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Abstract: The marine environment represents the largest ecosystem on the Earth’s surface. Marine-
derived fungi are of remarkable importance as they are a promising pool of diverse classes of bioactive
metabolites. Bergamotane sesquiterpenoids are an uncommon class of terpenoids. They possess
diverse biological properties, such as plant growth regulation, phototoxic, antimicrobial, anti-HIV,
cytotoxic, pancreatic lipase inhibition, antidiabetic, anti-inflammatory, and immunosuppressive traits.
The current work compiles the reported bergamotane sesquiterpenoids from fungal sources in the
period ranging from 1958 to June 2022. A total of 97 compounds from various fungal species were
included. Among these metabolites, 38 compounds were derived from fungi isolated from different
marine sources. Furthermore, the biological activities, structural characterization, and biosynthesis of
the compounds are also discussed. The summary in this work provides a detailed overview of the
reported knowledge of fungal bergamotane sesquiterpenoids. Moreover, this in-depth and complete
review could provide new insights for developing and discovering new valuable pharmaceutical
agents from these natural metabolites.
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1. Introduction

Nature has substantially participated in the discovery of drugs for human remedial
treatments since the beginning of mankind [1]. The marine environment, with more than
70% of the surface of the Earth, represents the largest ecosystem and is characterized by
quite variable physicochemical parameters (e.g., limited light access, low temperature,
high pressure, and high salinity) [2]. Among the various marine microbes, fungi are a
superabundant and ecologically substantial component of marine microbiota [3]. Fungi are
one of nature’s treasures that inhabit various environments on the earth’s surface, including
the marine environment [4–7]. They play a growing relevant role in drug development and
biomedicine research, either directly as drugs or indirectly as lead structures for bio-inspired
drug synthesis [8–12]. In the last decades, natural product chemists and pharmacologists
have turned their research interests to marine-derived fungi, which are renowned as a
vast unexploited reservoir of metabolic diverseness and found to have the capability to
produce structurally unique bio-metabolites [6,7,12–16]. Furthermore, research on fungi-
derived metabolites has tremendously increased because of the need for compounds with
potential economical values and pharmaceutical applications. Sesquiterpenes belonging
to various classes, including hirsutane, alliacane, tremulane, bergamotane, drimane, etc.,
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are reported from fungi [17–19]. The biosynthesis of their C15 skeleton from FPP (farnesyl
pyrophosphate) was catalyzed by sesquiterpene synthases [19,20].

Among these metabolites, the bergamotane family represents an uncommon class of
natural sesquiterpenes that includes bi-, tri-, or tetracyclic derivatives [19]. Bergamotane
sesquiterpenoids having a bridged 6/4 bicyclic skeleton involved in an isopentyl unit
are biosynthesized by fungi and plants [21,22]. Interestingly, polyoxygenated derivatives
featuring a 6/4/5/5 tetracyclic framework represent a rare class of natural metabolites,
and all polycyclic bergamotanes are mainly encountered in fungi [23–26]. Bergamotane
sesquiterpenoids have been reported from various marine sources such as sponges, sea
mud, deep-sea hydrothermal sulfide deposits, and sea sediments. These metabolites could
gain the interest of chemists and biologists because of their unusual structural features
and diversified activities, such as phytotoxicity, plant growth regulation, antimicrobial,
anti-HIV, cytotoxic, pancreatic lipase inhibition, immunosuppressive, antidiabetic, and
anti-inflammatory properties. It is noteworthy that no available work has addressed this
class of sesquiterpenes in term of their sources, bioactivities, and biosynthesis. In the
current work, the reported fungal bergamotane sesquiterpenoids ranging from 1958 to
June 2022 have been listed. They have been classified according to their ring system,
i.e., into bi-, tri-, or tetracyclic derivatives (Table 1). Additionally, their fungal sources,
structural characterization, biosynthesis, and biological relevance have been provided.
Moreover, some of their reported structural characteristics and methods of separation and
characterization, as well as their structure–activity relation, are discussed.

Table 1. Naturally occurring fungal bergamotane sesquiterpenoids (name, source, extract/fraction,
molecular weights and formulae, and location).

Compound Name Fungal Source/Host Extract/Fraction Mol.
Wt.

Mol.
Formula Location Ref.

Bicyclic Bergamotane Sesquiterpenoids

α-trans Bergamotene
(1)

Nectria sp. HLS206
(Nectriaceae)/Gelliodas carnosa

(marine sponge Geodiidae)
EtOAc extract 204 C15H24 China [27]

β-trans Bergamotene
(2)

Aspergillus fumigatus
(Trichocomaceae)/Cultured Acetone extract 204 C15H24 Japan [28]

β-trans-2β,5,15-
Trihydroxybergamot-

10-ene
(3)

Aspergillus fumigatus YK-7
(Trichocomaceae)/Sea mud EtOAc extract 254 C15H26O3

Intertidal zone sea
mud, Yingkou,

China
[29]

E-β-trans-5,8,11-
Trihydroxybergamot-

9-ene
(4)

Aspergillus fumigatus YK-7
(Trichocomaceae)/Sea mud EtOAc extract 252 C15H24O3

Intertidal zone sea
mud, Yingkou,

China
[29]

Massarinolin C (5) Massarina tunicata (Lophios-
tomataceae)/Submerged twig EtOAc extract 266 C15H22O4

Lemonweir River
in Adams County,
Wisconsin, USA

[23]

Craterellus odoratus
(Cantharellaceae) EtOAc extract - -

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Paraconiothyrium sporulosum
YK-03 Verkley

(Leptosphaeriaceae)/Sea mud
EtOAc extract - -

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Donacinoic acid B (6)

Montagnula donacina
(Montagnulaceae)/Craterellus

odoratus (fruiting bodies,
Cantharellaceae)

EtOAc extract 266 C15H22O4

Southern part of
the Gaoligong
Mountains in

Yunnan, China

[32]
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Table 1. Cont.

Compound Name Fungal Source/Host Extract/Fraction Mol.
Wt.

Mol.
Formula Location Ref.

Craterodoratin M (7) Craterellus odoratus
(Cantharellaceae) EtOAc extract 252 C15H24O3

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin N (8) Craterellus odoratus
(Cantharellaceae) EtOAc extract 268 C15H24O4

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin O (9) Craterellus odoratus
(Cantharellaceae) EtOAc extract 250 C15H22O3

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin P (10) Craterellus odoratus
(Cantharellaceae) EtOAc extract 250 C15H22O3

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin Q (11) Craterellus odoratus
(Cantharellaceae) EtOAc extract 308 C17H24O5

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Necbergamotenoic
acid A (12)

Nectria sp. HLS206
(Nectriaceae)/Gelliodas carnosa

(marine sponge, Geodiidae)
EtOAc extract 264 C15H20O4 China [27]

Necbergamotenoic
acid B (13)

Nectria sp. HLS206
(Nectriaceae)/Gelliodas carnosa

(marine sponge, Geodiidae)
EtOAc extract 266 C15H22O4 China [27]

Sporulamide C (14)
Paraconiothyrium sporulosum

YK-03 Verkley
(Leptosphaeriaceae)/Sea mud

EtOAc extract 265 C15H23NO3

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Sporulamide D (15)
Paraconiothyrium sporulosum

YK-03 Verkley
(Leptosphaeriaceae)/Sea mud

EtOAc extract 249 C15H23NO2

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Xylariterpenoid A
(16)

Xylariaceae fungus (No.
63-19-7-3)/Everniastrum

cirrhatum (Fr.) Haleex Sipman
(lichen, Parmeliaceae)

EtOAc extract 252 C15H24O3
Zixi Mountain,
Yunnan, China [33]

Graphostroma sp. MCCC
3A00421/Deep-sea

hydrothermal sulfide deposit
EtOAc extract - - Atlantic Ocean,

China [34]

Eutypella sp. MCCC 3A00281
(Diatrypaceae)/Deep-sea

sediment
EtOAc extract - - South Atlantic

Ocean, China [35]

Xylariterpenoid B
(17)

Xylariaceae fungus (No.
63-19-7-3)/Everniastrum

cirrhatum (Fr.) Haleex Sipman
(lichen, Parmeliaceae)

EtOAc extract 252 C15H24O3
Zixi Mountain,
Yunnan, China [33]

Graphostroma sp. MCCC
3A00421/Deep-sea

hydrothermal sulfide deposit
EtOAc extract - - Atlantic

Ocean, China [34]

Eutypella sp. MCCC 3A00281
(Diatrypaceae)/Deep-sea

sediment
EtOAc extract - - South Atlantic

Ocean, China [35]



Mar. Drugs 2022, 20, 771 4 of 32

Table 1. Cont.

Compound Name Fungal Source/Host Extract/Fraction Mol.
Wt.

Mol.
Formula Location Ref.

Eutypeterpene B (18)
Eutypella sp. MCCC 3A00281

(Diatrypaceae)/Deep-sea
sediment

EtOAc extract 268 C15H24O4
South Atlantic
Ocean, China [35]

Eutypeterpene C (19)
Eutypella sp. MCCC 3A00281

(Diatrypaceae)/Deep-sea
sediment

EtOAc extract 266 C15H22O4
South Atlantic
Ocean, China [35]

Eutypeterpene D (20)
Eutypella sp. MCCC 3A00281

(Diatrypaceae)/Deep-sea
sediment

EtOAc extract 250 C15H22O3
South Atlantic
Ocean, China [35]

Eutypeterpene E (21)
Eutypella sp. MCCC 3A00281

(Diatrypaceae)/Deep-sea
sediment

EtOAc extract 250 C15H22O3
South Atlantic
Ocean, China [35]

Eutypeterpene F (22)
Eutypella sp. MCCC 3A00281

(Diatrypaceae)/Deep-sea
sediment

EtOAc extract 252 C15H24O3
South Atlantic
Ocean, China [35]

(10S)-
Xylariterpenoid A

(23)

Graphostroma sp. MCCC
3A00421/Deep-sea

hydrothermal sulfide deposit
EtOAc extract 252 C15H24O3

Atlantic Ocean.
China [34]

(10R)-
Xylariterpenoid B

(24)

Graphostroma sp. MCCC
3A00421/Deep-sea

hydrothermal sulfide deposit
EtOAc extract 252 C15H24O3

Atlantic Ocean.
China [34]

Xylariterpenoid E
(25)

Graphostroma sp. MCCC
3A00421/Deep-sea

hydrothermal sulfide deposit
EtOAc extract 208 C12H16O3

Atlantic Ocean.
China [34]

Xylariterpenoid F
(26)

Graphostroma sp. MCCC
3A00421/Deep-sea

hydrothermal sulfide deposit
EtOAc extract 270 C15H26O4

Atlantic Ocean.
China [34]

Xylariterpenoid G
(27)

Graphostroma sp. MCCC
3A00421/Deep-sea

hydrothermal sulfide deposit
EtOAc extract 270 C15H26O4

Atlantic Ocean.
China [34]

Eutypeterpene A (28)
Eutypella sp. MCCC 3A00281

(Diatrypaceae)/Deep-sea
sediment

EtOAc extract 294 C16H22O5
South Atlantic
Ocean, China [35]

Craterodoratin A (29) Craterellus odoratus
(Cantharellaceae) EtOAc extract 252 C15H24O3

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin C (30) Craterellus odoratus
(Cantharellaceae) EtOAc extract 268 C15H24O4

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin D (31) Craterellus odoratus
(Cantharellaceae) EtOAc extract 268 C15H24O4

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin E (32) Craterellus odoratus
(Cantharellaceae) EtOAc extract 284 C15H24O5

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]
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Table 1. Cont.

Compound
Name Fungal Source/Host Extract/Fraction Mol.

Wt.
Mol.

Formula Location Ref.

Craterodoratin F
(33)

Craterellus odoratus
(Cantharellaceae) EtOAc extract 284 C15H24O5

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Dihydroprehelminth
osporol (34)

Bipolaris sp. No. 36/Johnson
grass leaf EtOAc extract 238 C15H26O2

Wake County,
North Carolina,

USA
[36,37]

Helminthosporal
acid (35)

Bipolaris sp. No. 36/Johnson
grass leaf EtOAc extract 250 C15H22O3

Wake County,
North Carolina,

USA
[36]

Helminthosporol
(36)

Bipolaris sp. No. 36/Johnson
grass leaf EtOAc extract 236 C15H24O2

Wake County,
North Carolina,

USA
[36]

Helminthosporic
acid (37)

Bipolaris sp. No. 36/Johnson
grass leaf EtOAc extract 252 C15H24O3

Wake County,
North Carolina,

USA
[36]

Tricyclic Bergamotane Sesquiterpenoids

Prehelminthosporol
(38)

Bipolaris sp. No. 36/Johnson
grass leaf EtOAc extract 236 C15H24O2

Wake County,
North Carolina,

USA
[36,37]

Prehelminthosporolactone
(39)

Bipolaris sp. No. 36/Johnson
grass leaf EtOAc extract 234 C15H22O2

Wake County,
North Carolina,

USA
[37]

Victoxinine (40) Helminthosporium victoriae
(Totiviridae)

Diethyl ether
extract 263 C17H29NO USA [36,38,39]

Helminthosporium sativum
(Totiviridae)

Diethyl ether
fraction/CHCl3

extract
- - Canada [40]

Victoxinine-α-
glycerophosphate

(41)
H. sativum (Totiviridae) n-BuOH extract 417 C20H36NO6P USA [41]

Craterodoratin S
(42)

Craterellus odoratus
(Cantharellaceae) EtOAc extract 277 C17H27NO2

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Isosativenediol
(43)

Bipolaris sp. No. 36/Johnson
grass leaf EtOAc extract 236 C15H24O2

Wake County,
North Carolina,

USA
[36]

Pinthunamide
(44)

Ampulliferina sp. No. 27
(Ampullicephala)/Pinus

thunbergii (dead tree, Pinaceae)
Acetone extract 277 C15H19NO4 Japan [42]

Paraconiothyrium brasiliense
Verkley (M3–3341)

(Leptosphaeriaceae)/
Acer truncatum Bunge

(branches, Sapindaceae)

Acetone extract - -
Dongling

Mountain, Beijing,
China

[43]

Brasilamide A
(45)

Paraconiothyrium brasiliense
Verkley (M3–3341)

(Leptosphaeriaceae)/
Acer truncatum Bunge

(branches, Sapindaceae)

Acetone extract 293 C15H19NO5

Dongling
Mountain, Beijing,

China
[43,44]
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Table 1. Cont.

Compound Name Fungal Source/Host Extract/Fraction Mol.
Wt.

Mol.
Formula Location Ref.

Brasilamide B (46)

Paraconiothyrium brasiliense
Verkley (M3–3341)

(Leptosphaeriaceae)/
Acer truncatum Bunge

(branches, Sapindaceae)

Acetone extract 265 C15H23NO3

Dongling
Mountain, Beijing,

China
[43]

Brasilamide C (47)

Paraconiothyrium brasiliense
Verkley (M3–3341)

(Leptosphaeriaceae)/
Acer truncatum Bunge

(branches, Sapindaceae)

Acetone extract 279 C15H21NO4

Dongling
Mountain, Beijing,

China
[43,44]

Brasilamide D (48)

Paraconiothyrium brasiliense
Verkley (M3–3341)

(Leptosphaeriaceae)/
Acer truncatum Bunge

(branches, Sapindaceae)

Acetone extract 321 C17H23NO5

Dongling
Mountain, Beijing,

China
[43]

Brasilamide K (49)

Paraconiothyrium brasiliense
Verkley (M3–3341)

(Leptosphaeriaceae)/
Acer truncatum Bunge

(branches, Sapindaceae)

EtOAc extract 279 C15H21NO4

Dongling
Mountain, Beijing,

China
[44]

Brasilamide L (50)

Paraconiothyrium brasiliense
Verkley (M3–3341)

(Leptosphaeriaceae)/
Acer truncatum Bunge

(branches, Sapindaceae)

EtOAc extract 265 C15H23NO3

Dongling
Mountain, Beijing,

China
[44]

Brasilamide M (51)

Paraconiothyrium brasiliense
Verkley (M3–3341)

(Leptosphaeriaceae)/
Acer truncatum Bunge

(branches, Sapindaceae)

EtOAc extract 293 C15H19NO5

Dongling
Mountain, Beijing,

China,
[44]

Brasilamide N (52)

Paraconiothyrium brasiliense
Verkley (M3–3341)

(Leptosphaeriaceae)/
Acer truncatum Bunge

(branches, Sapindaceae)

EtOAc extract 279 C15H21NO4

Dongling
Mountain, Beijing,

China
[44]

Craterodoratin I (53) Craterellus odoratus
(Cantharellaceae) EtOAc extract 250 C15H22O3

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin J (54) Craterellus odoratus
(Cantharellaceae) EtOAc extract 282 C15H22O5

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin K (55) Craterellus odoratus
(Cantharellaceae) EtOAc extract 282 C15H22O5

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin L (56) Craterellus odoratus
(Cantharellaceae) EtOAc extract 278 C15H18O5

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]
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Table 1. Cont.

Compound Name Fungal Source/Host Extract/Fraction Mol.
Wt.

Mol.
Formula Location Ref.

Sporulosoic acid A
(57)

Paraconiothyrium sporulosum
YK-03 Verkley

(Leptosphaeriaceae)/Sea mud
EtOAc extract 282 C15H22O5

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Sporulosoic acid B
(58)

Paraconiothyrium sporulosum
YK-03 Verkley

(Leptosphaeriaceae)/Sea mud
EtOAc extract 280 C15H20O5

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Sporulamide A (59)
Paraconiothyrium sporulosum

YK-03 Verkley
(Leptosphaeriaceae)/Sea mud

EtOAc extract 265 C15H23NO3

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Sporulamide B (60)
Paraconiothyrium sporulosum

YK-03 Verkley
(Leptosphaeriaceae)/Sea mud

EtOAc extract 249 C15H23NO2

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Massarinolin B (61)
Massarina tunicata (Lophios-

tomataceae)/Submerged
twig

EtOAc extract 266 C15H22O4

Lemonweir River
in Adams County,
Wisconsin, USA

[23]

Craterellus odoratus
(Cantharellaceae) EtOAc extract - -

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Massarinolin B
methyl ester (62)

Paraconiothyrium sporulosum
YK-03 Verkley

(Leptosphaeriaceae)/Sea mud
EtOAc extract 280 C16H24O4

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Craterodoratin R (63) Craterellus odoratus
(Cantharellaceae) EtOAc extract 282 C15H22O5

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin G (64) Craterellus odoratus
(Cantharellaceae) EtOAc extract 278 C16H22O4

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Craterodoratin H (65) Craterellus odoratus
(Cantharellaceae) EtOAc extract 278 C16H22O4

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Brasilterpene A (66)

Paraconiothyrium brasiliense
HDN15-135

(Leptosphaeriaceae)/Deep-
sea

sediment

EtOAc extract 294 C16H22O5
Indian Ocean,

China [45]

Brasilterpene B (67)

Paraconiothyrium brasiliense
HDN15-135

(Leptosphaeriaceae)/Deep-
sea

sediment

EtOAc extract 294 C16H22O5
Indian Ocean,

China [45]

Brasilterpene C (68)

Paraconiothyrium brasiliense
HDN15-135

(Leptosphaeriaceae)/Deep-
sea

sediment

EtOAc extract 278 C16H22O4
Indian Ocean,

China [45]
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Table 1. Cont.

Compound Name Fungal Source/Host Extract/Fraction Mol.
Wt.

Mol.
Formula Location Ref.

Brasilterpene D (69)

Paraconiothyrium brasiliense
HDN15-135

(Leptosphaeriaceae)/Deep-
sea

sediment

EtOAc extract 278 C16H22O4
Indian Ocean,

China [45]

Brasilterpene E (70)

Paraconiothyrium brasiliense
HDN15-135

(Leptosphaeriaceae)/Deep-
sea

sediment

EtOAc extract 278 C16H22O4
Indian Ocean,

China [45]

Craterodoratin B (71) Craterellus odoratus
(Cantharellaceae) EtOAc extract 266 C15H22O4

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Tetracyclic Bergamotane Sesquiterpenoids

Expansolide A (72) Penicillium expansum
(Trichocomaceae)/Fruit EtOAc extract 306 C17H22O5 France [25]

Aspergillus fumigatus Fresenius
(Trichocomaceae)/Leaf litter EtOAc extract - - Waipoua Forest,

New Zealand [26]

Expansolide C (73)
Penicillium expansum

ACCC37275/Agricultural
Culture

Acetone extract 264 C15H20O4 China [46]

Decipienolide A (74)
Podospora decipiens Niessl (JS
270) (Podosporaceae)/Sheep

dung
EtOAc extract 378 C21H30O6 South Australia [24]

Decipienolide B (75)
Podospora decipiens Niessl (JS
270) (Podosporaceae)/Sheep

dung
EtOAc extract 378 C21H30O6 South Australia [24]

Donacinolide B (76)

Montagnula donacina
(Montagnulaceae)/Craterellus

odoratus (fruiting bodies,
Cantharellaceae)

EtOAc extract 246 C15H18O3

Southern part of
the Gaoligong
Mountains in

Yunnan, China

[32]

Massarinolin A (77)
Massarina tunicata (Lophios-

tomataceae)/Submerged
twig

EtOAc extract 262 C15H18O4

LemonweirRiver in
Adams County,
Wisconsin, USA

[23]

Craterellus odoratus
(Cantharellaceae) EtOAc extract - -

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Sporuloketal A (78)
Paraconiothyrium sporulosum

YK-03 Verkley
(Leptosphaeriaceae)/Sea mud

EtOAc extract 262 C15H18O4

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Sporuloketal B (79)
Paraconiothyrium sporulosum

YK-03 Verkley
(Leptosphaeriaceae)/Sea mud

EtOAc extract 262 C15H18O4

Intertidal zone of
Bohai Bay river in
Liaoning, China

[31]

Expansolide B (80) Penicillium expansum
(Trichocomaceae) EtOAc extract 306 C17H22O5 France [25]

Aspergillus fumigatus Fresenius
(Trichocomaceae)/Leaf litter EtOAc extract - - Waipoua Forest,

New Zealand [26]
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Table 1. Cont.

Compound Name Fungal Source/Host Extract/Fraction Mol.
Wt.

Mol.
Formula Location Ref.

Expansolide D (81)

Penicillium expansum
ACCC37275, (Trichoco-
maceae)/Agricultural

Culture

Acetone extract 264 C15H20O4 China [46]

Donacinolide A (82)

Montagnula donacina
(Montagnulaceae)/Craterellus

odoratus (fruiting bodies,
Cantharellaceae)

EtOAc extract 246 C15H18O3

Southern part of
the Gaoligong
Mountains in

Yunnan, China

[32]

Purpurolide B (83)

Penicillium purpurogenum
IMM003

(Trichocomaceae)/Edgeworthia
Chrysantha (leaves,

Thymelaeaceae)

EtOAc extract 336 C17H20O7

Hangzhou Bay,
Hangzhou,

Zhejiang, China
[47]

Purpurolide C (84)

Penicillium purpurogenum
IMM003

(Trichocomaceae)/Edgeworthia
Chrysantha (leaves,

Thymelaeaceae)

EtOAc extract 308 C16H20O6

Hangzhou Bay,
Hangzhou,

Zhejiang, China
[47]

Purpurolide D (85)

Penicillium purpurogenum
IMM003

(Trichocomaceae)/Edgeworthia
Chrysantha (leaves,

Thymelaeaceae)

EtOAc extract 294 C15H18O6

Hangzhou Bay,
Hangzhou,

Zhejiang, China
[48]

Purpurolide E (86)

Penicillium purpurogenum
IMM003

(Trichocomaceae)/Edgeworthia
Chrysantha (leaves,

Thymelaeaceae)

EtOAc extract 278 C15H18O5

Hangzhou Bay,
Hangzhou,

Zhejiang, China
[48]

Purpurolide F (87)

Penicillium purpurogenum
IMM003

(Trichocomaceae)/Edgeworthia
Chrysantha (leaves,

Thymelaeaceae)

EtOAc extract 464 C25H36O8

Hangzhou Bay,
Hangzhou,

Zhejiang, China
[48]

Donacinoic acid A
(88)

Montagnula donacina
(Montagnulaceae)/Craterellus

odoratus (fruiting bodies,
Cantharellaceae)

EtOAc extract 264 C15H20O4

Southern part of
the Gaoligong
Mountains in

Yunnan, China

[32]

Craterellus odoratus
(Cantharellaceae) EtOAc extract - -

Southern part of
the Gaoligong-

Mountains,
Yunnan, China

[30]

Sporulaminal A (89)
Paraconiothyrium sporulosum

YK-03
(Leptosphaeriaceae)/Sea mud

EtOAc extract 247 C15H21NO2

Intertidal zone of
Bohai river in

Liaonign, China
[49]

Sporulaminal B (90)
Paraconiothyrium sporulosum

YK-03
(Leptosphaeriaceae)/Sea mud

EtOAc extract 247 C15H21NO2

Intertidal zone of
Bohai river in

Liaonign, China
[49]

Ampullicin (91)
Ampulliferina-like sp. No. 27

(Ampullicephala)/Pinus
thunbergii (dead tree, Pinaceae)

Acetone extract 259 C15H17NO3 Japan [50,51]

Isoampullicin (92)
Ampulliferina-like sp. No. 27

(Ampullicephala)/Pinus
thunbergii (dead tree, Pinaceae)

Acetone extract 259 C15H17NO3 Japan [50]
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Table 1. Cont.

Compound Name Fungal Source/Host Extract/Fraction Mol.
Wt.

Mol.
Formula Location Ref.

Dihydroampullicin
(93)

Ampulliferina-like sp. No. 27
(Ampullicephala)/Pinus

thunbergii (dead tree, Pinaceae)
Acetone extract 261 C15H19NO3 Japan [51]

Eutypellacytosporin
A (94)

Eutypella sp. D-1
(Diatrypaceae)/Soil sample

CH2Cl2 fraction
of EtOAc

extract
714 C40H58O11

London Island of
Kongsfjorden of the

Ny-Ålesund
District, Arctic,

Norway

[52]

Eutypellacytosporin
B (95)

Eutypella sp. D-1
(Diatrypaceae)/Soil sample

CH2Cl2 fraction
of EtOAc

extract
714 C40H58O11

London Island of
Kongsfjorden of the

Ny-Ålesund
District, Arctic,

Norway

[52]

Eutypellacytosporin
C (96)

Eutypella sp. D-1
(Diatrypaceae)/Soil sample

CH2Cl2 fraction
of EtOAc

extract
714 C40H58O11

London Island of
Kongsfjorden of the

Ny-Ålesund
District, Arctic,

Norway

[52]

Eutypellacytosporin
D (97)

Eutypella sp. D-1
(Diatrypaceae)/Soil sample

CH2Cl2 fraction
of EtOAc

extract
714 C40H58O11

London Island of
Kongsfjorden of the

Ny-Ålesund
District, Arctic,

Norway

[52]

Surveying their bioactivities may open a new research area for the synthesis of new
agents from these metabolites by synthetic and medicinal chemists. The literature search
for the reported data was performed using diverse databases and publishers, including
Web of Science, Google Scholar, PubMed, Scopus, SciFinder, Wiley, SpringerLink, and
ACS Publications, using specific keywords (bergamotane, marine, fungi, biosynthesis, and
biological activities).

2. Structural Assignment and Stereochemistry Determination

A total of 97 metabolites have been separated from various fungal source extracts
using different chromatographic techniques and characterized by NMR, MS, and IR spectral
analyses as well as chemical derivatization. The relative configuration of these metabolites
was established using NOESY or ROESY spectral analyses. Various studies reported
the assigning of their absolute stereochemistry using total synthesis [53,54], Mosher’s
method [26], X-ray diffraction, chemical conversion [34,43,55], and ECD analyses [31]. The
reported metabolites have been categorized into bi-, tri-, and tetracyclic derivatives.

3. Biological Activities of Bergamotane Sesquiterpenoids

Various reported studies revealed the assessment of bergamotane sesquiterpenoids for
diverse bioactivities, including plant growth regulation, phototoxic, antimicrobial, anti-HIV,
cytotoxic, pancreatic lipase inhibition, antidiabetic, anti-inflammatory, and immunosup-
pressive, which were summarized in this work (Table 2). Additionally, the reported
structure–activity relation was included.



Mar. Drugs 2022, 20, 771 11 of 32

Table 2. Biological activities of fungal naturally occurring in bergamotane sesquiterpenoids.

Compound Name Biological
Activity

Assay, Organism, or
Cell Line

Biological Results
Ref.

Compound Positive Control

E-β-trans-5,8,11-
trihydroxybergamot-

9-ene
(4)

Cytotoxicity MTT/U937 84.9 (IC50) Doxorubicin 0.021 µM (IC50) [29]

Craterodoratin M
(7) Immunosuppressive BALB/c mice T and B

lymphocyte/LPS 15.43 µM (IC50) Cyclosporin A 0.47 µM
(IC50) [30]

Craterodoratin N
(8) Immunosuppressive BALB/c mice T and B

lymphocyte/LPS 13.26 µM (IC50) Cyclosporin A 0.47 µM
(IC50) [30]

Craterodoratin O
(9) Immunosuppressive BALB/c mice T and B

lymphocyte/LPS 17.12 µM (IC50) Cyclosporin A 0.47 µM
(IC50) [30]

Craterodoratin Q
(11) Immunosuppressive BALB/c mice T and B lym-

phocyte/Concanavalin A 31.50 µM (IC50) Cyclosporin A 0.04 µM
(IC50) [30]

Xylariterpenoid A
(16) Anti-inflammatory Spectrophotometrically/LPS 17.5 µM (IC50)

Quercetin 17.0 µM (IC50)
NG-monomethyl-L-

arginine 9.7 µM
(IC50)

[35]

Xylariterpenoid B
(17) Anti-inflammatory Spectrophotometrically/LPS 21.0 µM (IC50)

Quercetin 17.0 µM (IC50)
NG-monomethyl-L-

arginine 9.7 µM
(IC50)

[35]

Eutypeterpene B
(18) Anti-inflammatory Spectrophotometrically/LPS 13.4 µM (IC50)

Quercetin 17.0 µM (IC50)
NG-monomethyl-L-

arginine 9.7 µM
(IC50)

[35]

Eutypeterpene C
(19) Anti-inflammatory Spectrophotometrically/LPS 16.8 µM (IC50)

Quercetin 17.0 µM (IC50)
NG-monomethyl-L-

arginine 9.7 µM
(IC50)

[35]

Eutypeterpene D
(20) Anti-inflammatory Spectrophotometrically/LPS 21.4 µM (IC50)

Quercetin 17.0 µM (IC50)
NG-monomethyl-L-

arginine 9.7 µM
(IC50)

[35]

Eutypeterpene E
(21) Anti-inflammatory Spectrophotometrically/LPS 18.7 µM (IC50)

Quercetin 17.0 µM (IC50)
NG-monomethyl-L-

arginine 9.7 µM
(IC50)

[35]

Eutypeterpene F
(22) Anti-inflammatory Spectrophotometrically/LPS 24.3 µM (IC50)

Quercetin 17.0 µM (IC50)
NG-monomethyl-L-

arginine 9.7 µM
(IC50)

[35]

(10S)-
Xylariterpenoid A

(23)
Anti-inflammatory Spectrophotometrically/LPS 86.0 µM (IC50) Aminoguanidine 23.0 µM

(IC50) [34]

(10R)-
Xylariterpenoid B

(24)
Anti-inflammatory Spectrophotometrically/LPS 230.0 µM (IC50) Aminoguanidine 23.0 µM

(IC50) [34]

Xylariterpenoid E
(25) Anti-inflammatory Spectrophotometrically/LPS 120.0 µM (IC50) Aminoguanidine 23.0 µM

(IC50) [34]

Xylariterpenoid F
(26) Anti-inflammatory Spectrophotometrically/LPS 85.0 µM (IC50) Aminoguanidine 23.0 µM

(IC50) [34]
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Table 2. Cont.

Compound Name Biological
Activity

Assay, Organism, or
Cell Line

Biological Results
Ref.

Compound Positive Control

Xylariterpenoid G
(27) Anti-inflammatory Spectrophotometrically/LPS 85.0 µM (IC50) Aminoguanidine 23.0 µM

(IC50) [34]

Eutypeterpene A
(28) Anti-inflammatory Spectrophotometrically/LPS 21.0 µM (IC50)

Quercetin 17.0 µM (IC50)
NG-monomethyl-L-

arginine 9.7 µM
(IC50)

[35]

Craterodoratin C
(30) Immunosuppressive BALB/c mice T and B

lymphocyte/LPS 12.62 µM (IC50) Cyclosporin A 0.47 µM
(IC50) [30]

Craterodoratin S
(42) Immunosuppressive BALB/c mice T and B

lymphocyte/LPS 22.68 µM (IC50) Cyclosporin A 0.47 µM
(IC50) [30]

Craterodoratin J
(54) Immunosuppressive BALB/c mice T and B

lymphocyte/LPS 19.40 µM (IC50) Cyclosporin A 0.47 µM
(IC50) [30]

Craterodoratin L
(56) Immunosuppressive BALB/c mice T and B

lymphocyte/LPS 13.71 µM (IC50) Cyclosporin A 0.47 µM
(IC50) [30]

Massarinolin B (61) Immunosuppressive BALB/c mice T and B lym-
phocyte/Concanavalin A 0.98 µM (IC50) Cyclosporin A 0.04 µM

(IC50) [30]

Brasilterpene A
(66) Hypoglycemic Spectrophotometrically/

Diabetic zebrafish model

449.3
pmol/larva

(IC50)

Rosiglitazone 395.6
pmol/larva (IC50) [45]

Brasilterpene C
(68) Hypoglycemic Spectrophotometrically/

Diabetic zebrafish model

420.4
pmol/larva

(IC50)

Rosiglitazone 395.6
pmol/larva (IC50) [45]

Expansolide C (73) α-Glucosidase
inhibition

Spectrophotometrically/α-
glucosidase

enzyme
0.50 mM (IC50) Acarbose 1.90 mM (IC50) [46]

Expansolide D (81) α-Glucosidase
inhibition

Spectrophotometrically/α-
glucosidase

enzyme
0.50 mM (IC50) acarbose 1.90 mM (IC50) [46]

Purpurolide B (83) Pancreatic lipase
inhibition

Spectrophotometrically/
pancreatic lipase enzyme 5.45 µM (IC50) Kaempferol 1.50 µM (IC50) [47]

Purpurolide C (84) Pancreatic lipase
inhibition

Spectrophotometrically/
pancreatic lipase enzyme 6.63 µM (IC50) Kaempferol 1.50 µM (IC50) [47]

Purpurolide D (85) Pancreatic lipase
inhibition

Spectrophotometrically/
pancreatic lipase enzyme 1.22 µM (IC50) Kaempferol 1.50 µM (IC50) [48]

Purpurolide E (86) Pancreatic lipase
inhibition

Spectrophotometrically/
pancreatic lipase enzyme 6.50 µM (IC50) Kaempferol 1.50 µM (IC50) [48]

Purpurolide F (87) Pancreatic lipase
inhibition

Spectrophotometrically/
pancreatic lipase enzyme 7.88 µM (IC50) Kaempferol 1.50 µM (IC50) [48]

Donacinoic acid A
(88) Immunosuppressive BALB/c mice T and B

lymphocyte/LPS 13.23 µM (IC50) Cyclosporin A 0.47 µM
(IC50) [30]

Eutypellacytosporin
A (94) Cytotoxicity CCK-8/DU145 17.1 µM (IC50) Cisplatin 2.9 µM (IC50) [52]

CCK-8/SW1990 7.3 µM (IC50) Cisplatin 1.2 µM (IC50) [52]
CCK-8/Huh7 8.4 µM (IC50) Cisplatin 2.2 µM (IC50) [52]

CCK-8/PANC-1 9.7 µM (IC50) Cisplatin 4.5 µM (IC50) [52]
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Table 2. Cont.

Compound Name Biological
Activity

Assay, Organism, or
Cell Line

Biological Results
Ref.

Compound Positive Control

Eutypellacytosporin
B (95) Cytotoxicity CCK-8/DU145 11.0 µM (IC50) Cisplatin 2.9 µM (IC50) [52]

CCK-8/SW1990 4.9 µM (IC50) Cisplatin 1.2 µM (IC50) [52]
CCK-8/Huh7 4.9 µM (IC50) Cisplatin 2.2 µM (IC50) [52]

CCK-8/PANC-1 7.9 µM (IC50) Cisplatin 4.5 µM (IC50) [52]

Eutypellacytosporin
C (96) Cytotoxicity CCK-8/DU145 13.5 µM (IC50) Cisplatin 2.9 µM (IC50) [52]

CCK-8/SW1990 9.6 µM (IC50) Cisplatin 1.2 µM (IC50) [52]
CCK-8/Huh7 11.2 µM (IC50) Cisplatin 2.2 µM (IC50) [52]

CCK-8/PANC-1 10.2 µM (IC50) Cisplatin 4.5 µM (IC50) [52]

Eutypellacytosporin
D (97) Cytotoxicity CCK-8/DU145 13.4 µM (IC50) Cisplatin 2.9 µM (IC50) [52]

CCK-8/SW1990 8.2 µM (IC50) Cisplatin 1.2 µM (IC50) [52]
CCK-8/Huh7 9.6 µM (IC50) Cisplatin 2.2 µM (IC50) [52]

CCK-8/PANC-1 7.5 µM (IC50) Cisplatin 4.5 µM (IC50) [52]

3.1. Anti-Inflammatory Activity

NO (nitric oxide) is a substantial pro-inflammatory mediator, and its excessive pro-
duction is accompanied with various inflammatory illnesses; therefore, it possesses a
remarkable role for regulating immune responses and inflammation [56]. NO production
inhibitors may represent the potential capacity for treating various inflammatory disor-
ders. Thus, further research for fungal metabolites must be conducted to discover novel
anti-inflammation agents.

The epigenetic chemical manipulation of Eutypella sp. derived from deep-sea hy-
drothermal sulfide deposit by co-treatment with SBHA (histonedeacetylase inhibitor,
suberohydroxamic acid) and 5-Aza (DNA methyltransferase inhibitor, 5-azacytidine) was
shown to activate a biosynthetic sesquiterpene-linked gene cluster [35]. From elicitor-
treated cultures EtOAc extract, eutypeterpenes A–F (18–22 and 28) along with xylariter-
penoids A (16) and B (17) were purified using SiO2/RP-18/HPLC that were identified by
spectral analyses, as well as by using chemical conversion, X-ray diffraction, ECD, and
calculated NMR for configuration assignments.

Eutypeterpene A (28) is the first bergamotene sesquiterpene incorporating a diox-
olanone moiety. These metabolites were assessed for their NO production inhibitory
capacity induced by LPS-(lipopolysaccharide) in RAW 264.7 macrophages [35]. The results
indicated thatcompound 18 and 19 (IC50 13.4 and 16.8 µM, respectively) displayed more
effectiveness than quercetin (IC50 of 17.0 µM), whereas other metabolites had noticeable
potentials (IC50 values ranged from 18.7 to 24.3 µM) with weak cytotoxic capacities (IC50
> 100 µM). A structure–activity study revealed that the analog with a triol unit (18) at
the side chain was more effective than compound 16, 17, and 19 with a diol unit, which
were more potent than compound 20, 21, and 28 with one hydroxy group. Furthermore,
the α,β-unsaturated ketone unit (as in compound 21 and 22) and the OH-linked carbon
configuration also affected the activities (16 versus 17) [35] (Figure 1).
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Biogenetically, compounds 18–22 are derived from FPP that performs a 1,6-cyclization
to produce bisabolane (A). The 4,7-cyclization of A generates bergamotane (B), which
further generates 18–22 via diverse oxidation and reduction processes. Additionally, com-
pound 28 is formed from 18 by carbonate incorporation [35] (Scheme 1).

The deep-sea-isolated Graphostroma sp. MCCC3A00421 associated with the Atlantic
Ocean hydrothermal sulfide deposits biosynthesized new bergamotane sesquiterpenoids:
(10S)-xylariterpenoid A (23), (10R)-xylariterpenoid B (24), xylariterpenoid E (25), xylariter-
penoid F (26), and xylariterpenoid G (27), which were purified using SiO2/OSD/Sephadex
LH-20/RP-18 CC and preparative TLC. They were characterized by extensive spectral
data, and their absolute configuration was established by ECD, Cu-Ka-single-crystal X-ray
diffraction, and modified Mosher’s method analyses. Compound 25 is trinor-bergamotane.
Compounds 23, 26, and 27 revealed moderate inhibition potentials (IC50s of 86, 85, and
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85 µM, respectively) of NO production in LPS-stimulated RAW264.7 macrophages com-
pared with aminoguanidine (IC50 of 23 µM). It was noted that bergamotane moiety’s 10S
configuration obviously boosted the activity as in compound 23 (10S, IC50 of 85 µM) versus
compound 24 (10R, of IC50 230 µM) (Figure 2) [34].
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3.2. Phytotoxic Activity

Prehelminthosporol (38) and dihydroprehelminthosporol (34) along with compounds
35–37, 39, 40, and 43 were separated by SiO2, flash CC, and preparative TLC from the
EtOAc extract of the Bipolaris species, which is a Sorghum halepnse (Johnson grass) pathogen
(Figure 3). These metabolites were assessed for their phytotoxic potential towards Sorghum
bicolor (Sorghum) and Sorghum balepense (Johnson grass) in leaf spot assays [36,37]. Com-
pounds 34, 38, and 39 produced similar lesions to those caused by the fungus in the field.
The lesions appeared as a reddish-brown area (0.3–0.5 cm diameter) surrounded by a black
circle with an outer chlorotic zone. Compounds 34 and 38 (concentration of 25 µg/5 µL)
had comparable toxic effectiveness, while compound 38 maintained its effect at a lower
concentration of 2.5 µg/5 µL; meanwhile, the other compounds were non-toxic [36,37].
Victoxinine was also toxic to cereals in the order of oats > rye and barley > wheat > sorghum
in a root inhibition assay [37]. The phytotoxic influence of compounds 34 and 38–40 versus
sorghum, corn, bent-grass, sickle-pod, and morning glory was also assessed in leaf spot
assays. Moreover, victoxinine caused a water-soaked translucent appearance with defined
irregular necrotic edges. It is worth mentioning that 3-deoxyanthocyanidins are sorghum
stress response metabolites (phytoalexins), which were accountable for the red wound
response. Compounds 34, 38, and 39 were elicitors of a very strong reddening compared
with the wounding-produced reddening, but compound 40 did not elicit a sorghum phy-
toalexin response. In bent grass and corn, compounds 34 and 38–40 produced a light-brown
area limited by a chlorotic region, whereas in sickle pod and morning glory, they showed
necrotic lesions that extended at high concentrations beyond the under-drop area. It is
noteworthy that compound 38 was the most toxic compound versus all tested plants except
for the morning glory [37].
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Helminthosporium victoriae, the causative agent of oats Victoria blight disease yielded
phytotoxins, victoxinine (40) and victoxinine α-glycerophosphate (41), which were sepa-
rated from its diethyl ether extract using Sephadex LH-20 and SiO2 CC and detected on the
TLC plate by giving a blue color with 5% vanillin:H2SO4 [41] (Figure 4). The existence of
α-glycerophosphate moiety was established by coupling between the phosphorous and
carbon. Compound 40 completely prohibited the root growth of toxin-susceptible and
toxin-resistant oats (concentration of 2.5 × 10−4 M); it was ≈ 7500 times more toxic for
susceptible plants on a weight basis, while its toxicity for resistant plants was nearly similar,
suggesting a role of the victoxinine moiety on the toxicity [38,39,41]. On the other side,
compound 41 (concentration of 100 µg/mL) demonstrated little or no growth inhibition
effectiveness on either susceptible or resistant oats [41].
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3.3. Anti-HIV Activity

From Paraconiothyrium brasiliense, new tricyclic sesquiterpenoids, brasilamides A–D
(45–48) and the formerly reported pinthunamide (44), were separated from the culture’s
EtOAc extract utilizing SiO2/Sephadex LH-20 CC and HPLC. Their structures were es-
tablished using NMR and X-ray analyses (Figure 5). Compounds 45 and 46 are rare
metabolites having a 4-oxatricyclo[3.3.1.02,7]nonane moiety with a tetrahydro-2H-pyrone or
a tetrahydro-2H-pyran linked with bicyclo[3.1.1]heptane ring at C-5 and C-2, whereas com-
pounds 47 and 48 are analogs of 44, possessing an unprecedented 9-oxatricyclo[4.3.0.04,7]-
nonane core.

The differences of the above-mentioned compounds from 44 were the existence of a
tetrahydrofuran moiety connected to the bicycle[3.1.1]heptane unit instead of γ-lactone
ring, as well as different C-10 substituents. Compounds 45–48 demonstrated inhibitory
effectiveness (EC50s of 108.8, 57.4, and 48.3 µM, respectively) versus HIV-1 replication in
C8166 cells compared with indinavir sulfate (EC50 of 8.2 nM) [43]. Biogenetically, they
were derived from the mevalonate/trans-cis-farnesol/bisabolene/bergamotane pathway
(Scheme 2).
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3.4. Immunosuppressive Activity

Immunosuppressants are drugs that prohibit body immunity and are principally
utilized in organ transplantation to overcome rejection and in auto-immune illnesses [57].
Currently, many immunosuppressive agents act by prohibiting T-cell proliferation; how-
ever, there is no new, safe, and efficient immune-suppressive agent that prohibits B-cell
proliferation [58].

Dai et al. separated eighteen bergamotane sesquiterpenoids from the EtOAc extract of
Craterellus ordoratus: craterodoratins A–R (7–11, 29–33, 53, 55, 56, 63–65, and 71) and a new
victoxinine derivative, craterodoratin S (42), along with the previously isolated 5, 61, 77,
and 88 by SiO2/RP-18/Sephadex LH-20/preparative HPLC (Figure 6) [30].
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Their structures with absolute configurations were established by spectral, X-ray
diffraction, and ECD analyses and NMR calculations. Compounds 29 and 71 possess a
rare skeleton, where the C-14methyl in 71 showed a further 1,2-migration. On the other
hand, compounds 7–11, 53, 55, 56, and 63–65 belong to β-pinene derivatives that produced
30–33 through an alkyl migration (Figure 7). Compounds 7–10, 30, 42, 55, 61, and 88
demonstrated potent inhibitory potential versus LPS-caused B lymphocyte cell proliferation
(IC50s ranged from 0.67 to 22.68 µM) in BALB/c mice compared with cyclosporin A (IC50 of
0.47 µM), where compound 61 (IC50 0.67 µM) had the most potent effectiveness. Moreover,
compounds 11 and 61 possessed inhibition (IC50s of 31.50 and 0.98 µM, respectively)
on T lymphocyte cells proliferation induced by ConA (concanavalin A) compared with
cyclosporin A (IC50 0.04 µM). Structurally, it was noted that the α,β-unsaturated-carboxylic
acid unit could be the key functional group for the immunosuppressive potential of these
metabolites. Furthermore, compounds 61 and 7–10 with a β-pinene main core had a wider
range of bioactivities [30].

3.5. Antimicrobial Activity

From Podospora decipiens, two new tetracyclic sesquiterpenoids, decipienolides A (74)
and B (75), were separated from the EtOAc extract by SiO2 CC and HPLC analyses. They
were obtained as a mixture of inseparable epimers, having a 3-hydroxy-2,2-dimethylbutyric
acid sidechain as elucidated by an NMR analysis (Figure 8). The 74/75 mixture had an
antibacterial influence versus B. subtilis (inhibition zone diameter of 9–10 mm, concentration
of 200 µg/disk). Neither of them demonstrated capacity versus Ascobolus furfuraceus
NRRL6460, Sordaria fimicola NRRL6459, and C. albicans ATCC90029 [24]. Donacinolides
A (82) and B (76) (concentration of 50 µg/mL) revealed weak inhibition versus Salmonella
enterica subsp. enterica (inhibition rates of 24.3, 23.9, and 26.2%) in the microdilution
assay [32]. Furthermore, there were no observed antibacterial activity for purpurolides B
(83) and C (84) (concentration of 50 µM) versus E. coli ATCC25922, M. smegmatis mc2155
ATCC70084, S. aureus ATCC25923, and S. epidermidis ATCC12228 [47].
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3.6. Pancreatic Lipase Inhibition

Purpurolides B (83) and C (84) are new 6/4/5/5-tetracyclic sesquiterpenoids that were
separated from Penicillium purpurogenum IMM003 cultures by SiO2/RP-18/preparative
HPLC analysis. The structures and configurations of compounds 83 and 84 were established
using spectral and X-ray analyses as well as ECD and GIAO NMR data calculations
(Figure 9).
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Compounds 83 and 84 demonstrated potent pancreatic lipase inhibition (IC50s of 5.45
and 6.63 µM, respectively), compared with kaempferol (IC50 of 1.50 µM) [47]. These com-
pounds were possibly biosynthesized via numerous the cyclization and enzyme-catalyzed
oxidation of FPP (farnesyl pyrophosphate), leading to four- and six-membered rings and
the formation of two five-membered heterocyclic rings (Scheme 3) [47].
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Xia et al. separated from Penicillium purpurogenum IMM003 purpurolides D–F (85–87),
which are new polyoxygenated 6/4/5/5-tetracyclic bergamotanes, using SiO2/Sephadex-
LH-20/RP-18 CC and preparative HPLC processing [48]. Their elucidation was accom-
plished using spectral 13C NMR calculations coupled with DP4+ probability and ECD
analyses. Compound 87 had potent pancreatic lipase inhibition potential (IC50 of 1.22 µM)
compared with kaempferol (IC50 of 1.50 µM) and orlistat (IC50 of 0.75 µM), whereas
compounds 85 and 86 (IC50s of 6.50 and 7.88 µM, respectively) were five or six-fold less
powerful than 87, revealing that the C-14 hydroxylated decanoic acid moiety increased
the potency [48]. Therefore, polyoxygenated bergamotanes could be viable candidates as
pancreatic lipase inhibitors for further clinical development [48].

3.7. Antidiabetic Activity

From the deep sea-derived Paraconiothyrium brasiliense HDN15-135 EtOAc extract,
new bergamotane sesquiterpenoids, brasilterpenes A-E (66–70), featuring an uncommon
6/4/5-tricyclic ring system, were separated by SiO2/RP-18/Sephadex LH-20/HPLC and
assigned by diverse NMR analyses and X-ray diffraction, ECD, and DFT-NMR (density
functional theory calculations of nuclear magnetic resonance) data [45]. Their hypoglycemic
potential was estimated utilizing β-cell-ablated zebrafish larvae. Compounds 66 and
68 (concentration of 10 µM) remarkably lessened the glucose level down to 449.3 and
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420.4 pmol/larva respectively, compared with the β-cell-ablated group (Teton+) (glucose
level of 502.8 pmol/larva) and rosiglitazone (glucose level 395.6 pmol/larva) with no
toxic influence on zebrafish larvae up to 200 µM. It was found that compounds 66 and 68
notably minimized free blood glucose in vivo in hyperglycemic zebrafish by suppressing
gluconeogenesis and improving insulin sensitivity, which revealed that compound 68 had
promising antidiabetic potential [45]. The structure–activity study revealed that the activity
may be linked to the C-14 S-configuration of compounds 66 and 68, which represent
the main structural difference from 67 and 69. The existence of C-3-OH may weaken
the influence in 68 versus 66; however, the 42 endocyclic double bond may enhance
the potential in 70 versus 69 [45]. Therefore, compound 68 may provide a scaffold for
hypoglycemic drug development. Compounds 66–70 are also biosynthesized by the FPP
pathway (Scheme 4). The cyclization of FPP via NPP (nerolidyl diphosphate) followed by a
bisabol intermediate yields the bergamotane skeleton. These compounds are created by
further oxidation, 9-OH-nucleophilic attack, and methylation processes. Because of the
nucleophilic attack direction flexibility during the furan ring formation, compounds 66–69
appeared as C14-epimers in pairs [45] (Scheme 4).
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Ying et al. isolated two new derivatives, expansolides C (73) and D (81), in addition
to 72 and 80 from the plant pathogen Penicillium expansum ACCC37275 [46]. In an α-
glucosidase inhibition assay; the 73/81 epimeric mixture (ratio 2:1) possessed a more
powerful effectiveness (IC50 of 0.50 mM) compared with acarbose (IC50 1.90 mM), while
the 72/80 epimeric mixture possessed no apparent potential. It was assumed that the acetyl
group in compounds 72 and 80 impeded their binding with the α-glucosidase, resulting in
loss of activity [46].

3.8. Plant Growth Regulation

Kimura et al. purified the tricyclic amide sesquiterpenoid pinthunamide (44) from
the acetone extract of Ampulliferina sp. at pH 2.0 utilizing SiO2 and sephadex LH20 CC
processing as well as crystallization from EtOAc extract, which gave positive NH2OH-HCI-
FeCl3 and KMnO4 reactions [42]. The compound was assigned by X-ray diffraction and
NMR methods. Its plant growth regulation effectiveness was evaluated using a lettuce
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seedling assay, where it (dose 300 mg/L) produced a 150% root growth acceleration over
the control seedlings (100%) while scarcely influencing the hypocotyl elongation at the
tested concentrations [42]. Its structure combined a unique configuration of six-, five-, and
four-membered rings that was proposed to be biosynthesized via the mevalonate/trans-cis-
farnesol/bisabolene/bergamotane pathway (Scheme 5) [42].
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Furthermore, in 1990, Kimura et al. purified another two new plant growth regulators,
ampullicin (91) and isoampullicin (92) from Ampulliferina sp. No. 27 associated with Pinus
thunbergii dead tree by SiO2 CC utilizing benzene:acetone as an eluent [50] (Figure 10).
They were stereoisomers that had γ-lactam rings. Additionally, they (doses of 300 and
30 mg/L) were shown to promote lettuce seedling root growth by 200% over the control
lettuce seedlings (100%) [50]. In 1993, the same group separated a minor metabolite, dihy-
droampullicin (93), characterized by the absence of the C8-C9 double bond. The compound
promoted a 160% growth rate in lettuce seedling roots (dose of 300 mg/L) compared
with the control; however, it had no influence on the hypocotyl growth, indicating that
the C8-C9-double bond (C8-C9) was substantial in lettuce seedlings‘ root growth [51].
Bermejo et al. reported the synthesis of (+)−91 and 92 from (R)-(-)-carvone with a 4.5%
overall yield using a stereo-selective 18-step sequence application [59]. The EtOAc extract
of Aspergillus fumigatus Fresenius separated from leaf litter yielded expansolides A (72) and
B (80). They had 2S/4S/6S/7R/9R/11S and 2S/4R/6S/7R/9R/11S, respectively, based on
modified Mosher’s method. The compounds noticeably prohibited etiolated wheat coleop-
tiles growth by 100% and 59% at 10−3 M and 10−4 M solution compared with LOGRAN
(commercial herbicide) (%inhibition of 80 and 42%) at the same concentrations [26].
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3.9. Cytotoxic Activity

Compounds 3 and 4, which were new β-bergamotane sesquiterpenoids, were sepa-
rated by SiO2/RP-18/HPLC from the marine-associated Aspergillus fumigatus-YK-7 EtOAc
extract. Their antiproliferative effects on the U937 and PC-3 cell lines were measured
in vitro in an MTT assay. Compound 4 revealed a weak growth inhibition capacity (IC50 of
84.9 µM) versus the U937 cell line, while 3 had no activity (IC50 > 100 µM) compared with
doxorubicin hydrochloride (IC50 of 0.021 µM). On the other sides, both had no effect versus
PC-3 cells [29]. Wu et al. reported the separation of two new derivatives, xylariterpenoids
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A and B (16 and 17), from the EtOAc extract of Xylariaceae fungus by Sephadex LH-20/ODS
CC and reversed-phase HPLC processing [33]. Their structures and stereo-configuration
were proved utilizing NMR and CD methods. They are C-10 epimers having 2S/6S/7S/10R
and 2S/6S/7S/10S configurations, respectively. Unfortunately, they (IC50 > 40 µM) exhib-
ited no cytotoxic potential versus HL-60, MCF-7, SMMC-7721, A-549, and SW480 in an
MTT assay [33].

From Paraconiothynium brasiliense Verkley, new bergamotane sesquiterpenoids brasil-
amides K-N (49–52), featuring 4-oxatricyclo-(3.3.1.02,7)-nonane (as in 49) and 9-oxatricyclo-
(4.3.0.04,7)-nonane (as in 50–52) skeletons in addition to the formerly reported brasilamides
A and C (45 and 46), were purified from the fungus scale-up fermentation cultures using
SiO2/Sephadex LH-20/HPLC processing. They were elucidated via NMR analyses and
compound 52’s configuration was assured using modified Mosher’s method. Compound
49 is a 45-hydrogenated analog that has a tetrahydro-2H-pyrone unit linked at C-2 and
C-5 to the bicyclo(3.1.1)heptane framework, forming a 4-oxatricyclo-(3.3.1.0 2,7)-nonane
skeleton, whereas compounds 50–52 displayed unusual 9-oxatricyclo-(4.3.0.0 4,7)-nonane
skeletons. Compounds 50 and 51 are hydrogenated and oxygenated derivatives of 46,
respectively, while 52 differed from 46 by having a C-8-carbonyl, C-1-methyl, and C-12
hydroxyl group instead of methylene, oxy-methylene, and ketone carbonyl, respectively.
These metabolites (concentration of 50 µM) possessed no potential versus A549, A375,
MCF-7, CNE1-LMP1, EC109, MGC, PANC-1, and Hep3B-2 in the MTS assay [44].

Montagnula donacina (edible mushroom) biosynthesized rare tetracyclic bergamotane
sesquiterpenoids, donacinolides A (82) and B (76) and donacinoic acids A (88) and B (6),
which were separated using SiO2 CC/Sephadex LH-20 CC/HPLC processing and were
characterized using spectroscopic data, X-ray diffraction analysis, and computational meth-
ods. Compounds 76 and 82 are C9 epimers with a spiroketal moiety having 1S/5S/6S/9R
and 1S/5S/6S/9S configurations, respectively, whereas 88 and 6 exhibited α,β-unsaturated
carboxylic acid moiety and had 1R/2R/5S/6S/9S/14S and 1R/3S/5R/6R/9S configura-
tions, respectively. These metabolites lacked a marked cytotoxic potential (IC50 > 40 µM)
versus HL-60, SW480, A549, SMMC-7721, and MCF-7 [32].

In addition, purpurolides B (83) and C (84) had no cytotoxicity versus M14, HCT-116,
U87, A2780, BGC-823, Bel-7402, and A549 [47], whereas compounds 85–87 (concentration
of 50 µM) were inactive versus HCT-116, BGC-823, and Bel-7402 cell lines [48].

The chemical investigation of Arctic fungus Eutypella sp. D-1′s EtOAc extract yielded
new derivatives, eutypellacytosporins A–D (94–97), which were established by spectro-
scopic analysis and modified Mosher’s method. Structurally, these metabolites are related
to decipienolides and cytosporins. They exhibited (IC50s ranging from 4.9 to 17.1 µM)
weak-to-moderate cytotoxic influence versus DU145, SW1990, Huh7, and PANC-1 in the
CCK-8 assay, whereas Huh7 and SW1990 cell lines had more sensitivity to 94–97 (IC50s
ranging from 4.9 to 8.4 µM). On the other hand, compounds 95 and 97 possessed noticeable
potential versus PANC-1 (IC50s of 7.9 and 7.5 µM, respectively) compared with cisplatin
(IC50 4.5 µM). The results revealed that the decipienolide moiety was substantial for activ-
ity; however, the C-33 configuration did not affect the activity [52]. It was proposed that
compounds 94–97 are created from gentisaldehyde precursor with subsequent isoprenyl
unit addition, double bond epoxidation, keto group hydrogenation, and an aliphatic chain
addition (Scheme 6). The other precursor, the 14-OH of decipienolide A 74 or B 75, is
produced from hydroxylation, allylic oxidation, and cyclization of farnesyl diphosphate
to give I with a bicycle[3.1.1]heptane. Additionally, (14S)-14-OH-expansolide C, (14R)-
14-OH-expansolide C, (14S)-14-OH-expansolide D, and (14R)-14-OH-expansolide D are
formed via two steps of reface- and si-face attacks of the OH groups on the ketone and
aldehyde groups, respectively. After these steps, compounds 94–97 were produced from
the two groups of 14-OH-expansolides C and D through condensation reactions with
(S)-3-hydroxy-2,2-dimethylbutanoic acid and cytosporin D, respectively [52].
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4. Conclusions

Fungal metabolites are an unparalleled pool for pharmaceutical lead discovery.
Sesquiterpenoids involving the bergamotane skeleton have been separated from vari-
ous sources, including fungi. In the current work, 97 bergamotane sesquiterpenoids were
reported from various fungal species derived from different sources, including endophytic
(24 compounds), mushroom (21 compounds), sea mud (14 compounds), sea sediment
(13 compounds), deep-sea deposit (8 compounds), and sponges (3 compounds) (Figure 11).
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Figure 11. Number of bergamotane sesquiterpenoids reported from fungi derived from various
sources. End.: endophytic; Mus.: mushroom; SeaM.: sea mud-derived; SeaS.: sea sediment-
derived; SeaD.: sea deposit-derived; Mus.D: mushroom-derived; Cult.: cultured; So.: soil-derived;
Sp.D.: sponge-derived; Li.D.: lichen-derived; Sd.D.: sheep dung-derived; LeL.D.: leaf litter-derived;
Fr.D.: fruit-derived.

The majority of compounds have been reported from Paraconiothyrium (25 compounds),
Craterellus (23 compounds), and Eutypella (12 compounds) species (Figure 12). Interestingly,
many of these metabolites normally occurred as inseparable mixtures. These metabolites
were assessed for diverse bio-activities. It is obvious that cytotoxic evaluation accounts for
the largest proportion of biological assessments, where they had weak or no effectiveness
on the tested cell lines. On the other hand, there are limited reports on their phytotoxic,
plant growth regulation, antimicrobial, anti-HIV, cytotoxic, anti-inflammatory, pancreatic
lipase inhibition, immunosuppressive, and antidiabetic activities. Therefore, this suggested
more potential for trying other types of pharmacological effectiveness. Victoxinine (40)
and prehelminthosporolactone (39) displayed potential phytotoxic capacities; therefore,
they could be utilized as bioherbicides or as lead metabolites for synthesizing more ef-
ficacious phytotoxic compounds against various weeds. Pinthunamide (44), ampullicin
(91), isoampullicin (92), and dihydroampullicin (93) were found to selectively promote the
root growth. However, the phytotoxic and plant growth promotion potential should be
transferred from laboratory experiments into field settings for assessing the environmental
influences on these activities. Purpurolide F (87) had potent pancreatic lipase inhibition
potential that could be a viable candidate as a pancreatic lipase inhibitor for further clinical
development. Massarinolin B (61) had prominent immunosuppressive potential, suggest-
ing further in vivo and mechanistic investigations for the development of this metabolite
as an immunosuppressant. In silico studies for the reported metabolites that have not
been tested or have had no noticeable effectiveness in the estimated activities could be a
possible area of future research. Moreover, synthesis and structural modifications of these
metabolites may produce more potential and useful tags of these metabolites through click
chemistry, which is a new approach for synthesizing drug-like molecules that can boost the
drug discovery process.
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Abbreviations

5-Aza 5-azacytidine
A2780 Human ovarian cancer cell line
4-MUO 4-methylumbelliferyl oleate
A549 Lung adenocarcinoma epithelial cell line
Bel-7402 Human hepatoma cell line
BGC-823 Human stomach cancer cell line
BuOH n-Butanol
C8166 Human T-cell leukaemia
CC Column chromatography
CC50 The 50% cytotoxic concentration
CCK-8 Cell Counting Kit-8
CHCl3 Chloroform
CH2Cl2 Dichloromethane
CNE1-LMP1 Stable oncoprotein LMP1 integrated nasopharyngeal carcinoma cell line
DU145 Human prostate carcinoma cell line
EC109 Human esophageal cancer cell line
ED50 Half-maximal effective concentration
H2SO4 Sulfuric acid
Hep3B-2 Human hepatoma carcinoma cell line
HCT-116 Human colon cancer cell line
HIV Human immunodeficiency virus
HPLC High-performance liquid chromatography
Huh7 Human hepatoma adenocarcinoma cell line
IR Infrared
HL-60 Human myeloid leukemia cell line
LPS Lipopolysaccharide
M14 Human melanoma cell line
MCF-7 Human breast cancer cell line
MGC Human gastric cancer cell line

MTS
(3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazoliuminner salt)

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NMR Nuclear magnetic resonance
NO Nitric oxide
RP-18 Reversed phase-18
SBHA Histonedeacetylase inhibitor, suberohydroxamic acid
SiO2 Silica gel
SMMC-7721 Hepatocellular carcinoma cell line
SW480 Colon cancer cell line
SW1990 Human pancreatic adenocarcinoma cell line
PANC-1 Human pancreatic carcinoma cell line
PC-3 Human prostate cancer cell line
TLC Thin-layer chromatography
U937 Human leukemic monocyte lymphoma cell line
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