials by incorporating some bioactive ingredients into the dressing
materials, containing growth factors [2] and exosomes [3], which have been demonstrated
to accelerate endothelial proliferation and angiogenesis. Unfortunately, some demerits, such
as the instability of additives and the exorbitant price, severely limit their clinical application.

Generally, wound healing is a well-orchestrated process, referring to several defined
phases including hemostasis, inflammation, proliferation, and remodeling [4,5]. Unfortu-
nately, the healing process of diabetic wounds is different from the common wounds, as it
is usually disrupted and blocked by a prolonged low-grade inflammation, consequentially
slowing down the wound healing [6]. Therefore, modulating the inflammatory response is
recognized as a critical factor for promoting wound healing in the early inflammatory stage.
The ideal scaffolds can not only modulate inflammation but also support cell adhesion,
proliferation, and so on. Many studies have tried to discover suitable materials for this goal.

The Enteromorpha is a type of seaweed rich in polysaccharides which is commonly
found in the sea [7,8]. The Enteromorpha polysaccharide (EPP) has been demonstrated
to have many pharmacological properties including antioxidant, antibacterial activities
and potential health benefits [9]. Nevertheless, to establish the ideal scaffold using the
polysaccharide alone is insufficient because of its solubility. The Polyvinyl Alcohol (PVA)
approved as a biodegradable material by the FDA can mix with the polysaccharide [10]
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and make the polysaccharide into a suitable scaffold [11–15]. Meanwhile, Electrospinning
is a versatile tool which can be applied for preparing the scaffolds [16,17]. It provides a
biomimetic cellular matrix that supports cell interaction and growth. Therefore, we chose
the PVA mixed with the polysaccharide co-electrospinning for the fiber preparation.

In our study, electrospun nanofiber was chosen as the wound dressing material, which
is expected to better mimic the morphology and structure of the existing extracellular
matrix (ECM) in the natural skin [18]. We expected that the ECM-mimetic PVA/EPP could
inhibit the inflammation in the wound site. With the processing of healing, the fiber can
promote tissue repair via enhancing vessel formation (Figure 1). The addition of EPP was
expected to construct one multifunctional wound dressing, which could effectively regulate
the inflammatory response in the wound sites to enhance diabetic wound healing and
skin regeneration.
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Figure 1. Schematic illustration of the fabricated fiber for skin repair in diabetic mice.

2. Results and Discussion
2.1. Physicochemical Characterization of the PVA/EPP Fibers

First, we screened the optimum ratio of PVA to EPP according to the analyzing
technology—SEM analysis. We prepared the different fibers containing the different con-
centrations of EPP polysaccharide. The ratio of EPP and PVA was set from 1:10 to 1:5 (w/w).
The morphology of scaffolds was usually observed by TEM and SEM [19,20]. Then, we
selected SEM for the detection of the morphology of PVA/EPP fibers. The results showed
PVA/EPP1 fiber was relatively homogeneous and had a diameter ranging from 90 nm
to 120 nm. However, with the increasing concentration of EPP, PVA/EPP2 fiber showed
discontinuous (Figure 2a). Therefore, we selected PVA/EPP1 fiber for the further study.
The mechanical properties of the fibers were characterized by tensile measurement [21]. As
for the mechanical property of fibers, according to the result, we can infer that the tensile
strength of fibers loaded with EPP is lower than pure PVA fiber. With the increasing content
of EPP, the tensile strength of the fibers decreases. The result suggested that the addition of
EPP made the fibers more flexible.
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Overall, the multifunctional properties of PVA/EPP fibers, including their hollow
shape, and their mechanical properties, exhibited the promise of this application in dressing
for wound healing.

2.2. The Water Absorption of the Fibers

We further observed the water absorption properties of PVA/EPP fibers. Meanwhile,
the contact angle of the fiber was also measured. From the results, we can conclude that
the fiber absorbed water quickly and reached a swelling equilibrium quickly. The fiber of
PVA/EPP fibers showed stronger capacity of water absorption compared with pure PVA
fiber. The results suggested that the water absorbing capacity increased with the increasing
ratio of EPP in the fibers (Figure 3a). Additionally, the contact angle of the fibers was
performed at 37 ◦C. The value of the water contact angle partly depends on the chemical
components of the materials [22]. The instant contact angle (ICA) of the fibers sharply
decreased from 120 to almost 20 in 3 s (Figure 3b). From the results, we can infer that the
addition of EPP makes the fiber more hydrophilic.

In general, according to the obtained results, we can draw a conclusion that PVA/EPP1
fiber has homogenous morphology and a high water absorption capacity for skin repair.
These properties are unquestionably beneficial to the wound healing.

2.3. Compatibility of the Fiber

After we accomplished the physical characterizations, PVA/EPP1 was selected for
further evaluation in vitro and in vivo. First, we set out to observe compatibility of the
fiber on cells. We examined the growth of macrophages on both PVA and PVA/EPP fibers,
without or with EPP. The cell compatibility of PVA/EPP1 was evaluated by both MTT
assay and live/dead staining (Figure 4a,b). From the results shown in Figure 4, there
were no significant differences between all the experimental groups and the control group,
and all the fibers have no evident cell cytotoxicity. A similar result was shown in the
live/dead staining experiment, which showed that the three groups had nearly the same
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ratio of live/dead cells (labeled with red fluorescence). Above all, the graphs presented
normal morphology (labeled in green fluorescence) in all groups, which demonstrated
good compatibility of nanofibers in vitro.

Mar. Drugs 2022, 20, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 3. (a) Water absorption of nanofiber materials loaded with EPP of different concentrations (* 
p < 0.05; vs. PVA group); (b) The water contact angle of PVA/EPP1 at different time points. 

2.3. Compatibility of the Fiber 
After we accomplished the physical characterizations, PVA/EPP1 was selected for fur-

ther evaluation in vitro and in vivo. First, we set out to observe compatibility of the fiber 
on cells. We examined the growth of macrophages on both PVA and PVA/EPP fibers, 
without or with EPP. The cell compatibility of PVA/EPP1 was evaluated by both MTT 
assay and live/dead staining (Figure 4a,b). From the results shown in Figure 4, there were 
no significant differences between all the experimental groups and the control group, and 
all the fibers have no evident cell cytotoxicity. A similar result was shown in the live/dead 
staining experiment, which showed that the three groups had nearly the same ratio of 
live/dead cells (labeled with red fluorescence). Above all, the graphs presented normal 
morphology (labeled in green fluorescence) in all groups, which demonstrated good com-
patibility of nanofibers in vitro. 

 
Figure 4. The in vitro evaluation of PVA/EPP1 fiber. (a) The effect on cell viability; (b) Live/dead 
staining of L929 cells after treatment with nanofiber membranes for 24 h. 

2.4. Accerlerated Repair of Wounds by the PVA/EPP1 Fiber 
2.4.1. The Fiber Accelerates Cutaneous Wound Healing in Diabetic Mice 

As shown in the above results, PVA/EPP1 fiber possessed multifunctional properties, 
especially the good compatibility, showed its promise in diabetic wound healing. We ex-
amined the wound healing ability of fibers for the full-thickness wounds in mice. The 
wounds in diabetic mice were covered with the PVA fiber, and PVA/EPP1 fiber, respec-
tively. The untreated wounds in mice were set as the control group. The diabetic wound 
sizes were photographed at day 0, 3, 6, 9, and 12 after operation. As shown in Figure 5a, 
the wound surface in all four groups decreased markedly as time increased. Among these, 
the PVA/EPP1 group exhibited the best healing outcomes, showing complete closure and 
an inconspicuous scar on day 12, compared with other groups. 

Figure 3. (a) Water absorption of nanofiber materials loaded with EPP of different concentrations
(* p < 0.05; vs. PVA group); (b) The water contact angle of PVA/EPP1 at different time points.

Mar. Drugs 2022, 20, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 3. (a) Water absorption of nanofiber materials loaded with EPP of different concentrations (* 
p < 0.05; vs. PVA group); (b) The water contact angle of PVA/EPP1 at different time points. 

2.3. Compatibility of the Fiber 
After we accomplished the physical characterizations, PVA/EPP1 was selected for fur-

ther evaluation in vitro and in vivo. First, we set out to observe compatibility of the fiber 
on cells. We examined the growth of macrophages on both PVA and PVA/EPP fibers, 
without or with EPP. The cell compatibility of PVA/EPP1 was evaluated by both MTT 
assay and live/dead staining (Figure 4a,b). From the results shown in Figure 4, there were 
no significant differences between all the experimental groups and the control group, and 
all the fibers have no evident cell cytotoxicity. A similar result was shown in the live/dead 
staining experiment, which showed that the three groups had nearly the same ratio of 
live/dead cells (labeled with red fluorescence). Above all, the graphs presented normal 
morphology (labeled in green fluorescence) in all groups, which demonstrated good com-
patibility of nanofibers in vitro. 

 
Figure 4. The in vitro evaluation of PVA/EPP1 fiber. (a) The effect on cell viability; (b) Live/dead 
staining of L929 cells after treatment with nanofiber membranes for 24 h. 

2.4. Accerlerated Repair of Wounds by the PVA/EPP1 Fiber 
2.4.1. The Fiber Accelerates Cutaneous Wound Healing in Diabetic Mice 

As shown in the above results, PVA/EPP1 fiber possessed multifunctional properties, 
especially the good compatibility, showed its promise in diabetic wound healing. We ex-
amined the wound healing ability of fibers for the full-thickness wounds in mice. The 
wounds in diabetic mice were covered with the PVA fiber, and PVA/EPP1 fiber, respec-
tively. The untreated wounds in mice were set as the control group. The diabetic wound 
sizes were photographed at day 0, 3, 6, 9, and 12 after operation. As shown in Figure 5a, 
the wound surface in all four groups decreased markedly as time increased. Among these, 
the PVA/EPP1 group exhibited the best healing outcomes, showing complete closure and 
an inconspicuous scar on day 12, compared with other groups. 
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2.4. Accerlerated Repair of Wounds by the PVA/EPP1 Fiber
2.4.1. The Fiber Accelerates Cutaneous Wound Healing in Diabetic Mice

As shown in the above results, PVA/EPP1 fiber possessed multifunctional properties,
especially the good compatibility, showed its promise in diabetic wound healing. We
examined the wound healing ability of fibers for the full-thickness wounds in mice. The
wounds in diabetic mice were covered with the PVA fiber, and PVA/EPP1 fiber, respectively.
The untreated wounds in mice were set as the control group. The diabetic wound sizes
were photographed at day 0, 3, 6, 9, and 12 after operation. As shown in Figure 5a, the
wound surface in all four groups decreased markedly as time increased. Among these, the
PVA/EPP1 group exhibited the best healing outcomes, showing complete closure and an
inconspicuous scar on day 12, compared with other groups.

Quantitative analysis of the skin repair rate was consistent with the gross morphology.
On day 9, the wound contraction rate of the PVA/EPP1 group reached nearly 72%, which
was significantly higher than the control group and the PVA group. After 12 days, the
wounds closed completely in the PVA/EPP1 group, while wounds still had scarring in
other groups (Figure 5a,b).
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2.4.2. Histomorphological Analysis and Angiogenesis In Vivo

We performed the histological analysis with H&E staining. As shown in Figure 6, we
can conclude that the epithelization and vascularization recovered better in the PVA/EPP1
group than that in the other groups at day 7 (Figure 6a). After 14 days, the wounds in all
the groups were completely closed. Compared with the other two groups, there were more
skin hair follicles and blood vessels in the PVA/EPP1 group. In addition, the wound in the
PVA/EPP1 group showed more granulation tissue and hair follicles compared with the
control group (Figure 6c,d).

During the process of skin repair, collagen deposition plays a vital role in confirming
skin scar formation and improving tissue strength in the last stage. Masson trichrome
staining was performed in the regenerated skin tissue at day 14. The result was shown in
Figure 6b; the relative intensity of collagen stained with blue color in the PVA/EPP1 group
was higher than other groups.

2.5. The Fiber Modulates the Inflammatory Microenvironment to Promote Angiogenesis

As we know, the suitable inflammatory microenvironment plays a vital role in wound
healing and tissue regeneration. However, the inflammation phase in chronic wounds
is severely prolonged, which leads to the delay of the transition into the proliferation
phase [23]. In our evaluation of the fibers in vivo, compared with other groups, PVA/EPP1
fiber obviously suppressed the secretion of TNF-α and IL-6, two major inflammatory
cytokines, which modulated the wound microenvironment in vivo (Figure 7c,d). This action
further induced the transformation of wound from inflammation to proliferation. In order
to further explore the regulation of anti-inflammation on tissue regeneration, we observed
the formation of new tissues by immunofluorescent staining of the relative markers. We
selected two major markers including ki-67 and CD31 at day 14 after implantation. From
the results in Figure 7a,b, we can conclude that the tissue in PVA/EPP1 group showed
the strongest expression of Ki67. Meanwhile, compared with the other two groups, the
expression of CD31 was also strongly strengthened by EPP1 in the PVA/EPP1 group.
In sum, all the results suggested that PVA/EPP1 fiber could regulate the inflammatory
response in the early stage of wound healing and further promote skin repair.
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3. Materials and Methods
3.1. Materials

Enteromorpha polysaccharide (Purity 95%) was purchased from Qingdao Seawin
Biotech Group (Qingdao, China). It was from Enteromorpha prolifra, multicellular green
algae, and was prepared through digesting, separating, filtrating, concentration, dialysis,
sterilization and drying. Poly (vinyl alcohol) with a viscosity of 50–60 mpa.s was obtained
from Sinopharm Group (Shanghai, China). All other chemicals and reagents at analytical
grade were purchased from Sigma-Aldrich (St. Louis, MO, USA).

3.2. Electrospinning Fabrication of PVA/EPP Fibers

PVA/EPP fibers were fabricated by electrospinning technology. Briefly, the PVA was
dissolved in 50% acetic acid heating at 85 ◦C for 3 h and cool to room temperature, then
mixed with EPP with vigorous stirring for 15 min. The two solutions were mixed to
ensure the ratio of EPP to PVA to be 1:10 and 1:5 (w/w), named as PVA/EPP1, PVA/EPP1,
respectively. Then a 10 mL plastic syringe loaded the obtained solution was used for
the electrospinning (TongliWeina, Shenzhen, China). The fibers were collected using an
aluminum foil collector at 20 kV. The distance from the syringe to the collector was set at
15 cm and the flow rate was 0.1 mL/h.

3.3. Characterization of the Fibers

First, the morphology of the fibers was surveyed using scanning electron microscope
(JSM-7500F, JSM, Tokyo, Japan), and the average diameter was calculated using Image
J software. The contact angle was observed using contact angle measuring instrument
(KRUSS Cluis DSA25, Kruss, Hamburg, Germany). The mechanical tensile tests of fibers
were assessed by material testing machine (CTM2500, Xieqiang Co., ltd, Shanghai, China).
The water absorption of the scaffold plays a vital role in wound healing [24]. Then, the water
absorbing capability of the fiber was measured in PBS (PH = 7.4). Briefly, dry nanofibers
were cut into small round pieces and weighed (w0). After that, they were soaked into PBS
at 37 ◦C and weighed (wt) until saturated. Finally, the detailed value was calculated [25].
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3.4. Cell Growth In Vitro

The cell culture mediums were prepared by immersing the different fibers in a com-
mercialized cell culture medium for 24 h at 37 ◦C. The mouse fibroblast cell line L929
(ATCC, Manassas, VA, USA) was cultured in Dulbecco’s Modified Eagle Medium (DMEM)
with 10% FBS. The cells were seeded onto the fibers and then incubated for 24 h at 37 ◦C.
Cell viability was quantitatively detected by CCK-8 assay. The gross morphology of the
cells was determined by calcein-AM staining (10 µM, 15 min) and propidium iodide (5 µM,
15 min) and observed with a confocal microscope (Nikon, Tokyo, Japan).

3.5. Establishment of a Diabetic Full-Thickness Wound Model

In this study, animal protocols were approved by the Animal Care and Use Committee
of Qingdao University. The animal feeding conformed to the Guidelines for the Care and
Use of Laboratory Animals, which published by the National Institutes of Health (NIH
Publication No. 8023, revised 1978). The BALB/c mice (8-week-old, 21–26 g) used in this
study were kept in a room at 24 ◦C with a 12-h light and dark cycle. Then, the mice were
injected with 1% streptozotocin (STZ, 65 mg/kg) to establish a diabetic model. After five
days, the whole-blood glucose obtained from the tail vein was monitored using a glucose
meter (Johnson, shanghai, China). After that, the diabetic mice were anesthetized and cut off
with one circular full-thickness skin wound (10 mm diameter) under the sterile conditions.
Then the wounded mice were randomly divided into three groups, the control group, PVA
group and PVA/EPP1 group (mice, n = 6). The mice were raised in different cages.

3.6. Gross View of Wound Healing

After the operation, we observed the gross morphology of the wounds at the different
time points. The rate of wound healing was summarized according to comparison with
the original area of wound. For each group, we took a 5 mm surrounding intact tissue
around the wound. The skin tissues removed from the wound bed of the mice sacrificed
at day 7 and day 14 were fixed in 4% paraformaldehyde for 24 h. The fixed tissues were
embedded in paraffin, sectioned at a thickness of 5 µm, and stained with H&E staining
and Masson staining for histological analysis using the corresponding kits according to the
manufacturer’s instructions (Jiancheng Biotech Co., Nanjing, China).

3.7. Immunofluorescence Analysis (IF) Staining of the Tissue Sections

For immunofluorescence analysis, paraffin sections of the wound tissue samples from
the control, PVA and PVA/EPP1 groups were first dehydrated, boiled in sodium citrate
buffer for about 20 min. After washing in PBST, anti-CD31 and anti-Ki67 (4A Biotechnology
Co., Ltd., Beijing, China) were incubated with the tissues for 12 h at 4 ◦C. The sections were
washed three times with PBS and then sealed with an anti-fluorescence quenching tablet
containing 4′,6-diamidino-2-phenylindole (DAPI, Solarbio, Beijing, China). The slides were
examined with a fluorescence microscope (Nikon A1 MP, Tokyo, Japan). Quantitative
analysis was performed using Image J software.

3.8. ELISAs for Cytokine Detection

On day 3, the blood samples were collected, which were centrifuged at 1000× g for
5 min at 4 ◦C to obtain the serum. The concentrations of the inflammatory cytokines
TNF-α and IL-6 in the serum were determined using the corresponding ELISA kits (4A
Biotechnology Co., Ltd., Beijing, China).

3.9. Statistics

All data are presented as mean ± standard deviation (SD). Statistical analyses were
performed using ANOVA (GraphPad Prism 6), with *, **, and *** standing for p < 0.05,
p < 0.01, and p < 0.001 respectively.
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4. Conclusions

In this study, a multifunctional PVA/EPP1 nanofiber was successfully fabricated
and exhibited excellent water absorbing properties and potent anti-inflammatory activity.
Compared with the PVA fiber, the PVA/EPP1 fiber shortened the inflammatory period, and
enhanced cell proliferation and tissue regeneration. Overall, the PVA/EPP1 fiber shows
great potential as a multifunctional wound dressing material for full-thickness diabetic
wound repair, which represents a useful strategy in tissue engineering.
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