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Abstract: Inflammation is an organism’s response to chemical or physical injury. It is split into
acute and chronic inflammation and is the last, most significant cause of death worldwide. Nowa-
days, according to the World Health Organization (WHO), the greatest threat to human health is
chronic disease. Worldwide, three out of five people die from chronic inflammatory diseases such
as stroke, chronic respiratory diseases, heart disorders, and cancer. Nowadays, anti-inflammatory
drugs (steroidal and non-steroidal, enzyme inhibitors that are essential in the inflammatory process,
and receptor antagonists, among others) have been considered as promising treatments to be ex-
plored. However, there remains a significant proportion of patients who show poor or incomplete
responses to these treatments or experience associated severe side effects. Seaweeds represent a
valuable resource of bioactive compounds associated with anti-inflammatory effects and offer great
potential for the development of new anti-inflammatory drugs. This review presents an overview of
specialized metabolites isolated from seaweeds with in situ and in vivo anti-inflammatory properties.
Phlorotannins, carotenoids, sterols, alkaloids, and polyunsaturated fatty acids present significant
anti-inflammatory effects given that some of them are involved directly or indirectly in several
inflammatory pathways. The majority of the isolated compounds inhibit the pro-inflammatory
mediators/cytokines. Studies have suggested an excellent selectivity of chromene nucleus towards
inducible pro-inflammatory COX-2 than its constitutive isoform COX-1. Additional research is
needed to understand the mechanisms of action of seaweed’s compounds in inflammation, given the
production of sustainable and healthier anti-inflammatory agents.

Keywords: anti-inflammatory; seaweed; specialized metabolites; phlorotannins; bromophenols;
chromenes; terpenoids; fucoxanthin; fucosterol; caulerpin; fatty acids

1. Introduction

The seaweeds or macroalgae belong to the basic tropic level in the marine water
ecosystem and are responsible, with microalgae, for the balance of the abiotic and biotic
factors of marine life, either directly or indirectly [1]. Seaweeds reside in the littoral zone
and are considered the oceans’ principal resource in terms of economic and ecological
significance [2]. Food and Agriculture Organization (FAO) data state that global seaweed
output (aquaculture and wild) has increased from 2000 to 2019 nearly threefold, from
118,000 tons to 358,200 tons [3]. The world’s seaweed production mainly comes from the
five major continents, with Europe accounting for 0.8% of global seaweed production. In
Europe, 96% of seaweed is naturally obtained, with 2010 marking the start of its cultivation.
Continental Portugal and its two archipelagos (the Azores and Madeira Islands) present
an exciting and diverse seaweed community mainly due to the latitudinal gradients,
coast length, and climate conditions. Although Portuguese seaweeds have been relatively
underexplored in terms of their economic benefits, in recent years, they are being used in
various applications such as cosmetics, commercial harvest, and pharmaceuticals [4]. Many
Portuguese institutions of higher education have research groups dedicated to seaweed
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studies which contribute to a better understanding of their properties, potential, and
applications [5–9].

Natural pigments come in various colours and have been broadly used since ancient
times, and more recently, are highly valued in biotechnology and pharmacology. The
seaweed colour is determined by the pigment abundance, and their classification into
one of the three main phyla (red (Rhodophyceae), brown (Phaeophyceae), and green
(Chlorophyceae)) is also associated with the pigments produced. Brown seaweeds are
extensive and can range from giant kelp (20 m long) to thick, leather-like seaweeds
(2–4 m long) to smaller species (30–60 cm long), and in terms of pigments, present high
concentrations of fucoxanthin, chlorophyll a and c, and β-carotene. Red seaweeds are
smaller than the other seaweeds, ranging from a few centimetres to about a meter in length,
with high amounts of phycoerythrin and phycocyanin. Green seaweeds are also smaller
than brown seaweeds, with a size similar to red seaweeds, and they have a high content of
chlorophylls a and b [7,10,11].

Seaweed and its products are particularly low in calories but rich in primary metabo-
lites such as vitamins, minerals, proteins, and polysaccharides. Another class of compounds
produced by algae tissues are the specialized metabolites, mainly phenolic compounds,
including halogenated ones, sterols, terpenes, and mycosporine-like amino acids [12–14]. It
is known that incorporating seaweed into the human diet is linked to a lower risk of a range
of syndromes linked to inflammation, such as diabetes, cancer, cardiovascular disease, and
obesity [2,15]. Another important use of seaweed or seaweed-based products is in cosmet-
ics, where they can substitute equivalent synthetic products. The application of seaweed in
the cosmetic industry is based on its bioactive compounds, primarily carbohydrates and
proteins, but also some specialized metabolites, such as phenolic compounds, fatty acids,
and terpenoids. Seaweeds are used due to the aforementioned biologically active ingredi-
ents and because they supply organic dyes, texturing stabilizers or emulsifiers, and various
exciting molecules that can be applied in skincare. Moreover, seaweeds are photosynthetic
organisms that produce specialized metabolites which protect the cell mechanisms and
organelles and are used in sunscreens as photo-protective ingredients [16,17].

Chronic inflammation is characterized by the continuous sending of inflammatory
cells, even when there is no outside danger, which leads to persistent host tissue damage.
As a result, different pathologies such as cardiovascular disease (CVD), atherosclerosis,
inflammatory bowel disease (IBD), multiple sclerosis, rheumatoid arthritis, and neurode-
generation [18] can upraise. Currently, the medications used for pain and inflammation
are food supplements (vitamins A, C, D, and zinc), nonsteroidal anti-inflammatory drugs
(NSAID), and steroid injections. Most NSAID, such as aspirin, indomethacin, ibuprofen,
ketoprofen, flurbiprofen, and diclofenac, contain carboxylic groups. These can alleviate
pain and inflammation by blocking the metabolism of arachidonic acid by inhibiting cy-
clooxygenase enzyme and reducing prostaglandin production. Unfortunately, NSAID’s
excellent anti-inflammatory potential is accompanied by severe side effects such as gas-
trointestinal ulceration, perforation, obstruction, and bleeding. Steroid injections such as
corticosteroid shots should not be used more than three or four times in the same body
part per year [19,20]. So, encouraging researchers to explore alternative templates with an
excellent anti-inflammatory potential and satisfactory tolerability, in addition to an effective
long-term strategy to fight against inflammation-associated disorders, is imperative.

One of the most widespread chronic inflammatory diseases is rheumatoid arthritis
(RA). Its prevalence ranges from 0.5% to 2% in the general population, particularly in
women and smokers, who are often affected, and is considered a disease with some genetic
prevalence. Genetics, autoimmunity, and environmental factors may play a pathogenic role
in the disease, although it has not yet been fully elucidated. The joints are primarily affected,
but it should be considered that inflammation includes extra-articular manifestations, such
as pulmonary involvement or vasculitis, and systemic comorbidities. In the past decade,
we have noticed some therapeutic improvements in treating rheumatoid arthritis that has
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transformed articular and systemic outcomes. However, treatment for rheumatoid arthritis
is still needed [21,22].

Macroalgae offer an appreciated source of chemical compounds with anti-inflammatory
potential and with few or no side effects [23,24]. Anti-inflammatory compounds can be
found in marine species, and macroalgae are an excellent source of these biocompounds [25],
from which fucoidans and galactofucan can be highlighted [26]. It is worth mentioning
that use of seaweeds in food and traditional medicine has been recorded in early archaeo-
logical data, especially in many Asian countries like China, Indonesia, Korea, Japan, and
Malaysia [27]. The ethnopharmacological significance in traditional Chinese medicine
should be highlighted because seaweeds are used to treat many inflammatory diseases,
from oedema, furuncles, and haemorrhoids to cardiovascular diseases [28].

Mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) sig-
nalling play a vital role in inflammatory processes. The signalling pathway complexity
includes the production of nitric oxide (NO) and PGE2 and the expression of inflammation-
related enzymes, such as COX-2 and inducible nitric oxide synthase (iNOS). NO is an
endogenous free radical and a pro-inflammatory mediator of the cytokines TNF-α, IL-6,
and IL-1β expression and production. ILs and TNF-α are involved in initiating the in-
flammatory pathways involved in the atrioventricular node (AVN), to cite one example.
Inflammation markers such as the aforementioned can activate macrophages that will
induce the release of pro-inflammatory cytokines. Interleukins induce the synthesis of
acute-phase proteins, and TNF-α is one of the essential pro-inflammatory cytokines that
participates in vasodilatation, oedema formation, and leukocyte adhesion. These phenom-
ena are attributed to phosphorylation and the activation of the signal transduction factors
(extracellular signal-regulated kinase (ERK), I-κB kinase (IKK), c-Jun N-terminal kinase
(JNK), and MAPK), and the expression of transcription factors (inhibitor of NF-κB (I-κB)
and NF-κB) [29–32].

2. Specialized Metabolites with Anti-Inflammatory Activity

Macroalgae use is increasing and spreading. What was a common food ingredient
in Oriental cuisine is nowadays an additive in several smart foods and folk medicine
formulations. Some formulations are sold as promoters of health benefits, including anti-
inflammatory effects. Although several macroalgae extracts, as stated above, showed
anti-inflammatory activity, their specialized metabolites must also be tested, and their
amount in the formulations must be established. Moreover, in vivo studies and clinical
trials are still required to validate the claimed potential in pharmaceutical formulations.
Knowing the limitations of the in vitro studies, several authors are moving forward and
focusing their biological assays using in vivo models. Unfortunately, anti-inflammatory
clinical trials are still needed. This literature survey aims to give a critical synopsis of the
current state of the art regarding the anti-inflammatory effects of essential macroalgae
specialized metabolites, emphasizing their molecular mechanisms. The following sections
will present and discuss specific examples chosen by the authors and consider the most
promising anti-inflammatory compounds, as well as the ones for which the studies are
broadening, including mechanism of action, and, if possible, in vivo studies.

2.1. Phlorotannins

Phlorotannins are polymers of benzene-1,3,5-triol (1), commonly named phlorogluci-
nol (Figure 1). The polymerization occurs through a single ether bond, 1,4-dibenzodioxin
linkage, or by direct covalent bond between the benzene rings [11,33]. Phlorotannins have
a wider mass range (from 125 to 1 × 105 Da or higher) and different structures. They can
be divided into four classes: fuhalols and phlorethols (ether bond), fucols (phenyl bond),
fucophloroethols (ether and phenyl bonds), and eckols and carmalols (a dibenzodioxin
bond). They are found in high quantities in brown algae and are considered the specialized
metabolites responsible for the pharmacological activities of some Ecklonia and Eisenia
species, such as Ecklonia cava, Kjellman, 1885 [34,35]. Phlorotannins have demonstrated
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their anti-inflammatory effects by inhibiting hyaluronidase, phospholipase A2, lipoxy-
genase, and cyclooxygenase (COX) enzymes, which are involved in the inflammatory
response, as well as chemical mediators and pro-inflammatory cytokines [36–39].
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Considering the phloroglucinol (1) (Figure 1) anti-inflammatory effects, it is worth
mentioning that inhibitory effects on oxidative stress were reported, and phloroglucinol (1)
is also able to inhibit the production of tumour necrosis factor-α (TNF)-α, interleukin-1β,
interleukin-6 ((IL)-1β), and IL-6, and prostaglandin E(2) (PGE2) in lipopolysaccharide
(LPS)-stimulated RAW264.7 cells. Additionally, phloroglucinol decreased the expression
of matrix metalloproteinases (MMPs) in the human fibrosarcoma cell line HT1080. MMPs
are known to be involved in several inflammatory conditions. Finally, phloroglucinol
inactivates the NF-κB-inducing kinase (NIK) and the kinases ERK and MAPK, preventing
inflammation episodes [40].

Dieckol (4-(4-((6-(3,5-dihydroxyphenoxy)-4,7,9-trihydroxydibenzo[b,e][1,4]dioxin-2-yl)oxy)-
3,5-dihydroxyphenoxy)dibenzo[b,e][1,4]dioxine-1,3,6,8-tetraol (2)), phlorofucofuroeckol(PFF) B
(4-(3,5-dihydroxy-phenoxy)benzo[b]benzo[5,6][1,4]dioxino[2,3-e]benzofuran-1,3,6,9,10,12-hexaol
(4b)), and fucofuroeckol-A (4-(3,5-dihydroxyphenoxy)benzo[b]benzo[5,6][1,4]dioxino[2,3-e]
benzofuran-1,3,6,9,10,12-hexaol (5)) (Figure 1) suppresses lipopolysaccharide (LPS)-induced pro-
duction of NO, PGE2 and expression of pro-inflammatory proteins (nitric oxide synthase (iNOS),
COX-2, tumour necrosis factor (TNF)-α and interleukin (IL)-1β, and IL-6) in a dose-dependent
manner in RAW 264.7 macrophages and BV2 microglia cells. Normally, the inhibition profile of
these compounds is associated with their ability to inhibit NF-κB and p38 mitogen-activated
protein kinases (MAPKs) activation [30,37,39,41].

In a comparative study of the effects of dieckol (2) and eckol (4-(3,5-dihydroxyphenoxy)
dibenzo[b,e][1,4]dioxine-1,3,6,8-tetraol (3)) (Figure 1) on LPS-mediated hyperpermeability
and monocytes migration in human umbilical vein endothelial cells (HUVECs), it was
observed that dieckol (2) has a better inhibitory effect than eckol (3), probably due to the
higher number of hydroxy groups in the dimeric structure [42]. However, Eom et al. [43]
showed that eckol (3) could inhibit the expression of various inflammatory cytokines in
Propionibacterium acnes-induced human skin keratinocytes (HaCaT) cells. It inhibited the
expression levels of MMPs (MMP-2 and -9), inflammatory mediators in a concentration-
dependent manner, acting at the transcriptional level. Its anti-inflammatory properties
were associated with the inhibition of p-NF-κB p65 and p-Akt at the translational level [43].
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In the last decade, it was demonstrated that 6,6′-bieckol (6,6′-bis(3,5-dihydroxyphenoxy)-
[1,1′-bidibenzo[b,e][1,4]dioxin]-2,2′,4,4′,7,7′,9,9′-octaol (6)) (Figure 1), isolated from E. cava, inhib-
ited the expression and release of NO, PGE2, TNF-α, and IL-6 in LPS-stimulated macrophages,
with concomitant inhibition of NF-κB activation [44]. More recently, Sugiura et al. [45] demon-
strated using a rat mast cell line (RBL-2H3) that 6,6′-bieckol (6) and other phlorotannins
such as eckol (3), 6,8′-bieckol (6,9′-bis(3,5-dihydroxyphenoxy)-[1,2′-bidibenzo[b,e][1,4]dioxin]-
1′,2,3′,4,6′,7,8′,9-octaol (7)), 8,8′-bieckol (9,9′-bis(3,5-dihydroxyphenoxy)-[2,2′-bidibenzo[b,e][1,4]
dioxin]-1,1′,3,3′,6,6′,8,8′-octaol (8)), PFF-A (4,9-bis(3,5-dihydroxyphenoxy)benzo[b]benzo[5,6][1,4]
dioxino[2,3-e]benzofuran-1,3,6,10,12-pentaol (4a)), and PFF-B (4b) isolated from Eisenia arborea,
Areschoug, 1876, suppressed the release of chemical mediators (histamine, leukotriene B4, and
PGE2) COX-2 mRNA expression and inhibited COX-2 activity at a 500 µM of concentration [45].

Octaphlorethol A (2-(4-(4-(4-(4-(4-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-
3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-2,6-dihydroxyp
henoxy)-2,6-dihydroxyphenoxy)benzene-1,3,5-triol (9)) can be isolated from the brown
marine alga Ishige foliacea, Okamura, 1936, and presents anti-inflammatory potential by
inhibiting the CpG-stimulated primary murine bone marrow-derived macrophages and
dendritic cells. The pre-treatment with octaphlorethol A (9) caused strong inhibition of
IL-12 p40, IL-6 and TNF-α production, indicating the inhibitory effect of this compound
on pro-inflammatory cytokine production. It also demonstrated the inhibitory effect on
TLR9-dependent MAPK and NF-KB activation [46].

In terms of in vivo assays, as far as we could find, they can be considered scarce, and
more studies are needed; moreover, several aspects of the phlorotannins’ mechanisms of
action need to be clarified. The leukocyte adhesion of endothelial cells and transendothelial
migration (TEM) of leukocytes are essential steps in the pro-inflammatory response. In
in vivo assays, both compounds (2) and (3) exhibited an effectively inhibitory effect on the
leakage of dye into the peritoneum in mice and decreased leukocytes count at a dose of
10 µM of concentration [47].

The phlorotannins eckol (3), 6,6′-bieckol (5), 6,8′-bieckol (6), 8,8′-bieckol (7), PFF-A (4a),
and PFF-B (4b) were administrated orally to mice, which were previously injured using
arachidonic acid (AA), 12-O-tetradecanoylphorbol-13-acetate (TPA) and oxazolone (OXA),
and proved to be able to suppress the AA, TPA, and OXA-induced mouse ear swelling.
Moreover, their positive effect was better than the epigallocatechin gallate (EGCG), which
was used as the positive control influence. The 6,8′-bieckol at 75 nmol exhibited the
most potent suppression (77.8%) compared with the epigallocatechin gallate’s weakest
suppression (5.7%) [44].

Phlorotannins are one of the most studied macroalgae-derived metabolites; neverthe-
less, their potential use as new anti-inflammatory drugs needs additional studies, such as
pharmacokinetic and clinical trials.

2.2. Bromophenols

Bromophenols are phenols bearing bromine and hydroxy groups in one or more
benzene rings and are amongst the specialized metabolites produced by macroalgae [48].
Actually, bromophenols are ubiquitous in the three types of macroalgae [49,50], although
they were first found in red Rhodomela larix (Turner), C. Agardh, 1822, (the current accepted
name is Neorhodomela larix (Turner), Masuda, 1982) [51]. Several pharmaceutical potentials
have been reported for these natural compounds [50]; however, their anti-inflammatory
properties were scarcely explored.

Vidalol A and B (2-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)benzene-1,3,5-triol (10)
and 2-bromo-4,6-bis(2,3-dibromo-4,5-dihydroxybenzyl)benzene-1,3,5-triol (11)) (Figure 2),
isolated from the red algae Vidalia obtusiloba (Mertens ex C. Agardh), J. Agardh, 1863, are
examples of compounds that inhibit the bee venom-derived phospholipase A2 (PLA2),
showing 96% enzyme inactivation at 1.6 µg/mL. An in vivo assay in the phorbol ester
(PMA)-induced swelling mouse ear showed that (10) and (11) reduced oedema (58–82%)
significantly when applied topically [52].
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The 3-bromo-4,5-dihydroxybenzaldehyde (3-BDB) (12) (Figure 2) is another example
of a bromophenol (isolated from marine red algae, such as Polysiphonia morrowii, Harvey,
1857, Polysiphonia urceolata (Lightfoot ex Dillwyn), Greville, 1824, and Rhodomela confervoides
(Hudson), P. C. Silva, 1952 [53,54]) that in LPS-stimulated RAW 264.7 murine macrophages
can suppress the production of IL-6, a pro-inflammatory cytokine, in a dose-dependent
manner. BDB also had an inhibitory effect on the phosphorylation of nuclear factor NF-κB,
a signal transducer and activator of transcription 1 (STAT1; Tyr 701), which are two major
signalling molecules involved in cellular inflammation. The in vivo assay of BDB (12)
on atopic dermatitis (AD) in BALB/c mice induced by 2,4-dinitrochlorobenzene (DNCB)
showed that treatment (100 mg/kg) resulted in suppression of the development of AD
symptoms compared with the control treatment. 3-BDB (12) also reduced immunoglobulin
E levels in serum, smaller lymph nodes with reduced thickness and length, decreased ear
oedema, and reduced levels of inflammatory cell infiltration in the ears [55]. With a similar
structure to BDB (12), 3-bromo-5-(ethoxymethyl)benzene-1,2-diol (BEMB) (13) (Figure 2),
also isolated from the red algae P. morrowii. BEMB (13) demonstrated anti-inflammatory
effects by inhibiting the production of NO, the expression of iNOS, and COX-2 in the
LPS-activated RAW 264.7 cells and zebrafish embryos without cytotoxicity. It suppressed
the protein and mRNA expression levels of nuclear factor NF-KB in the LPS-activated RAW
264.7 cells and zebrafish model [56]. The last example is bromophenol bis(3-bromo-4,5-
dihydroxybenzyl) ether (BBDE) (14) (Figure 2) isolated from the same algae, which can
inhibit inflammation by reducing inflammatory mediators, such as NO, prostaglandin E2,
iNOS, COX-2, and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), in LPS-induced
RAW 264.7 macrophage cells [57].

Considering the number of bromophenols found in macroalgae, their anti-inflammatory
potential is scarcely studied; more toxicological and in vivo studies are needed, and, in
some cases, clinical trials would be appreciated.

2.3. Chromenes

Chromenes or benzopyrans represent the basic nucleus of various seaweed com-
pounds with an anti-inflammatory potential, which includes the inhibition of COX and
lipoxygenase, enzymes linked to inflammatory manifestations.

The 2-acetoxy-2-(5-acetoxy-4-methyl-2-oxotetrahydro-2H-pyran-4-yl)ethyl 4-(3-methoxy-2-
methoxymethyl-7-ethyl-3,4,4a,7,8,8a-hexahydro-2H-chromen-4-yloxy)-5-methyl-heptanoate (15)
(Figure 3), isolated from the red seaweed Gracilaria opuntia, Durairatnam, nom. Inval., 1962,
showed a moderate anti-inflammatory activity against the COX-2 isoform (IC50 0.96 mg/mL)
than COX-1 (IC50 1.21 mg/mL), in comparison to the traditional NSAID, such as aspirin (anti-
COX-1 IC50 0.005, anti-COX-2 IC50 0.21 mg/mL) and ibuprofen (anti-COX-1 IC50
0.04 mg/mL, anti-COX-2 IC50 0.09 mg/mL). The in vitro 5-lipoxygenase (5-LOX) activity
(IC50 1.22 mg/mL) was comparable to that of synthetic ibuprofen (IC50 0.93 mg/mL) [58].
Further, isolated from G. opuntia, the 5-[7-(5-ethyl-3,4-dimethoxycyclooctyl)benzofuran-6-yl]-
7-methyl-3,4,7,8-tetrahydro-2H-oxocin-2-one (16) and 2-(3-ethyl-9-(2-methoxyethoxy)-1-oxo-
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2,3,4,9-tetrahydro1H-xanthen-2-yl)ethyl 5-hydroxy-9-methoxy-7,8-dimethyl-8-(5-methylfuran-
2-yl)nona-3,6-dienoate (17) (Figure 3) exhibited inhibitory activities towards pro-inflammatory
cyclooxygenase-2/5-lipoxygenase (COX-1, 2, and 5-LOX). Both compounds had a comparable
inhibitory effect in 5 LOX (IC50 0.209× 10−2 M) with synthetic non-steroidal anti-inflammatory
drugs (NSAID) ibuprofen (IC50 0.451× 10−2 M, p < 0.05) and selectivity towards COX inhibition
(SI: anti-COX-1 IC50/anti-COX-2 IC50 ~1.08–1.09) than NSAID (aspirin, and ibuprofen, SI: 0.02
and 0.44, respectively, p < 0.05) [59].
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4′-[10′-[7-Hydroxy-2,8-dimethyl-6-(pentyloxy)-2H-chromen-2-yl]ethyl]-3′,4′-dimethyl-
cyclohexanone (18) and 3′-[10′-(8-hydroxy-5-methoxy-2,6,7-trimethyl-2H-chromen2-yl)
ethyl]-3′-methyl-2′-methylene cyclohexyl butyrate (19) (Figure 3), isolated from the red
seaweed Gracilaria Salicornia (C. Agardh), E. Y. Dawson, 1954, were tested against pro-
inflammatory 5-LOX, and compound (19) registered significantly higher activity (IC50
2.03 mM) than that displayed by (18) (IC50 2.46 mM, p < 0.05). The compound selectivity
index was also higher (IC50 anti-COX-1/IC50 anti-COX-2 > 0.95) than that exhibited by the
non-steroidal anti-inflammatory agent ibuprofen (0.89) (p < 0.05). These studies suggested
that chromenyls have higher selectivity towards inducible pro-inflammatory COX-2 than
its constitutive isoform COX-1 [60].

Concerning phenolic compound, rutin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-
(((2S,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-
2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one (20))
(Figure 3), identified in the crude extract of Porphyra dentata, Kjellman, 1897, (the cur-
rent accepted name Neoporphyra dentata (Kjellman), L.-E. Yang and J. Brodie) inhibited
NO production in LPS-stimulated RAW 264.7 cells. Its activity was compared to the
obtained for catechol, and it was observed that catechol was a more potent suppressor
of the up-regulation of iNOS promoter and NF-κB enhancer than rutin (20). Catechol
(1–11 µg/mL) inhibited iNOS promoter activity to a greater extent than rutin
(80–250 µg/mL) in a dose-dependent manner. Catechol (11 µg/mL) and rutin (250 µg/mL)
decreased LPS-induced NF-κB enhancer activity to six- and twofold, respectively [61]. It is
relevant that some of these metabolites were evaluated for their selectivity index; however,
few action mechanisms were revealed, and in vivo studies are suggested.

2.4. Terpenoids

Terpenoid is a general term for hydrocarbons and their oxygen-containing deriva-
tives obtained through isoprene unit polymerization. They are usually classified into
monoterpenes, sesquiterpenes, diterpenes, and polyterpenes according to their structural
units [62] and are recognized for their biological activities, from which anticancer can be
highlighted [63].

5β-Hydroxypalisadin B [(2R,5R,7S,9aS)-7-bromo-2-(bromomethyl)-3,6,6,9a-tetramethyl-
2,5,5a,6,7,8,9,9a-octahydrobenzo[b]oxepin-5-ol (21)] (Figure 4), a sesquiterpene isolated
from the red algae Laurencia snackeyi (Weber Bosse), M. Masuda, 1997, [64], suppressed the
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NO production, iNOS, and COX-2 expression and cytokine release in LPS-stimulated RAW
264.7 cells. Moreover, LPS-induced NO production was dose-dependently decreased with
a maximum of 90% inhibition observed at the concentration of 50 µM [64]. The in vivo
studies performed in lipopolysaccharide (LPS)-induced zebrafish embryo using 0.25, 0.5,
and 1 µg/mL of compound (21) showed a profound protective effect of this compound in
the zebrafish embryo as confirmed by survival and heartbeat rate, and yolk sac oedema
size. It inhibited the LPS-induced NO production in a dose-dependent manner. Moreover,
5β-hydroxypalisadin B (21) showed a protective effect compared to dexamethasone, the
standard anti-inflammatory agent [65].
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Neorogioltriol ((1R,5S,6S)-5-(1-((3R,4S)-3-bromo-4-hydroxy-4-methylcyclohexyl)vinyl)-
1,4,4-trimethyloctahydropentalene-1,6-diol (22)) (Figure 4) is a tricyclic diterpenoid iso-
lated from the red algae Laurencia glandulifera (Kützing), Kützing, 1849, ref. [66] and was
evaluated using the writhing test, showing that 1 mg/kg (b.w.) was enough to reduce
the mouse acetic acid-induced writhing response by 88.9% [66]. The in vivo tests using
formalin-induced licking in rats showed that compound (22) affected neurogenic and/or
inflammatory pain. Neorogiotriol (22) exhibited a remarkable reduction in the licking time
by 48% in the second phase, which begins at 20 min and can last up to 60 min, representing
inflammatory pain. This inhibition effect obtained in the second phase of the performed
test is typical of COX inhibitors, suggesting peripheral analgesic activity [66].

Neorogioldiol ((1R,6S)-6-bromo-5-(1-((3R,4S)-3-bromo-4-hydroxy-4-methylcyclohexyl)
vinyl)-1,4,4-trimethyloctahydropentalen-1-ol (23)) and O11,15-cyclo-14-bromo-14,15-dihydrorogi
ol-3,11-diol (24) (Figure 4) are two brominated diterpenoids found in Laurencia sp., and, together
with compound (22), were assessed for their anti-inflammatory capacity in vitro using RAW
264.7 cells [67]. Compounds (23) and (24) were also evaluated in vivo using C57BL/6J mice
with dextran sodium sulphate (DSS)-induced inflammatory bowel disease (colitis) [67]. All
compounds (22–24) suppress macrophage activation and promote an M2-like anti-inflammatory
phenotype by inducing expression of arginase 1, MRC1, IRAK-M, the transcription factor
C/EBPβ, and the miRNA miR-146a; also, they suppressed iNOS induction and NO produc-
tion [67]. The C57BL/6J mice received 2.5% DSS in their drinking water and were injected
intraperitoneally with compounds (23) and (24) every second day for 5 days. All DSS-treated
mice showed a reduction in colon length, which confirms colonic inflammation macroscopically,
as well as a very significant decrease in pro-inflammatory cytokine messenger RNA (mRNA)
(more than a 40-fold decrease in the case of interleukin-6) [67].

Lastly, the diterpenoid methyl 16(13→14)-abeo-7-labdebe(12-oxo)carboxylate (25)
(Figure 4) isolated from the red algae G. salicornia presented a similar anti-inflammatory
effect against pro-inflammatory 5-LOX (IC50 0.86 mg/mL) comparative to the ibuprofen
(IC50 0.92 mg/mL, p < 0.005) [68].
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2.5. Fucoxanthin

Fucoxanthin ((3R)-3-hydroxy-4-((3E,5E,7E,9E,11E,13E,15E)-18-((1S,4S,6R)-4-hydroxy-
2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl)-3,7,12,16-tetramethyl-17-oxooctadeca-1,3,5,7,
9,11,13,15-octaen-1-ylidene)-3,5,5-trimethylcyclohexyl acetate (26)) (Figure 5) is the most
abundant natural carotenoid, accounting for approximately 10% of nature’s carotenoids.
It is found mainly in brown algae and structurally contains allene bonds, 5,6-monocyclic
oxide, and acetylated groups. Beneficial health effects have been reported for fucoxanthin
(26), the reason why it is one of the most studied metabolites [69]. Regarding the anti-
inflammatory effect, the literature survey indicates that fucoxanthin has a protective effect
on various inflammation-related diseases. From which diabetes [70,71], neurodegenera-
tive [72–74], skin and liver [75,76], inflammatory pain [77], and cardiovascular [78,79] can
be highlighted.
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Recent studies showed that fucoxanthin has a significant pharmacological effect on
diseases related to oxidative stress injury. Its mechanism of action is primarily related to
nuclear factor-erythroid 2-related (Nrf2) signal transduction pathway and gut microbiota
regulation [80]. Zheng et al. [81] showed that fucoxanthin increased the phosphorylation
level of the Akt/Nrf2 pathway as well as its effect on increased the mRNA and proteins
levels of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase
(GSS) in human keratinocytes (HaCaT) [81].

Su et al. [82] demonstrated that fucoxanthin has a tremendous anti-inflammatory
effect in a mouse sepsis model. LPS was used to induce sepsis in mice; when treated with
1 mg/kg (b.w.) of fucoxanthin, the survival rate can duplicate (20% to 40%). Fucoxanthin is
related to the reduced levels of the pro-inflammatory cytokines’ TNF-α and IL-6 and the
inhibition of the NF-KB inflammatory pathway [82].

Knowing the anti-inflammatory properties of fucoxanthin, Wu et al. [83] produced a
nanofiber membrane named PLA/PEGDA-EDT@rGO-fucoxanthin (PPGF) that can capture
ROS. Poly(ethyleneglycol)diacrylate(PEGDA)-1,2-ethanedithiol (EDT) copolymer (PEGDA-
EDT) is responsible for the ROS capture, reduced graphene oxide (rGO) is the drug carrier,
and fucoxanthin (26) attenuates osteoarthritis (OA) [83]. In response to hydrogen peroxide,
the nanofiber membrane exhibited sustained and long-term fucoxanthin release behaviour
in vitro (at least 66 days). Moreover, it showed low cytotoxicity and exceptional ability
to capture ROS. PPGF showed excellent anti-inflammatory and antioxidant effects on
IL-1β-induced chondrocytes by potent ROS scavenging; however, it is possible that its
mechanism of action also involves the upregulation of antioxidative enzymes [83].

2.6. Fucosterol

Fucosterol ((3S,10R,13R,17R)-17-((2R)-5-hydroxy-5-isopropylhept-6-en-2-yl)-10,13-dim
ethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol
(27)) (Figure 6) is one of the dominant sterols in marine macroalgae. Brown macroal-
gae contain higher levels of fucosterol (27) than green and red macroalgae. It can be found
in brown macroalgae and isolated from species of the genera Laminaria, Undaria, Sargassum,
and Ecklonia [84,85]. It is known to present several health benefits [86], and it is also known
that fucosterol (27) has effects on several inflammatory pathways, such as decreasing the
expression of p50 and p65 mRNA and the activity of NF-κB promoter in a dose-dependent
manner, inhibiting the expression of TNF-α, COX-2, IL-1β, and IL-6 [87,88]. It also reduced
the inflammatory response caused by solar ultraviolet radiation (UVR) [89].
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More specific assays showed that fucosterol (27) protects LPS-induced acute lung in-
jury (ALI) in mice [90]. The mechanism of action was revealed to be through the inhibition 
of TNF-α, IL-1β, and IL-6 levels in the bronchoalveolar lavage fluid (BALF) and the LPS-
stimulated alveolar macrophages, reducing their expression by about 50%, when com-
pared to the untreated group [90]. 

Sun et al. [91] demonstrated the protective mechanisms of fucosterol (27) on cobalt 
chloride (CoCl2)-induced hypoxia damage to keratinocytes (HaCaT). It attenuates CoCl2-
induced excess expression of IL-6, IL-1β, and TNF-α and suppresses the phosphorylation 
of PI3K and Akt and the accumulation of HIF1-α simulated by CoCl2 [91]. On the other 
hand, Mo et al. [92] showed that (27) attenuated serum liver enzyme levels, hepatic necro-
sis, and apoptosis induced by TNF-α, IL-6, and IL-1β. It also showed the effect of this 
compound in the reduction in P38 MAPK, and NF-κB signalling was accompanied by 
PPARγ activation [92]. 

In the last years, Wong et al. [93] showed that (27) protects against amyloid β (Aβ)-
mediated neuroinflammation by inhibiting the production of IL-6, IL-1β, TNF-α, NO, and 
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More specific assays showed that fucosterol (27) protects LPS-induced acute lung
injury (ALI) in mice [90]. The mechanism of action was revealed to be through the inhibition
of TNF-α, IL-1β, and IL-6 levels in the bronchoalveolar lavage fluid (BALF) and the LPS-
stimulated alveolar macrophages, reducing their expression by about 50%, when compared
to the untreated group [90].

Sun et al. [91] demonstrated the protective mechanisms of fucosterol (27) on cobalt
chloride (CoCl2)-induced hypoxia damage to keratinocytes (HaCaT). It attenuates CoCl2-
induced excess expression of IL-6, IL-1β, and TNF-α and suppresses the phosphorylation
of PI3K and Akt and the accumulation of HIF1-α simulated by CoCl2 [91]. On the other
hand, Mo et al. [92] showed that (27) attenuated serum liver enzyme levels, hepatic necrosis,
and apoptosis induced by TNF-α, IL-6, and IL-1β. It also showed the effect of this com-
pound in the reduction in P38 MAPK, and NF-κB signalling was accompanied by PPARγ
activation [92].

In the last years, Wong et al. [93] showed that (27) protects against amyloid β (Aβ)-
mediated neuroinflammation by inhibiting the production of IL-6, IL-1β, TNF-α, NO, and
PGE2 in LPS- or Aβ-induced microglial cells. Moreover, a similar study reported the
fucosterol (27) effect on attenuate particulate matter CPM-induced inflammatory responses
in A459 human lung epithelial cells through lowering the P65 and P50 nuclear translocation
and the p38 mitogen-activated protein kinase (MAPK) phosphorylation, extracellular
signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK), and the levels
of COX-2, PGE2, TNF-α, and IL-6 [94].

2.7. Caulerpin

Caulerpin (dimethyl(6E,13E)-5,12-dihydrocycloocta [1,2-b:5,6-b′]diindole-6,13-dicarb
oxylate (28)) is an alkaloid found in seaweeds and presents desirable anti-inflammatory
activity mainly attributed to indole moiety. The two indole units are linked together by a
cyclooctane ring forming the 5,12-dihydrocycloocta [1,2-b:5,6-b′]diindole nucleus with two
methoxycarbonyl groups at C-6 and C-13 (Figure 7) [95,96].
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Caulerpin (28) has been isolated mainly from green and red algae species, such as
Caulerpa racemose (Forsskål), J. Agardh, 1873, Caulerpa sertularioide (S. G. Gmelin), M. Howe,
1905, and Caulerpa mexicana, Sonder ex Kützing, 1849, and its in vivo anti-inflammatory
activity has been investigated. For instance, its potency against ear oedema and peritonitis
in mice induced by capsaicin (8-methyl-N-vanillyl-6-nonenamide) and carrageenan was
assessed. Caulerpin (28) caused a significant reduction in plasma extravasation of mice
ears (55.8%), when compared to capsaicin and leukocyte reduction [97].

Lucenna et al. [98] also reported the caulerpin (28) anti-inflammatory effect on the
murine model of peritonitis and ulcerative colitis. The authors established that caulerpin
(28) at 4 mg/kg triggered improvement of the Disease Activity Index (DAI) and attenuated
the colon shortening and damage. This dose reduced the TNF-α, IFN-γ, IL-6, IL-17, and
NFκB p65 levels and increased the levels of IL-10 in the colon tissue [98].

2.8. Fatty Acids

Fatty acids (FAs) are classified according to their carbon-chain length and sometimes
the number of double bonds present. Long-chain fatty acids should have more than twelve
carbons in the chain, whereas very long-chain should contain more than twenty-two. In
the case of the polyunsaturated fatty acids, a further classification of omega-3 (ω-3) and
omega-6 (ω-6), based on the position of the first double bond on the methyl terminal end,
can be found in the literature. Polyunsaturated fatty acids (PUFAs) are known to play
a vital role in body homeostasis. In general, higher levels of ω-6 polyunsaturated fatty
acids are associated with constriction of blood vessels, inflammation, and platelet aggre-
gation, whereasω-3 may help to resolve inflammation and alter the function of vascular
biomarkers [99]. It is known that ω-3 PUFAS has an important role in the reduction of
depressive symptoms and exerts an anti-inflammatory action by the production of distinct
metabolites, such as resolvins D (RvD) and E series, and maresins (MaR) and protectins
(PD). The Z-4,7,10,13,16,19-docosahexaenoic acid (DHA)-derived trihydroxydocosahex-
anoic acid mediators termed RvD are produced by a series of reactions involving COX-2
and 5-LOX or by a pathway involving lipoxygenase enzymes and other reactions. The
metabolism of DHA initially occurs by 15-lipoxygenase and then a series of other reactions
generates a dihydroxy derivative termed protectin D1. The trihydroxyeicosapentaenoic
acid mediators, termed RvE, form from Z-5,8,11,14,17- eicosapentaenoic acid (EPA) by a
similar series of reactions involving COX-2 and 5-LOX [100]. These mediators appear to act
as a potent anti-inflammatory in psychiatric, neurodegenerative, and neurological diseases.
On a cellular level and in a depression model, RvDs increased serotonin levels; on the other
hand, they decreased gliosis in neurodegenerative disorders. Protectins prevented neurite
and dendrite retraction and apoptosis in models of neurodegeneration, whereas maresins
reduced cell death [101].

Palmitic acid, a saturated fatty acid, is the most prevalent in seaweeds; neverthe-
less,ω-6 andω-3 PUFAs [99], such as DHA (29), EPA (30), Z-6,9,12,15-octadecatetraenoic
acid (stearidonic acid-SA) (31), Z-8,11,14,17-eicosatrienoic acid (ETA) (32), and Z-5,8,11,14-
icosa-5,8,11,14-tetraenoic acid (arachidonic acid-AA) (33) (Figure 8), are also commonly
isolated from seaweeds [99,102]. There is evidence that these molecules can play a key
role in the inflammation process [100,103]. Pro-inflammatory PGE2 and leukotriene B4
(LTB4) are produced during the metabolism of AA (33) through COX and 5-lipoxygenase
of leukotriene-A4 (LTA4) hydrolase enzymatic pathway, respectively. At the same time,
DHA (29) and EPA (30) compete with AA (33) metabolism, thus reducing the production
of PGE2 and LTB4. The metabolism of ETA (32) by 5-lipoxygenase form leukotriene-A3
(LTA3) inhibits the LTA4 hydrolase necessary for the production of LTB4, thus acting as
an anti-inflammatory by inhibiting LTB4 production [104,105]. Moreover, SA (31) and
EPA (30), which were extracted from Undaria pinnatifida (Harvey), Suringar, 1873, ex-
hibited anti-inflammatory activity against mouse ear enema, erythema, and blood flow
induced by phorbol myristate acetate. Whereas SA (31) extracted from Ulva pertusa, Kjell-
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man, 1897, was able to suppress the production of LTB4, Leukotriene C4 (LTC4), and
5-hydroxyeicosatetraenoic acid (5-HETE) in an MC/9 mouse mast cell [99–105].
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istics of metabolic syndrome received a 10-week supplementation with EPA (30) or DHA 
(29) (3 g/day), relative to a 4-week lead-in phase of high oleic acid sunflower oil (3 g/day, 
defined as baseline). This study showed that both EPA (30) and DHA (29) significantly 
lowered the tricarboxylic acid (TCA) cycle intermediates, the interconversion of pentose 
and glucuronate, alanine, aspartate, and glutamate pathways (FDR < 0.05), and that DHA 
(29) had a greater effect on the TCA cycle than EPA (30). This study demonstrated a sig-
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Recently, in a randomized, controlled, double-blind, and crossover study, 21 subjects
(9 men and 12 postmenopausal women) with chronic inflammation and some characteristics
of metabolic syndrome received a 10-week supplementation with EPA (30) or DHA (29)
(3 g/day), relative to a 4-week lead-in phase of high oleic acid sunflower oil (3 g/day,
defined as baseline). This study showed that both EPA (30) and DHA (29) significantly
lowered the tricarboxylic acid (TCA) cycle intermediates, the interconversion of pentose
and glucuronate, alanine, aspartate, and glutamate pathways (FDR < 0.05), and that DHA
(29) had a greater effect on the TCA cycle than EPA (30). This study demonstrated a
significant impact of both compounds on the cell metabolism of individuals with chronic
inflammation [106].

Our final choice relay on two enones (E)-9-oxooctadec-10-enoic acid (34) and (E)-
10-oxooctadec-8-enoic acid (35) fatty acids isolated from Gracilaria verrucose (Hudson)
Papenfuss, nom. rejic., 1950, (the current accepted name is Gracilariopsis longissimi
(S. G. Gmelin) Steentoft, L. M. Irvine and Farnham, 1995), and for which the inhibition
of the production of the inflammatory markers’ nitric oxide, TNF-α, and IL-6, in a dose-
dependent manner and LPS-stimulated RAW264.7 cells, was reported. They suppressed NF-
κB reporter activity by interfering with the nuclear translocation of NF-κB and suppressed
JAK/STAT (p-STAT1) signalling [107].

3. Macroalgae Commercially Available Products

Early seaweed was mainly collected in its natural form; however, wild seaweed
resources are limited with the constantly growing market for the food industry, medical
and cosmetic uses, and energy sources. Alternatives pass to seaweed culture on land, sea,
desert, and even in integrated aquaculture systems. The Financial Times has reported that
the global population will rise to 10 billion by 2050. Furthermore, algae could supply the
protein needed for people while conserving natural resources. It can be part of the solution
by providing an excellent alternative to traditional crops as they do not require arable
land and can grow on minimal nutrients [108]. The global seaweed market size was, in
2017, around USD 4097.93 million, and it is projected to reach USD 9075.65 million by 2024,
registering a compound annual growth rate (CAGR) of 12.0% from 2018 to 2024 [109,110].
So, it is clear that seaweeds have emerged as one of the most promising resources due to
their remarkable adaptability, short development period, and resource sustainability. The
advantages of using seaweed in the food, cosmetic, and medical fields are huge in terms of
economics and sustainability.

The European Algae Biomass Association (EABA) was founded in 2009 and, from
the beginning of its formation, started to promote synergies between academia, industry,
and decision-makers, aiming to establish the algae industry. Since the EABA’s creation,
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some EU countries have created their associations; the Fédération des Spiruliniers in France
and PROALGA (Associação Portuguesa de Produtores de Algas) in Portugal are excellent
examples. Currently, around 420 companies from 23 countries produce 36% of seaweed in
Europe [111]. As a result, algae or algae products are nowadays used, usually in the EU,
as food or food ingredients. For instance, cookies, pasta, bread, and beverages, that are
produced using algae are increasing in the European market, holding a 1.34% share of the
new European foods and drinks launched in 2017 [112,113].

Algae are considered appreciated components in the medical field, particularly algal
hydrogels and hydrocolloids, which are actually polysaccharide-based hydrogels. These
algal hydrogels are widely used in wound healing, drug delivery, in vitro cell culture,
and tissue engineering. From the structural point of view, these gels are similar to the
tissues’ extracellular matrix and can be manipulated to perform several vital roles. Some
drug-specific gels have been clinically used for wound healing and have proven efficient
and safe. In fact, wound healing and drug delivery applications are excellent examples of
continuous and sequential drug release [114]. So, the development of new products with
this specificity is vital in the future. One example is ACTIVHEAL® ALGINATE, which is
already used in medical treatment [115].

Cosmetics is a field in which seaweed has consolidated its use. A wide variety of
products, from slimming creams to perfumes, shampoos, sunscreens, and bath salts, can
be found on the market. In terms of seaweed-based products on the market, Revertime™,
Sealgae®, Codiavelane®, Algowhite®, Pheofiltrat®, and Actiseane® are some examples of
products and trademarks, most of them used in cosmetics, algotheraphy, and thalassother-
apy [116].

Although the products mentioned above obtained from macroalgae have exciting
applications, with some possible anti-inflammatory ones [114], it is evident that the isolated
compounds’ applications are far from being commercially available. This is primarily due
to the lack of proper toxicological assays and clinical trials.

4. Conclusions

The analysis of the macroalgae specialized metabolites’ anti-inflammatory potential,
herein presented and discussed, shows that the attributes commonly known for these
marine species may be due to their specialized metabolites. In particular, the established
anti-inflammatory activities for macroalgae [23,85] must be owing to some of the metabo-
lites mentioned above. Moreover, these metabolites may explain some use of macroalgae in
the production of biomaterials [117]. The chosen specialized metabolites present exciting
activities, in some cases lowering concentrations and having different biological targets
(Table 1), which make them suitable leader compounds for developing new anti-inflam
matory drugs. Moreover, some compounds were also tested in in vivo assays and main-
tained their activity (Table 1). Naturally, toxicological assays and clinical trials are essential
to establish the compound’s potential. In this regard, it is worth mentioning the more
studied compounds, such as fucoxanthin (26), fucosterol (27), and caulerpin (28), for which
clinical trials are needed. Nevertheless, we hope this survey will incentivize future investi-
gations concerning the specialized metabolites herein discussed and the search for other
bioactive compounds isolated from macroalgae.

In our final comments, we highlight that the isolation of these bioactive is still prob-
lematic and prevent their industrial use. Mostly, they are costly procedures and allow for
only small amounts of pure compounds, so using all macroalgae is still more economical.

The old traditional technique of solid–liquid extraction is still the most employed be-
cause it is easier to use and less expensive. However, it also involves more energy consump-
tion and the use of less environmentally friendly solvents. The use of non-conventional
extraction methods is highly recommended. In this regard, several authors are investigat-
ing alternative methods, such as microwave-assisted extraction, ultrasonic-assisted extrac-
tion, pressurized solvent extraction, supercritical fluid extraction, and enzyme-assisted
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extraction [118–124], to obtain the bioactive compounds in more environmentally friendly
conditions. Some of these methods still need extra optimizations to incentive their use.

Note: The macroalgae full names are accordingly the Algaebase (https://www.
algaebase.org/) and were confirmed on 18 December 2022.

Table 1. Resume of the main anti-inflammatory potential disclosed for seaweeds specialized metabolites.

Compound (Number) Source * Concentration Tested Experimental Model Pharmacological Markers

Phloroglucinol (1) 1 [40] Ecklonia cava 10 µM RAW 264.7 cells
HT1080 cells

↓ TNF-α,
IL-1β e IL-6, PGE2
Inhibit MMP-2 and
MMP-9

Dieckol (2) 2 [42,47] Eisenia sp. 10 and 20 µM

HUVECs
Mice treated by high
mobility group box 1
protein (HMGB1)

↓ LPS-mediated
hyperpermeability (74.9%)
↓ LPS-induced HMGB1
release
↓ acetic acid induced-
hyperpermeability and
carboxymethylcellulose-
induced leukocytes
migration (55%)

Eckol (3) 3 [43]
Eisenia sp.
Eckonia sp. 1–10 µM

Propionibacterium acnes
induced
HaCaT cells

↓ TNF-α
↓ COX-2, iNOS

Phlorofucofuroeckol B 4

(4a) [45]
Eisenia arborea 75 µM ICR strain mouse

inhibition of ear edema
induced by AA (42.2%), by
TPA (38.4%),
and by OXA (41.0%).
EGCG
inhibits 12.9%, 13.8%, and
5.7% of ear edema
induced by AA, TPA,
and OXA, respectively

Phlorofucofuroeckol A 5

(4b) [41,45]

Eisenia arborea
Ecklonia stolonifera
Okamura 1913 a

40 µM
10 µM
75 µM

LPS-stimulated BV-2 cells
RBL-2H3 cells
ICR strain mouse

↓ TNF-α, IL-1β e IL-6
↓ COX-2, NO
↓ phosphorylation Akt,
ERK, JNK
↓ histamine, leukotriene
B4, PEG2
inhibition of ear edema
induced by AA (30.5%),
TPA (31.7%), and OXA
(23.4%). EGCG inhibits
12.9%, 13.8%, and 5.7% of
by AA, TPA, and OXA,
respectively

Fucofuroeckol-A (5) 6 [39]
Eisenia bicyclis
(Kjellman)
Setchell 1905

1–100 µM LPS-induced RAW
264.7 cells

↓ NO, PGE2, iNOS
↓ TNF-α, IL-1β, IL-6
↓ COX-2

6,6′-Bieckol (6) 7 [44,45]
Ecklonia cava
Eisenia arborea

100 and 200 µM
75 µM

LPS-induced RAW
264.7 cells ICR
strain mouse

↓ NO, PGE2, iNOS
↓ TNF-α, IL-6
↓ COX-2
inhibition of ear oedema
induced by AA (41.9%),
TPA (34.2%), and OXA
(17.8%). EGCG inhibits
12.9%, 13.8%, and 5.7% of
by AA, TPA, and OXA,
respectively

https://www.algaebase.org/
https://www.algaebase.org/
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Table 1. Cont.

Compound (Number) Source * Concentration Tested Experimental Model Pharmacological Markers

6,8′-Bieckol (7) 8 [45] Eisenia arborea 10 µM
75 µM

RBL-2H3 cells
ICR strain mouse

↓ COX-2 mRNA
expression
inhibition of ear oedema
induced by AA (39.8%),
TPA (49.4%), and OXA
(77.8%). EGCG inhibits
12.9%, 13.8%, and 5.7% of
by AA, TPA, and OXA,
respectively

8,8′-Bieckol (8) 9 [45] Eisenia arborea 10 µM
75 µM

RBL-2H3 cells
ICR strain mouse

↓ histamine, leukotriene
B4, PEG2
inhibition of ear oedema
induced by AA (21.0%),
TPA (31.7%), and OXA
(32.3%). EGCG inhibits
12.9%, 13.8%, and 5.7% of
by AA, TPA, and OXA,
respectively

Octaphlorethol A (9) 10 [46] Ishige foliacea 6.2 and 12.5 µM CpG-stimulated BMCD
and BMDM ↓ TNF-α, IL-6, IL12 p40

Vidalol A (10) 11 [52] Vidalia obtusiloba n. r.

phorbol ester
(PMA)—induced swelling
of the mouse ear
Enzymatic activity

↓ eodema (58–82%)
↓ phospholipase A2

Vidalol B (11)12 [52] Vidalia obtusiloba n. r.

phorbol ester
(PMA)—induced swelling
of the mouse ear
Enzymatic activity

↓ eodema (58–82%)
↓ phospholipase A2

3-BDB (12) 13 [53,54]
Polysiphonia morrowii
Polysiphonia urceolata
Rhodomela confervoides

12.5, 25, 50, and 100 µM
100 mg/kg

LPS-stimulated RAW
264.7 BALB/c mice
induced by DNCB

↓ IL-6, phosphorylation
NF-KB
↓ STAT1; Tyr 701
↓ edema inflammation,
AD symptoms, Ig2

BEMB (13) 14 [56] Polysiphonia morrowii 12.5–50 µM
LPS-stimulated RAW
264.7 and zebrafish
embryos

↓ NO, iNOS, COX-2,
NF-KB

BBDE (14) 15 [57] Polysiphonia morrowii 0.1, 1, 2 µM LPS-stimulated
RAW 264.7

↓ NO, iNOS, COX-2,
PGE2, TNF-α, IL-6, IL-1β

Compound (15) 16 [58] Gracilaria opuntia n. r. Enzymatic activity ↓ COX-2, 5-LOX

Compound (16) 17 [59] Gracilaria opuntia n. r. Enzymatic activity ↓ 5-LOX

Compound (17) 18 [59] Gracilaria opuntia n. r. Enzymatic activity ↓ 5-LOX

Compound (18) 19 [60] Gracilaria salicornia n. r. Enzymatic activity ↓ COX-2, 5-LOX

Compound (19) 20 [60] Gracilaria salicornia n. r. Enzymatic activity ↓ COX-2, 5-LOX

Rutin (20) 21 [61] Porphyra dentata 80–250 µM LPS-stimulated
RAW 264.7 ↓ NO, iNOS, NF-KB

5β-Hydroxypalisadin B 22

(21) [64]
Laurencia snackeyi

50 µM
0.25, 0.1 and
1 µg/mL

LPS-induced RAW 264.7
LPS-induced
zebrafish embryo

↓ NO, COX-2, iNOS
↓ NO, Improved survival,
heart rate and yolk sac
oedema size
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Table 1. Cont.

Compound (Number) Source * Concentration Tested Experimental Model Pharmacological Markers

Neorogioltriol (22)23 [66,67] Laurencia glandulifera 8 µM
1 mg/kg

LPS-induced RAW 264.7
Writhing test in mice
Formalin test in rats

↓ NO, iNOS
↓macrophage activation
induce Arginase 1, MRC1,
miRNA miR-146a
↓ writhing response
induced by acetic acid
by 88.9%
↓ 2◦ phase formalin test
in 48.7%

Neorogioldiol (23) 24 [67] Laurencia sp 62.5 µM LPS-induced RAW 264.7
C57BL/6 mice

↓ NO, iNOS
↓macrophage activation
induce Arginase 1, MRC1,
miRNA miR-146a
↓ tissue damage, TNF-α,
IL-6, IL-12

Compound (24) 25 [67] Laurencia sp 10 µM LPS-induced RAW
264.7 C57BL/6 mice

↓ NO, iNOS
↓macrophage activation
induce Arginase 1, MRC1,
miRNA miR-146a
↓ tissue damage, TNF-α,
IL-6, IL-12

Compound (25) 26 [68] Gracilaria Salicornia n. r. Enzymatic activity ↓ 5-LOX

Fucoxanthin (26) 27 [74,77,82]
Sargassum siliquastrum
(Mertens ex Turner)
C.Agardh 1820

0.1–1 mg/kg
15, 30, 60 µM

LPS-induced sepsis in
mice
LPS-induced RAW 264.7
LPS-activated BV-2
microglia

↓ TNF-α, IL-6, IL-12,
NF-KB
↑ rate of survival
↓ iNOS, COX-2, mRNA,
TNF-α, IL-6
↓ iNOS, COX-2, mRNA,
TNF-α, IL-6
↓ Akt, NF-Kb, ERK, p38
MAPK

Fucosterol (27) 28 [90,91,93]

Undaria pinnatifida
Hizikia fusiformis
(Harvey) Okamura
1932 b

Panida australis c

15, 30, 60 mg/kg
1–10 µM
0.004, 0.2, 10 µM

LPS-induced ALI in mise
CoCl2-induced hypoxia in
keratinocytes
LPS or Aβ-induced BV2
(microglial) cells

↓ lung histopathologic
changes, wet-to-dry ratio
↓ TNF-α, IL-6, IL-1β,
NF-κB
↓ IL-6, IL-1β, TNF-α,
pPI3K and pAkt and
HIF1-α accumulation
↓ L-6, IL-1β, TNF-α, NO,
PGE2

Caulerpin (28) 29 [97,98]

Caulerpa racemosa
(Forsskål) J.Agardh
1873 Caulerpa
sertularioide

100 µmol/kg
4 mg/kg

Swiss albino mice
C57BL/6 mice with colitis
induced DSS

↓ formalin effects in both
phases by 35.4% and
45.6%.
reduction 55.8% on
capsaicin-induced ear
oedema model
↓ recruit cells (48.3%) on
carrageenan-induced
peritonitis
triggering improvement of
DAI and attenuating the
colon shortening/ damage
↓ TNF-α, IFN-γ, IL-6,
IL-17, NFκB p65
↑ IL-10 in the colon tissue

Z-4,7,10,13,16,19-
Docosahexaenoic acid-DHA
(29) [102,104,106]

Sargassum natans
(Linnaeus) Gaillon
1828

n. r.
3 g/day

21 volunteers (9 men and
12 postmenopausal
women) with chronic
inflammation and some
characteristics of
metabolic syndrome

RvE1 protect tissue
counterregulates
pro-inflammatory gene
expression
↓ fumarate, pyruvate,
citrate, isocitrate, malate,
α-ketoglutarate
↑ succinate, glucuronate
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Table 1. Cont.

Compound (Number) Source * Concentration Tested Experimental Model Pharmacological Markers

Z-5,8,11,14,17-
Eicosapentaenoic acid-EPA
(30) [99,104,106]

Vertebrata lanosa
(Linnaeus)
T.A.Christensen 1967
Palmaria palmata
(Linnaeus) F.Weber
and D.Mohr 1805
Laminaria digitata
(Hudson)
J.V.Lamouroux 1813

n. r.
3 g/day

21 volunteers (9 men and
12 postmenopausal
women) with chronic
inflammation and some
characteristics of
metabolic syndrome

RvE1 protect tissue
counterregulates
pro-inflammatory gene
expression
↓ fumarate,
α-ketoglutarate
↑ UDP-glucuronate,
glucuronate

E-9-Oxooctadec-10-enoic acid
(34) [105]

Gracilaria verrucose
(Hudson) Papenfuss,
nom. Rejic. 1950 d

50–100 µM LPS-induced RAW 264.7 ↓ NO, TNF-α, IL-6
↓ NF-KB, JAK/STAT

E-10-Oxooctadec-8-enoic
acid (35) [105] Gracilaria verrucose d 50–100 µM LPS-induced RAW 264.7 ↓ NO, TNF-α, IL-6

↓ NF-KB, JAK/STAT

* The macroalgae full names are accordingly the Algaebase (https://www.algaebase.org/
(accessed on 18 December 2022)); 1 benzene-1,3,5-triol; 2 4-(4-((6-(3,5-dihydroxyphenoxy)-
4,7,9-trihydroxydibenzo[b,e][1,4]dioxin-2-yl)oxy)-3,5-dihydroxyphenoxy)dibenzo[b,e][1,4]dioxine-
1,3,6,8-tetraol; 3 4-(3,5-dihydroxyphenoxy)dibenzo[b,e][1,4]dioxine-1,3,6,8-tetraol; 4 4,9-bis(3,5-
dihydroxyphenoxy)benzo[b]benzo[5,6][1,4]dioxino[2,3-e]benzofuran-1,3,6,10,12-pentaol; 5 4-(3,5-
dihydroxy-phenoxy)benzo[b]benzo[5,6][1,4]dioxino[2,3-e]benzofuran-1,3,6,9,10,12-hexaol; 6 4-(3,5-
dihydroxyphenoxy)benzo[b]benzo[5,6][1,4]dioxino[2,3-e]benzofuran-1,3,6,9,10,12-hexaol; 7 6,6′-
bis(3,5-dihydroxyphenoxy)-[1,1′-bidibenzo[b,e][1,4]dioxin]-2,2′ ,4,4′ ,7,7′ ,9,9′-octaol; 8 6,9′-bis(3,5-
dihydroxyphenoxy)-[1,2′-bidibenzo[b,e][1,4]dioxin]-1′ ,2,3′ ,4,6′ ,7,8′ ,9-octaol; 9 9,9′-bis(3,5-dihydroxyphenoxy)-
[2,2′-bidibenzo[b,e][1,4]dioxin]-1,1′ ,3,3′ ,6,6′ ,8,8′-octaol; 10 2-(4-(4-(4-(4-(4-(4-(3,5-dihydroxyphenoxy)-
3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)-
2,6-dihydroxyphenoxy)-2,6-dihydroxyphenoxy)benzene-1,3,5-triol; 11 2-bromo-4-(2,3-dibromo-4,5-
dihydroxybenzyl)benzene-1,3,5-triol; 12 2-bromo-4,6-bis(2,3-dibromo-4,5-dihydroxybenzyl)benzene-1,3,5-triol;
13 3-bromo-4,5-dihydroxybenzaldehyde; 14 3-bromo-5-(ethoxymethyl)benzene-1,2-diol; 15 bis(3-bromo-
4,5-dihydroxybenzyl)ether; 16 2-acetoxy-2-(5-acetoxy-4-methyl-2-oxotetrahydro-2H-pyran-4-yl)ethyl 4-(3-
methoxy-2(methoxymethyl)-7-ethyl-3,4,4a,7,8,8a-hexahydro-2H-chromen-4-yloxy)-5-methylheptanoate;
17 5-[7-(5-ethyl-3,4-dimethoxycyclooctyl)benzofuran-6-yl]-7-methyl-3,4,7,8-tetrahydro-2H-oxocin-2-one;
18 2-(3-ethyl-9-(2-methoxyethoxy)-1-oxo-2,3,4,9-tetrahydro-1H-xanthen-2-yl)ethyl 5-hydroxy-9-methoxy-
7,8-dimethyl-8-(5-methylfuran-2-yl)nona-3,6-dienoate; 19 4′-[10′-[7-hydroxy-2,8-dimethyl-6-(pentyloxy)-
2H-chromen-2-yl]ethyl]-3′ ,4′-dimethyl-cyclohexanone; 20 3′-[10′-(8-hydroxy-5-methoxy-2,6,7-trimethyl-
2H-chromen2-yl)ethyl]-3′-methyl-2′-methylene cyclohexyl butyrate; 21 2-(3,4-dihydroxyphenyl)-5,7-
dihydroxy-3-(((2S,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-
2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one; 22 (2R,5R,7S,9aS)-7-bromo-2-
(bromomethyl)-3,6,6,9a-tetramethyl-2,5,5a,6,7,8,9,9a-octahydrobenzo[b]oxepin-5-ol; 23 (1R,5S,6S)-5-(1-((3R,4S)-
3-bromo-4-hydroxy-4-methylcyclohexyl)vinyl)-1,4,4-trimethyloctahydropentalene-1,6-diol; 24 (1R,6S)-6-
bromo-5-(1-((3R,4S)-3-bromo-4-hydroxy-4-methylcyclohexyl)vinyl)-1,4,4-trimethyloctahydropentalen-1-ol;
25 O11 ,15-cyclo-14-bromo-14,15-dihydrorogiol-3,11-diol; 26 methyl 16(13→14)-abeo-7-labdebe-(12-
oxo)carboxylate; 27 (3R)-3-hydroxy-4-((3E,5E,7E,9E,11E,13E,15E)-18-((1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-
7-oxabicyclo[4.1.0]heptan-1-yl)-3,7,12,16-tetramethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene)-
3,5,5-trimethylcyclohexyl acetate; 28 (3S,10R,13R,17R)-17-((2R)-5-hydroxy-5-isopropylhept-6-en-2-yl)-
10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol; 29

dimethyl(6E,13E)-5,12-dihydrocycloocta[1,2-b:5,6-b’]diindole-6,13-dicarboxylate; a Current accepted name
Ecklonia cava subsp. stolonifera (Okamura), S. Akita, K. Hashimoto, T. Hanyuda and H. Kawai, 2020; b Current
accepted name Sargassum fusiforme (Harvey) Setchell 1931; c Unknown name, others authors indicate Posidonia
australis Hooker F., 1858; d Current accepted name Gracilaripsis longissimi (S. G. Gmelin) Steentoft, L. M. Irvine
and Farnham, 1995; n. r. = non revealed.
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