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Abstract: Marine macroalgae are considered an untapped source of healthy natural metabolites
and their market demand is rapidly increasing. Intertidal macroalgae present chemical defense
mechanisms that enable them to thrive under changing environmental conditions. These intracellular
chemicals include compounds that can be used for human benefit. The aim of this study was to
test cultivation protocols that direct seaweed metabolic responses to enhance the production of
target antioxidant and photoprotective biomaterials. We present an original integrated multi-trophic
aquaculture (IMTA) design, based on a two-phase cultivation plan, in which three seaweed species
were initially fed by fish effluents, and subsequently exposed to various abiotic stresses, namely,
high irradiance, nutrient starvation, and high salinity. The combined effect of the IMTA’s high
nutrient concentrations and/or followed by the abiotic stressors enhanced the seaweeds’ content
of mycosporine-like amino acids (MAAs) by 2.3-fold, phenolic compounds by 1.4-fold, and their
antioxidant capacity by 1.8-fold. The Sun Protection Factor (SPF) rose by 2.7-fold, and the chlorophyll
and phycobiliprotein synthesis was stimulated dramatically by an order of magnitude. Our integrated
cultivation system design offers a sustainable approach, with the potential to be adopted by emerging
industries for food and health applications.

Keywords: seaweeds; integrated aquaculture; mycosporine-like amino acids; phenolic compounds;
pigments; antioxidants; sun protection factor; bioproducts; Ulva; Gracilaria

1. Introduction

In an era of climate change, marine macroalgae (seaweeds) have the potential to
play a crucial role in food security coping with the world’s uprising challenges [1]. There
are several advantages to producing seaweed biomass. Compared to land aquaculture,
seaweed aquaculture does not require excessive arable land, freshwater, or large amounts
of fertilizers or pesticides [2,3]. Moreover, seaweed cultivation provides many ecosystem
services [4]. As primary producers, and as the most productive marine macrophytes on
a global scale, seaweeds fix carbon dioxide and produce life-supporting oxygen [5–7],
attributes that may help to mitigate and reduce greenhouse gases in the efforts to counter
global warming [8–10]. Seaweeds are also extractive species, specialized in assimilating
dissolved nutrients and pollutants, cleaning the natural aquatic environment and, thereby,
contributing to maintaining the overall ecological balance in coastal ecosystems [11–13].
Globally, seaweed aquaculture has tripled over the last few decades, reaching 32.4 million
tonnes of fresh biomass in 2018, with an estimated market value of US $13.3 billion [14].
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Seaweed products are used in major industries, such as food, animal feed, textiles, pharma-
ceuticals, medicine, and cosmetics [15–18]. However, their true potential is far from being
fully utilized [19].

Integrated multi-trophic aquaculture (IMTA) is a sustainable, ecologically sound ap-
proach that advocates the integration of fed species, such as finfish, with inorganic and
organic extractive species from lower trophic levels (e.g., seaweeds and shellfish). Fed
finfish monocultures may generate surplus discharge of organic matter and dissolved
nutrients. The nutrient-rich fish effluents can negatively affect natural ecosystems, causing
habitat modification, water quality degradation, and coastal eutrophication. The seaweeds
in the IMTA system assimilate the fish waste, which is rich in dissolved ammonia, phos-
phate, and carbon, to form new biomass and synthesize needed natural materials. In doing
so, the seaweeds are able to clean and treat the water, minimizing negative environmental
impacts and improving the economic viability, while increasing the quality of the cultivated
marine crop [20,21]. In a previous study we addressed the high biofiltration abilities of
seaweeds, evaluating and maximizing their performance as part of an IMTA system [22].
We demonstrated a nutrient removal efficiency of up to 100% together with an outstanding
nutrient removal rate of 4 g total ammonia nitrogen (TAN) m−2 day−1. Recently [23], we
have focused on increasing the concentrations of primary metabolites in seaweeds, such as
proteins, functional carbohydrates, and important minerals for human nutrition and health.
The current work focuses on metabolic stimulation of seaweed secondary metabolites and
bioproducts with potential health benefits for human society.

The Levant basin in the eastern Mediterranean Sea is a particularly stressful environ-
ment, experiencing oligotrophic conditions and high average temperatures, together with
fluctuating abiotic conditions on a daily basis [24–26]. To thrive under such conditions,
seaweeds have adapted an arsenal of unique natural chemical defenses that are not found in
other organisms, such as phenolic compounds, distinctive protective pigments, and natural
sun-screening substances, such as mycosporine-like amino acids (MAAs) [27–30]. Seaweed
secondary metabolites inherently possess strong bioactive attributes, and have been shown
to exhibit antioxidant, anti-viral, anti-biotic, anti-cancer, anti-fungal, anti-diabetic, and
photoprotective properties, with a range of biological activities proven to have a positive
effect against chronic diseases in humans [18,28,31–33].

MAAs are strong natural photoprotectors largely found in red seaweeds [34,35]. They
are ultraviolet radiation (UVR)-absorbing compounds characterized by high absorption
in the 310–362 nm wavelength range, and are considered to have evolved as a natural
defense against chronic UVR exposure in sunlight-rich, shallow-water habitats. MAAs
protect the living cell by absorbing the harmful sun radiation, dissipating its energy as heat
and, consequently, minimizing the production of reactive oxygen species (ROS) [36,37].
MAAs are considered ‘multipurpose’ secondary metabolites, since they also present strong
antioxidant, anti-aging, and anti-inflammatory properties [35,38]. In humans, exposure to
UVR can be harmful to the skin, inducing photo-aging, loss of skin resilience, formation of
wrinkles, and even skin cancer. MAAs can be used to produce environmentally friendly
ultraviolet (UV) filters that will present a natural alternative to the common commercial
synthetic filters [39]. Natural pigments, such as chlorophylls and phycobiliproteins (phyco-
erythrin, phycocyanin), have attracted special attention in the fields of nutrition, cosmetics,
and pharmacology, as they have been found to display various beneficial biological activi-
ties [40]. Phenolic compounds are also secondary metabolites, characterized as antioxidant
and stress-protective compounds against biotic and abiotic stressors, such as grazing and
fouling organisms, excessive UVR, and metal contamination [41,42].

Despite their biotechnological potential, to date, seaweed biomass has been used
primarily as raw material for food and for hydrocolloid industries (agar, alginate, and
carrageenan), with less than 1% of the global seaweed production used for high-value,
health-promoting products [17,43]. Currently, however, following the public’s increasing
pursuit of a healthy lifestyle and a consumer preference for quality food and natural
products, there is growing demand for seaweed products [44,45]. The leap from raw
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commoditized seaweed biomass to functional biomass has not yet occurred, where one
reason is the lack of appropriate technologies. The future challenges of the seaweed
aquaculture industry will, therefore, require the development of new cultivation methods
dedicated to ensuring a sustainable supply of seaweed biomass with consistently high
levels of targeted bioactive compounds [43,46,47].

The seaweeds’ intracellular chemical composition and, thus, their metabolite levels
are regulated by their surrounding environmental conditions, the majority of which relate
to irradiance, light quality [31,48–50], salinity, and the availability of nutrients. Additional
factors include biological pressures, such as grazing and allelopathy, life cycle stages,
geographic location, seasonality, and more [24,51–55].

The present study was aimed at increasing target secondary metabolites in local model
seaweeds by altering their growth conditions, namely, nutrient depletion, excessive radia-
tion, and high salinity. We evaluated the levels of MAAs, chlorophylls, phycobiliproteins
and polyphenols, together with the seaweeds’ antioxidant capacity and Sun Protection Fac-
tor (SPF) capabilities. We operated a novel IMTA cultivation design based on a two-phase
cultivation scheme, using finfish and three intertidal seaweed species, Ulva rigida, Gracilaria
conferta, and Hypnea musciformis, known for their high productivity and special bioactive
attributes [18,56–58]. Our overall goal was to develop a well-defined methodology to
produce an enhanced functional seaweed biomass, and to establish a multidisciplinary
and accessible cultivation approach for the rapidly evolving seaweed aquaculture and
health-promoting industries.

2. Results

Supplementary S2.1 presents the nutrient levels measured in the integrated system.
The experimental design and system layout is depicted in Figure 6 in the Materials and
Methods section, presenting the two-phases approach cultivation scheme, including ini-
tial integrated cultivation alongside fish culture, following a second phase, exposing the
seaweeds to abiotic environmental stress conditions. The statistical information for the
different tests is summarized in Supplementary S1. When the results of more than one test
are given, they are referred to Supplementary S1. The general scheme depicting how each
treatment affects the seaweeds, leading to a specific metabolic optimization, is summarized
in Table 3.

2.1. Mycosporine-like Amino Acids (MAAs)

In the current work, MAAs were only identified in red algae. Both Hypnea musci-
formis and Gracilaria confera showed significant differences in their MAA content among
the different treatments (One-way ANOVA, F5,14 = 4.8, 3.04, p = 0.009, 0.046, respectively,
Supplementary S1, Table 1, Figure 1). H. musciformis presented the highest MAA lev-
els when integrated with fish, and under high salinity, while G. conferta showed similar
values between treatments, with some increase when exposed to full sunlight. Gener-
ally, both red seaweed species contained two main MAAs: palythinol and shinorine.
G. confera also exhibited relatively high levels of porphyra-334, low quantities of palythine
(0.014–0.2 mg g−1 DW), and trace level of asterina-330. H. musciformis additionally con-
tained palythine as a main MAA and had small amounts of asterina-330 (0.01–0.05 mg g−1

DW), while porphyra-334 was present in H. musciformis in only few samples (the content of
each individual MAA is summarized in Supplementary S2.2).

Overall, the MAA composition was affected by the different treatments (Figure 2).
Palythinol fluctuated between treatments and ranged between 66 and 80% for G. conferta, and
between 45 and 64% for H. musciformis. Shinorine had the highest percentage in G. confera
under the seawater and full sunlight treatment with up to 17%, and the highest percentage in
H. musciformis when integrated with the fish (36%). Palythine showed significant alternation
among treatments and exhibited the highest percentage in G. conferta under the high salinity
treatment (20%), and in H. musciformis, palythine showed significantly higher levels under
treatments that received only seawater supply (up to 28%). Porphyra-334 appeared in
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relatively high levels in G. conferta following the initial two weeks and showed a significant
decrease after the third week. Overall, H. musciformis displayed a significantly higher MAA
concentration compared to G. conferta (permutation ANOVA, F1,38 = 33.4, p < 0.0001).

Table 1. Biological parameters of the seaweed species examined in the study. Evaluation was
preformed using dry weight (DW). Data refer to maximal values attained among the different
treatments. (-) no available data.

Parameter Ulva rigida Gracilaria
conferta

Hypnea
musciformis

Antioxidant activity (µg TE mg−1) 3.5 ± 0.15 2.3 ± 0.25 4.5 ± 0.31
Phenolic compounds (µg PE mg−1) 4.7 ± 0.3 -

SPF (mg mL−1) 3.82 ± 0.16 1.82 ± 0.1 3.12 ± 0.12
Total MAAs (mg g−1) - 1.8 ± 0.7 3.3 ± 0.5

Palythine (mg g−1) - 0.2 ± 0.06 0.8 ± 0.16
Asterina-330 (mg g−1) - 0.02 ± 0.02 0.06 ± 0.01

Palythinol (mg g−1) - 1.5 ± 0.6 2.05 ± 0.7
Shinorine (mg g−1) - 0.3 ± 0.1 1 ± 0.2

Porphyra-334 (mg g−1) - 0.1 ± 0.02 0.05 ± 0.01
Chlorophyll a (mg g−1) 3.9 ± 0.2 0.5 ± 0.1 1.2 ± 0.2
Phycoerythrin (mg g−1) - 4.1 ± 1.1 7.5 ± 1.8
Phycocyanin (mg g−1) - 1.6 ± 0.5 6.6 ± 1.2
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Statistical analysis was performed for each species separately. Different letters indicate significant
differences (uppercase letters: Gracilaria, lowercase: Hypnea).

2.2. Pigment Content (Chlorophylls and Phycobiliproteins)

Chlorophyll a and b were evaluated for Ulva rigida, and chlorophyll a and d for the
Rhodophyta species, Gracilaria conferta and Hypnea musciformis (Table 2). For all species,
significant differences were observed among treatments, both for chlorophyll a and for the
total chlorophyll contents (p < 0.0001, Table 2, Supplementary S1). Overall, two distinct
patterns were observed; firstly, seaweeds grown in the integrated cultures had significantly
higher chlorophyll levels compared to the seaweeds cultivated in treatments with only
seawater supply (Supplementary S1, Table 2). Additionally, treatments that received 100%
sunlight (Seawater + Sun, high salinity) presented the lowest chlorophyll levels. The maxi-
mal chlorophyll a difference between treatments was up to 1250, 522, and 393% for U. rigida,
G. conferta, and H. musciformis, respectively. Similar differences were observed for the total
chlorophyll levels. Secondly, chlorophyll levels (a, b, d and total chlorophyll) accumulated
extensively following the initial two weeks, while showing a significant decrease after
the third week (Table 2). Differences between the second and third weeks of cultivation
ranged up to 234, 140, and 170% for U. rigida, G. conferta, and H. musciformis, respectively
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(calculated for the Fish + shade treatment, chlorophyll a, Table 2). For all treatments,
U. rigida presented the highest total chlorophylls levels, followed by H. musciformis and
G. conferta (Permutation ANOVA, F2,51 = 14.62, p < 0.0001, Table 2). Phycoerythrin and Phy-
cocyanin were evaluated for H. musciformis and G. conferta. Overall, the patterns observed
for the chlorophylls, including higher concentration in the integrated tanks and higher
levels following the second week, appeared in a similar way for the red pigments (Table 2).
The maximal phycoerythrin difference between treatments ranged up to 1150 and 714% for
G. conferta and H. musciformis, respectively, and the phycoerythrin difference ranged up to
815 and 1105%, respectively. Overall, H. musciformis presented higher phycobilins levels
compared to G. conferta (Permutation ANOVA, Supplementary S1, Tables 1 and 2).
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2.3. Antioxidant Activity

Significant differences were observed among treatments (One-way Anova, p < 0.0001,
Supplementary S1, Figure 3). A consistent pattern was observed, where in most cases,
seaweeds grown in the integrated cultures had a significantly higher antioxidant capacity
compared to the control seaweeds that were cultivated with only seawater supply (p < 0.008,
Supplementary S1, Figure 3). Those differences were considerable, up to 150–180% (Figure 3).
Integrated seaweed cultures usually presented similar antioxidant levels, especially for
Hypnea musciformis (p > 0.08, Supplementary S1, Figure 3). Seaweeds cultivated under
the high salinity treatment presented the highest antioxidant values (Figure 3). Overall,
H. musciformis presented the highest antioxidant capacity, followed by Ulva rigida and
Gracilaria conferta (One-way ANOVA, F2,57 = 88.2, p < 0.001, Table 1).
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Table 2. Effect of different culture conditions on the pigment levels in the studied seaweeds
(mean ± S.D, n = 3).

Species Culture Condition/Treatment Chlorophyll a
(mg g−1 DW)

Chlorophyll b
(mg g−1 DW)

Chlorophyll d
(mg g−1 DW)

Total Chlorophylls
(mg g−1 DW)

Phycoerythrin
(mg g−1 DW)

Phycocyanin
(mg g−1 DW)

U
lv

a
ri

gi
da

Control 0.71 ± 0.05 0.36 ± 0.02 - 1.06 ± 0.06 - -
Fish + Shade (initial two weeks) * 3.89 ± 0.17 2.08 ± 0.09 * - 5.9 ± 0.24 * - -

Fish + shade 1.66 ± 0.12 1.06 ± 0.06 - 2.61 ± 0.18 - -
Fish + sun 1.80 ± 0.28 1.12 ± 0.18 - 2.78 ± 0.43 - -

Seawater + sun 0.31 ± 0.11 0.18 ± 0.07 - 0.47 ± 0.17 - -
High salinity 0.38 ± 0.04 0.23 ± 0.03 - 0.58 ± 0.07 - -

G
ra

ci
la

ri
a

co
nf

er
ta

Control 0.12 ± 0.01 - 0.002 ± 0.001 0.12 ± 0.01 0.57 ± 0.05 0.31 ± 0.03
Fish + Shade (initial two weeks) * 0.47 ± 0.09 - 0.01 ± 0.002 0.49 ± 0.08 * 4.14 ± 1.16 * 1.64 ± 0.48 *

Fish + shade 0.34 ± 0.03 - 0.01 ± 0.002 0.38 ± 0.04 2.5 ± 0.25 1.06 ± 0.05
Fish + sun 0.38 ± 0.08 - 0.005 ± 0.001 0.45 ± 0.11 2.03 ± 0.68 0.95 ± 0.29

Seawater + sun 0.14 ± 0.02 - 0.004 ± 0.002 0.16 ± 0.03 0.64 ± 0.08 0.35 ± 0.03
High salinity 0.09 ± 0.01 - 0.01 ± 0.0004 0.11 ± 0.01 0.36 ± 0.04 0.2 ± 0.02

H
yp

ne
a

m
us

ci
fo

rm
is

Control 0.34 ± 0.02 - 0.01 ± 0.001 0.39 ± 0.02 1.19 ± 0.08 0.6 ± 0.06
Fish + Shade (initial two weeks) * 1.18 ± 0.19 - 0.05 ± 0.01 1.32 ± 0.2 * 7.49 ± 1.77 * 6.63 ± 1.25 *

Fish + shade 0.68 ± 0.18 - 0.04 ± 0.01 0.82 ± 0.21 3.88 ± 0.98 3.47 ± 1.03
Fish + sun 0.62 ± 0.22 - 0.03 ± 0.01 0.75 ± 0.25 2.89 ± 1.12 2.5 ± 1.08

Seawater + sun 0.31 ± 0.06 - 0.01 ± 0.002 0.36 ± 0.07 1.06 ± 0.32 0.97 ± 0.29
High salinity 0.35 ± 0.02 - 0.01 ± 0.001 0.4 ± 0.02 1.27 ± 0.18 1.28 ± 0.1

* treatments with the highest significant values. (-) no available data.
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2.4. Phenolic Compounds

Phenolic compound content was evaluated for Ulva rigida. The seawater control treatment
showed, in most cases, a significantly lower phenolic content compared to the other culture
conditions (permutation ANOVA, F5,15 = 7.7, p < 0.001). Differences ranged up to 1.4 times
higher. Other treatments showed only minor differences (Figure 4, Supplementary S1). The
highest values of phenolic compounds were observed in the high salinity and the Fish + 100%
sunlight treatments (reaching almost 5 µg PE mg−1 DW).

2.5. Sun Protection Factor (SPF)

For all the seaweed species, significant differences were found between the different
culture conditions (One-way ANOVA, p < 0.001, Supplementary S1, Figure 5). SPF differ-
ences between treatments reached up to 160–270%. The seawater control (Seawater + Shade)
usually presented the lowest SPF values. Ulva rigida and Hypnea musciformis had the highest
SPFs in the integrated cultures and under the high salinity treatment, while Gracilaria conferta
exhibited the highest SPF under the fish and 100% sunlight treatments (Figure 5).
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(uppercase: Ulva, lowercase: Gracilaria, italics: Hypnea).

3. Discussion
3.1. Stimulation of Mycosporine-like Amino Acids (MAAs)

As MAAs are nitrogenous compounds with natural UVR screening and antioxidant
properties, their levels are innately influenced by ammonium availability, irradiance, and
oxidative stress conditions [35,59–61]. In the present study, the high availability of those
factors not only increased the seaweed total MAA levels, but also altered their composition.
In previous work, a high ammonium supply was shown to reduce the photoinhibition
caused by high irradiance in the red macroalga Grateloupia lanceola [62].

Previous studies have examined how environmental abiotic conditions affect MAAs.
Not only can seaweed MAA levels vary between environmental conditions, species, cul-
tivation system (and additional factors), but their specific accumulation can be very flex-
ible [31,61,63]. Thus, we believe that the assessment of additional species under novel
IMTA schemes, based on data from previous studies, offers an important tool with which
to establish an applicative method for a consistent seaweed-derived MAA production.

MAA biosynthesis is mostly considered to be derived from conversion of the shiki-
mate pathway, known for the synthesis of aromatic amino acids [34,64]. As presented in
the current work, the coupling of high solar irradiance to generate sufficient energy for
photosynthesis, together with the high availability of the required building blocks, N- and
C-compounds [54], presents a particularly favorable environment for MAA production.
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Those conditions are largely met by integrated cultivation under an IMTA system. While
the advantage of IMTA cultivation lies in supporting high MAA production in seaweed
biomass, which has been demonstrated in previous studies [29,54,58,65], other studies have
demonstrated a higher accumulation of MAAs under a low nutrient environment rather
than a high one. This was explained by higher UVR penetration in the thallus, and by the
competition with other processes for the use of nutrients under a low nutrient supply in
oligotrophic waters [57]. MAA synthesis is also largely dependent on the irradiance quality
and quantity. Korbee et al. [50] showed that in Porphyra leucosticte, MAA synthesis was
stimulated by blue light and a high ammonium concentration. Karsten and Wiencke [63]
demonstrated that intertidal seaweeds that were exposed to high solar radiation accumu-
lated larger amounts of MAAs than subtidal seaweeds that received less light. Similar to
the current work, Karsten et al. [66] showed that the concentrations of the MAAs shinorine,
palythinol, and palythine increased considerably in the red seaweed Chondrus crispus dur-
ing one-week exposure to a photosynthetically active radiation (PAR) of 400–700 nm. They
also found that shinorine accumulation was more affected by UVR, while palythinol and
palythine accumulation was more affected by PAR. The effect of UV-A, UV-B, and PAR on
different MAA concentrations was also demonstrated by Peinado et al. [61], suggesting
that different light regimes may induce different MAA profiles.

The seaweed total MAA content in the present study was in line with those of other
species in previous works (1.8 and 3.3 mg g−1 DW for Gracilaria conferta and Hypnea
musciformis, respectively). To the best of our knowledge, there is little published work on H.
musciformis and MAAs. Gracilaria species can yield MAA concentrations that range between
1.75 to 2.4 mg g−1 DW [57–59], while in other Rhodophyta species, such as Porphyra spp.,
MAA contents may range from 5 to 10 mg g−1 DW [50,67,68]. Unlike previous studies, in
the present research, palythinol was the major dominant MAA for both G. conferta and H.
musciformis, reaching up to 80% of the total MAA content. Among the MAAs identified,
palythine was previously demonstrated to present the highest antioxidant capacity [38].
Lawrenze et al. [69] showed that palythine extracted from the red macroalga Chondrus
yendoi, in addition to its antioxidant capacity (anti-photoaging substance), may present
photoprotection attributes against a wide range of adverse effects in HaCaT keratinocytes
exposed to solar-simulating and UV-A radiation, i.e., protection against two types of DNA
photolesions: cyclobutane pyrimidine dimers and 8-oxo-7,8-dihydroguanine. In the current
work palythine levels were at their peak during exposure to high irradiance and salinity,
which may indicate that the seaweeds used palythine as a protective antioxidant agent and
as a physiological response to stress. Thus, palythine has been shown to be an extremely
effective multifunctional photoprotective molecule, with the potential to be developed as a
natural and biocompatible alternative to currently approved UVR filters [69].

Generally, a high salinity environment presents a stressful setting that may also
facilitate the accumulation of MAAs in seaweeds. In marine algae, MAAs were suggested to
have an osmotic function that evolved to cope with high salinity conditions. It was observed
that in hypersaline water, certain marine algae may synthesis MAAs in high concentrations
in order to reduce their cellular salt concentrations and restore their osmotic balance [70,71].
Similarly, in the current study, H. musciformis exhibited an increased concentration of
MAAs when exposed to high salinity and solar irradiance stress, presumably using the
MAAs as an osmoregulatory agent. In the present work, we cultivated two red seaweed
species and demonstrated that different species may present different responses to similar
environmental conditions by acquiring different MAA profiles. This may play an important
role in future applications, where there may be a biotechnological interest, for example,
in producing a specific MAA for a specific use. Overall, because MAAs offer tremendous
biotechnological potential for use as multi-purpose natural products in the health and
cosmetic industries [35,39], there is great interest in developing a consistent method by
which to optimize their production.
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3.2. Enhancement of Pigment Content

The main light-harvesting pigments of seaweeds are chlorophylls, carotenoids, and
various groups of additional accessory pigments specific to algal phyla, such as phycobilins
in the Rhodophyta [46]. In the current work, the seaweeds’ pigment concentrations were
naturally influenced by two main factors: irradiance and nutrient availability.

Pigment concentrations respond to ambient light levels and are linked to the algal
productivity and energy metabolism, resulting in high-light or low-light acclimated sea-
weed tissue [53]. Algal physiological responses to light conditions include control over
pigment levels and ratios. Classic works on the impact of light on seaweed pigmentation
include those reported by Ramus et al. [72] and Beer and Levy [73], who documented
pigment changes in Ulva sp. and Gracilaria sp. according to water depth and light in-
tensity. Generally, pigment synthesis in seaweeds will increase with greater depth and
when transferred to a deeper position in the water column (low irradiance), as a way to
increase their effective light-harvesting cross-section, for efficient light-energy harvesting.
This acclimation process particularly occurs in intertidal seaweeds, such as Ulva, Gracilaria,
and Hypnea, which are exposed to light irradiation alterations in their natural habitat on
a regular basis, due to the constant tidal changes of water depth. Figueroa and Niell [74]
further described how different qualities of a continuous light (blue, green, or red light),
can control and increase chlorophyll and phycobilin levels as adaptative responses to
the underwater light environment. This process is also defined as chromatic adaptation.
As nitrogenous compounds, phycobiliproteins and chlorophylls are also affected by N-
availability. Under nitrogen-rich environments seaweeds may accumulate amino acids,
proteins, and N-containing pigments, such as chlorophylls and phycobiliproteins [75,76].
In contrast, nitrogen-deprived conditions will result in reduced chlorophyll and soluble
protein levels, such as RUBISCO [77].

This pigment acclimation process could be clearly observed in the current study through
the significant differences seen between a nutrient-poor environment (the control/Seawater
+ Shade and Seawater + Sun treatments) and a nutrient-rich environment (seaweeds that
received fish effluent) (Table 2). Under fish-integrated conditions, the seaweeds’ chlorophyll
levels rose by up to 6-fold, phycoerythrin levels by up to 7-fold, and phycocyanin levels by
up to 11-fold. Thus, the optimal growing conditions for enhanced pigment concentration,
according to our findings, are those of integrated, nutrient-rich conditions, which provide
and support sufficient energy and building blocks for pigment synthesis. Interestingly,
however, under the same ideal environment (Fish + Shade, Fish + Sun), there was a dramatic
decline (>50%) in all types of pigments and in all three seaweed species during the transition
from the second to third week of the experiment. A similar phenomenon was described
previously by Korbee-Peinado et al. [61], who demonstrated a continuous decrease in
chlorophyll and phycobilin concentrations after 6 days of experimentation. Chromatic
adaptation in algae may be relatively rapid. Under different culture conditions, chlorophyll
and phycobiliprotein levels in seaweeds have been demonstrated to change several-fold
within a matter of hours [74]. In the current work, a two-week cultivation period seemed
to be more than sufficient to produce seaweeds with a high pigment content. It is possible
that, given the high levels of resources (light and nutrients), the seaweeds tunnel the energy
to pigment synthesis to support accelerated growth and productivity. Once this goal is
achieved and the pigment concentrations reach saturation, the seaweeds may lower their
pigment content to a constant ideal concentration in order to conserve energy, maintain
growth, and adapt to their new environment. We conclude that in order to achieve high
pigment levels for biotechnological needs, the seaweeds should be harvested at an early
culture stage, ranging from hours and a few days to a few weeks after providing the required
culture treatment.

Generally, chlorophyll and phycobiliprotein values were in line with the same and
other edible seaweed genera in the literature, and also when compared to studies that had
used advanced analytical extraction methods [30,78–80].
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Natural pigments have attracted attention by the food and beverages industries, as
well as by the animal feed, cosmetics, and pharmaceutical markets. Seaweed pigments
have exhibited several positive bioactive activities, such as antioxidant and radical scaveng-
ing activities, and anti-inflammatory, anti-diabetic, and anti-cancer (several tumor types)
properties [53,81–83]. Recently, chlorophylls have also been suggested for use as a potential
therapeutic agent for treating COVID-19 [84,85]. Additionally, seaweed pigments can
be used as artificial dyes/colorants [80]. The food colorant market is growing rapidly,
estimated at 3.75 billion USD in 2022, and revealing a distinct consumer interest in natural
food colors (especially those that exhibit health benefits) and in food additives that are non-
synthetic and safer to consume [82]. Finding a consistent method for enhancing pigment
levels in seaweeds, which can be mass-produced, may, therefore, present an important step
in integrating seaweeds into the emerging food and pharma industries.

3.3. Increase in Antioxidant Activity and Phenolic Compounds

Intertidal seaweeds live in harsh environments where they are subjected to various abi-
otic and oxidative stress conditions that produce reactive oxygen species (ROS), which may
lead to oxidative damage [60,86]. Seaweeds respond to these conditions by increasing an ar-
ray of antioxidant defenses, which include ROS-scavenging enzymes and/or nonenzymatic
antioxidative substances, and secondary metabolites, such as phenolic compounds, ascor-
bic acid, tocopherols, carotenoids, phycobiliproteins phospholipids, chlorophyll-related
compounds, catechins, MAAs, polysaccharides, and more [53,87,88]. In the current study,
the highest antioxidant capacity was observed under the high salinity conditions, and,
additionally, in the integrated seaweeds that received a consistent, rich nutrient supply,
provided by the fish effluents. Nutrient availability may have an impact on the growth and
functioning of seaweeds in extreme environments [89]. Elevated nitrogen levels may have
a key role in enabling the seaweeds to increase their antioxidant defenses against abiotic
stressors, such as high solar and UV radiation [29,68,90,91]. This has been specifically
described in Gracilariaceae and for Gracilaria conferta [57,92]. Huovinen et al. [62] also
discussed the importance of ammonium in protection against high irradiance and in the
recovery of algal photosynthetic activity. In this context, Lesser et al. [90] demonstrated that
N-supplied algae were more resilient to high UVR compared to N-limited algae. The excess
nitrogen aided the algal cell to repair UV-B-induced damage by increasing the turnover of
critical proteins and protein–pigment complexes associated with photosynthesis. Thus, it
can be safely assumed that seaweed cultivation via IMTA not only leads to rapid seaweed
growth, but additionally creates a supportive environment that provides resources for
seaweeds to protect themselves against stress and oxidation conditions, and eventually also
boosts their chemical defenses. Interestingly, in the current work, there were no significant
differences in the antioxidant capacity between the shaded cultures and those that were
exposed to 100% sunlight, in which a higher antioxidant capacity would be expected. We
presume that this could have been the result of self-shading and interactive photoprotection
by the seaweeds’ thalli, which accumulated rapidly due to the optimal combination of
culture season (spring bloom) and IMTA conditions [23]. As noted, high salinity was the
additional factor that presented the highest antioxidant capacity for all the study’s three
seaweed species—Ulva rigida, Gracilaria conferta, and Hypnea muschformis. Salinity plays
a vital role in restricting the growth and development of seaweeds in the intertidal zones
and estuaries [93,94]. Salinity stress may lead to rapid accumulation of ROS in seaweeds,
thus leading to oxidative stress [95,96]. In the present work, it was evident that the three
seaweed species had contended with high salinity by elevating their antioxidant capacity.
It was previously documented that intertidal seaweeds have developed a strong ability
to resist salinity changes [93,97]. Ulva fasciata and Ulva prolifera, specifically, have been re-
ported to increase their antioxidant levels and antioxidant enzyme activities when exposed
to stressful salinity environments [86,98,99]. However, different algae may show different
physiological and biochemical responses to changing salinity conditions, and different
species may also activate different antioxidant defense systems when exposed to extreme
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salinities [99,100]. Consequently, it is important to explore how different species react to
a changing salinity environment, from both ecological and biotechnological/industrial
perspectives, in regard to aquaculture candidate seaweed species. From our findings,
consistently high nutrient levels, together with high solar radiation and salinity shock, may
play an effective role in inducing the antioxidant compounds in specific Chlorophyta and
Rhodophyta seaweeds.

The ABTS assay was selected to evaluate antioxidant capacity because it is consid-
ered a fast and simple assay that provides a comprehensive view of the entire extract in
both the lipophilic and hydrophilic medium [101]. Generally, the maximal antioxidant
capacity of the studied seaweed was in line with other and similar red and green seaweed
species from previous studies that had presented high antioxidant values, ranging up to
3.6 µg TE mg−1 DW [101–103].

Phenolic compounds are characterized as stress-induced compounds, involved in the
chemical protection mechanisms against abiotic factors [53]. Polyphenol content was evalu-
ated for U. rigida and revealed a similar trend to that of the antioxidant capacity, in which
the highest phenolic content was observed under the high-salinity and the fish-integrated
conditions. Similar to our results, Kumar et al. [87] also described a significant accumu-
lation of polyphenols, particularly at a salinity of 45 ppt, following 6 days of culturing,
suggesting that this could be a seaweed strategy to combat the salt stress. Antioxidant
capacity can be associated with photoprotective compounds and secondary metabolites,
such as phenols, proteins, protective pigments, and MAAs [30,35,103,104]. In the present
study, antioxidant capacity demonstrated significant correlative relationships with polyphe-
nols in U. rigida. A significant positive correlation was also observed for H. musciformis
between its antioxidant capacity, SPF values, and its specific and total MAA levels, while in
G. confera, the antioxidant capacity was positively correlated with phycobiliprotein levels
(Supplementary S2.3).

Seaweed-derived antioxidants, including polyphenols and other defensive compounds,
are of special interest in the cosmetic, pharmaceutical, and nutrition fields. They already
have important applications in a range of products, due to their bioactive properties that
can protect the human body from free radicals and retard the progress of many chronic
diseases, such as hypertension, heart diseases, diabetes and cancer [105–107]. Moreover,
seaweed antioxidants offer a natural alternative to synthetic antioxidants, which may
present potential toxicity and health risks [108].

3.4. SPF Manipulation

Sun Protection Factor (SPF) is the universal indicator for the photoprotective capabil-
ities of a product/substance against UV-B radiation [109]. The higher the SPF, the more
effective the product is in preventing sunburn. This can be determined in vivo on human
volunteers, by calculating the ratio of the least amount of ultraviolet energy required to
produce a minimal erythemal dose on protected skin compared to unprotected skin [110].
SPF can also be determined in vitro, which is considered a faster, simpler, and less ex-
pensive method. There are several types of in vitro methods, with the more widely used
approach being to evaluate the absorption characteristics of sunscreen agents based on
spectrophotometric analysis of diluted solutions [111–113]. This can be used for prelim-
inary purposes during production, in the analysis of the final product, and can provide
important information before proceeding to the in vivo tests [114]. As has been further
discussed in the current work, seaweeds may offer a potentially rich source of antioxidant
and sunscreen compounds due their characteristic life history. These capabilities make
them excellent candidates for utilization as ingredients for natural sunscreens [112,115,116].
In the current work, a SPF standardization for 1 mg seaweed DW in 1 mL aqueous solvent
was used. The SPF found for Ulva rigida, Gracilaria conferta, and Hypnea musciformis was
between 1 and 4, indicating their potential use for sunscreen applications [113]. Similar to
the trends observed in the MAAs and their antioxidant capacity, the highest SPF values
were observed under the fish-integrated conditions and high-salinity treatments. MAAs,
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phycobiliproteins, and phenols are also water-soluble molecules, and this might also have
contributed to the high SPF values obtained. An especially important finding in the present
work is that SPF differences of up to 270% could be identified between the different culture
treatments. This illustrates that by controlling the seaweed cultivation conditions, it is
possible to direct and increase their sunscreen and photoprotective properties, nurturing
them specifically for this application.

4. Materials and Methods
4.1. Integrated Aquaculture System and Experimental Design

The integrated mariculture setup used in the current study was designed and installed
in a land-based experimental seaweed site at the Israel Oceanographic and Limnological
Research center in Haifa, Israel, as described in our earlier work [23]. The integrated system
had two components: (1) a culture tank stocked with gilthead sea bream fish (Sparus aurata),
and (2) a series of seaweed cultures tanks (n = 6) alternatively stocked with one of three local
macroalgae species, the green macroalga Ulva rigida, or one of two red macroalgae, Gracilaria
conferta and Hypnea musciformis. Filtered seawater was first diverted to the fish tanks and
then channeled through PVC pipes by gravity into the seaweed culture tanks. Control
tanks that received only regular seawater were stationed parallel to the system. Initially,
each seaweed species was cultivated in the system with the sea-bream fish effluents during
two consecutive weeks. Following these two weeks, 100 g FW biomass was randomly
collected from the system and distributed into 4 different culture treatment tanks which
included a second control and 3 different abiotic stresses that run for one additional week
(n=3 seaweed tanks for each treatment), as depicted in Figure 6 and detailed as follows:

Control, Seawater + Shade: shaded tanks receiving about 50% of full sunlight and
supplied with regular seawater.

Treatment 1, Fish + Shade (run for the first initial two weeks, and at the third week to
represent a second control): shaded tanks receiving about 50% of full sunlight and supplied
with fishpond effluents.

Treatment 2, Fish + Sun: unshaded tanks receiving 100% of full sunlight, supplied
with fishpond effluents intended to inflict sunlight stress [54].

Treatment 3, Seawater + Sun: unshaded tanks receiving 100% of full sunlight supplied
with regular seawater to create a nutrient-limited environment combined with a sunlight
stress [52,54].

Treatment 4, Salt: high salinity cultivation of about 45–55 ppt [87].

4.2. Chemical Composition of Seaweed Tissues: Sample Preparation

At the start and end of each stage of the experiments, seaweed thalli from each culture
tank were carefully washed with tap water to discard salt, debris, and epiphytes, and finally
centrifuged with a kitchen spinner to remove excess water. Samples were then freeze-dried
using a lyophilizer (Christ, Alpha 1-2 LD plus, Osterode am Harz, Germany), grounded
to a fine homogenized powder and stored at −20 ◦C, prior to further chemical analyses.
Triplicates from each of the treatments and from each tank were taken for the different
chemical analyses.

4.2.1. Analysis of Mycosporine-like Amino Acids (MAAs)

MAAs were assayed according to Korbee-Peinado et al. [61], where 50 mg of dried
seaweed was incubated in 20% methanol (1 mL) in a water-bath at 45 ◦C for 2 h. Then,
700 µL of the supernatant were taken and evaporated under vacuum at 45 ◦C (Speed-
Vac SPD210 Vacuum Concentrator, Thermo scientific, Waltham, MA, USA). Dried ex-
tracts were redissolved in 700 µL 100% methanol and vortexed for 30 s. After passing
through a 0.2-µm membrane filter, samples were analyzed with an Agilent UHPLC system
(1260 Agilent InfinityLab Series, Santa Clara, CA, USA). Identification of MAAs was per-
formed by comparison of the absorption spectra and retention times with characterized
co-standard, Pyropia leucosticta, characterized by the MAAs porphyra-334, shinorine, paly-
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thine, asterina-330 and palythinol, that were previously identified by mass spectrometry
in Chaves-Peña et al. [117]. Quantification was carried out by using published extinction
coefficients [118–122]. Results were expressed as mg g−1 DW.
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4.2.2. Pigment Extraction and Evaluation

Pigment content (mg g−1 DW) was evaluated using the method described by
Osorio et al. [80], with minor alternations. Chlorophylls were extracted with 90% ace-
tone, and phycobiliproteins (phycoerythrin and phycocyanin) using 0.1 M phosphate buffer
(pH 6.8). Extractions were carried out in triplicate by adding 100 mg of dried seaweed to
20 mL of each solvent. Following the first extraction, samples were placed in an ultrasonic
bath for 30 min [123]. Samples were than vortexed and remained overnight in darkness at
25 ◦C. Finally, extracts were centrifuged at 4000 rpm for 20 min, and supernatants were
taken for analyses. Absorbance was read via a Agilent Cary 60 UV-Vis Spectrophotometer
(Santa Clara, CA, USA), with quartz cuvettes, and concentrations were calculated using the
equations described below [80,124]:

Chl a (µg mL−1) = −0.3319 × (A630 − A750) − 1.7485 × (A647 − A750) + 11.9442 × (A664 − A750) − 1.4306 × (A691 − A750) (±0.0020)

Chl b (µg mL−1) = −1.2825 × (A630 − A750) + 19.8839 × (A647 − A750) − 4.8860 × (A664 − A750) − 2.3416 × (A691 − A750) (±0.0076)

Chl d (µg mL−1) = −0.5881 × (A630 − A750) + 0.0902 × (A647 − A750) − 0.1564 × (A664 − A750) + 11.0473 × (A691 − A750) (±0.0030)

Total Chl (µg mL−1) = 21.3877 × (A630 − A750) + 10.3739 × (A647 − A750) + 5.3805 × (A664 − A750) + 5.5309 × (A691 − A750) (±0.0056)

Phycoerythrin (µg mL−1) =
A565−A750

2.41 × 106 × 240, 000 × 103

Phycocyanin (µg mL−1) =
A618−A750

1.90 × 106 × 264, 000 × 103
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4.2.3. Determination of Antioxidant Activity

The seaweed antioxidant activity was evaluated using the ABTS method [125]. Seaweed
samples were first extracted by adding 1 mL of phosphate buffer (0.1 M, pH = 6.5) to 20 mg
of dry seaweed powder. The samples were vortexed and remained overnight in darkness at
4 ◦C. Later, extracts were centrifuged, and supernatants were collected for analyses. ABTS
reagent was prepared in sodium phosphate buffer (0.1 M, pH 6.5), using ABTS (2,2-azino-
bis (3-ethylbenzothiazoline-6-sulphonic acid, 7 mM) and potassium persulfate (K2S2O8,
2.45 mM). The reagent was incubated in darkness at room temperature for 12–16 h, allowing
complete formation of the radical. The assay reaction was performed by adding 950 µL
of diluted ABTS reagent and 50 µL of each seaweed extract. The samples were agitated,
and absorbance was recorded by a UV–visible spectrophotometer (UV-2700i Shimadzu,
Duisburg, Germany) at 727 nm after 8 min of incubation. The blank was phosphate buffer.
The antioxidant activity was calculated using the following formula:

AA% = [(ODi − ODf)/ODi] × 100

Quantification of antioxidant compounds was determined using a standard curve with
different Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) concentrations.
The results were expressed as µg of Trolox Equivalents (TE) per mg of seaweed dry weight
(µg mg−1 DW).

4.2.4. Determination of Phenolic Compounds

Quantification of phenolic compounds was performed according to the Folin–Ciocalteu
method [126], with some modifications. Seaweed samples were first extracted as described
above for the antioxidant activity. The reaction was performed by adding 100 µL of each
seaweed extract to 700 µL of distilled water, 50 µL of the Folin–Ciocalteu reagent, and,
finally, 150 µL of 20% anhydrous sodium carbonate (Na2CO3). The solution was vortexed
and incubated at 4 ◦C in darkness for 2 h. Absorbance was measured at 760 nm using
a UV–visible spectrophotometer (UV-2700i Shimadzu, Duisburg, Germany). The blank
included all reagents, and the crude extract was replaced by distilled water. Phenolic
content was evaluated by constructing a standard curve using different phloroglucinol
concentrations. Results were expressed as µg of phloroglucinol equivalent (PE) per mg of
seaweed dry weight (µg mg−1 DW).

4.2.5. Sun Protection Factor (SPF) Evaluation

In vitro SPF values were determined according to the Mansur spectrophotometric
method [127]. Prior to analysis, 3 different types of solvents, i.e., ethanol, ethyl acetate, and
double-distilled water (DDW), previously used in similar studies [128,129], were tested
to evaluate which generate the best value of SPF performance. DDW was chosen after
obtaining the highest values. Extraction was performed by adding 25 mL of DDW to
100 mg of dry seaweed powder. The samples were vortexed, placed in an ultrasonic
bath for 30 min, and then remained overnight in the darkness at 25 ◦C. Finally, extracts
were centrifuged, and supernatants were used for analyses. Absorbance was measured
between 290 and 320 nm with a 1-cm quartz cell at 5-nm intervals using Agilent Cary 60
UV-Vis Spectrophotometer (Santa Clara, CA, USA). DDW was used as the blank. The SPF
values were standardized for a final concentration of 1 mg seaweed DW in 1 mL of solvent
(1 mg mL−1), and was calculated by using the equation derived by Mansur et al. [127] and
Malsawmtluangi et al. [113]:

SPF = CF × ∑320
290 EE(λ)× I (λ)× Abs (λ)

where CF = correction factor (=10), EE (λ) = erythemaogenic effect of radiation with
wavelength λ, and Abs (λ) = spectrophotometric absorbance values at wavelength λ. The
values of EE(λ) × I(λ) are constants and were determined by Sayre et al. [111].
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4.3. Statistical Analysis

Statistical analyses were performed using the R statistic program, version 4.0.2, Vienna,
Austria. One-way ANOVA (a = 0.05) was used to compare parameters between experiments.
Tukey’s HSD test was used for post hoc pairwise comparisons. Data were tested for
normality (Shapiro–Wilks test) and homogeneity of variance (Levene test). When ANOVA
assumptions were not met, a permutation ANOVA test of 5000 repetitions was used and a
Games–Howell test was applied for post hoc comparison. Data in tables and figures are
expressed as mean ± SD.

5. Conclusions and Future Perspectives

Seaweeds account for almost 3000 different natural products, representing about
20% of the entire chemistry of the marine realm. Research on marine natural products
has proliferated since the 1960s, when seaweeds were at the center of new discoveries.
Since then, attention in the field has shifted to microalgae [130]. However, microalgae
production for mass industrial use still has several drawbacks, and their bio-refinery cost
may be less economically viable compared to that of seaweed cultivation [29,131,132].
The seaweeds’ attributes of high yields and growth, high bioremediation capabilities,
and chemical richness, make them excellent future candidates for the mass cultivation of
sustainable and functional high-value biomass.

Ulva, Gracilaria and Hypnea are intertidal seaweed genera that possess chemical de-
fenses and protection mechanisms, including the ability to increase secondary metabolites,
such as MAAs and phenolic compounds, and alter their pigment levels, thereby allowing
them to thrive under changing environmental conditions.

Our intention in the current work was to artificially increase the seaweeds’ metabolism
in order to enhance specific and valuable antioxidant and photoprotective biomaterials. We
were able to devise a practical approach based on a two-step/phase cultivation scheme,
in which the seaweeds were initially grown alongside fish effluents, and subsequently
exposed to various abiotic conditions (stressors). The two-phase cultivation method was
inspired by work performed in β-carotene production in Dunaliella [133]. Although this
approach is customarily applied to microalgae cultivation [134], it is new and yet to be
routinely established for seaweed cultivation.

Table 3 depicts how each of the seaweed compounds/attributes can be manipulated
and enhanced based on our study’s findings, where it can be practically adopted by the
seaweed industry. Possibly, other unique attributes of different seaweed species could
be enhanced. By using our cultivation approach, additional seaweed-derived bioactive
compounds, such anti-biotic, anti-viral, anti-inflammatory, anti-diabetic, and anti-cancer
substances, could potentially be manipulated and their concentrations increased.

Table 3. Seaweeds’ general response to the different treatments. Higher (green,
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sustainable advantage, since the seaweeds assimilate the inorganic nutrients from the water,
thus minimizing the risk of coastal eutrophication [135].

The findings from this study confirm that under the high nutrient concentrations
provided by the IMTA system, together with sufficient solar radiation, and/or followed
by high salinity shock, the total content of MAAs, pigments, and phenolic compounds, as
well as their antioxidant capacity and SPF, can be stimulated significantly in the seaweeds
by several hundred percent. The enhanced seaweed biomass can be used as a quality
raw material for healthy foods and additives, for health-promoting pharma and cosmetic
products, and for further bio-refinery and extraction processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20120767/s1. Supplementary S1: Statistical analysis for
different compounds and parameters examined in the study: MAAs (mg g−1 DW), Antioxidant
activity (µg TE mg−1 DW), Polyphenols (µg PE m g−1 DW), SPF, and pigment concentration (mg g−1

DW) of Ulva rigida, Gracilaria conferta, and Hypnea musciformis. When sample size (N) was not large
enough for the Games–Howell post hoc test, Tukey’s HSD was used instead for pairwise comparisons.
System refers to Fish + Shade: integrated cultivation with the fish during the initial two weeks.
Supplementary S2.1: Concentrations of dissolved nutrients, including total ammonia nitrogen TAN
(NH4 and NH3), nitrate (NO3), and phosphate (PO4), monitored at the integrated seaweed tanks
following the fish culture, throughout the experimental period (average values) for each seaweed
species. Seawater refers to the ambient seawater concentrations. Inlet refers to the water coming
into the seaweed cultivation tanks following the fish culture (rich with nutrients), and outlet refers
to the water flowing out of the seaweed cultivation tanks (after being biofiltered). Further values
and methods used were described in our earlier work [23]. Supplementary S2.2: The individual
MAA contents (mg g−1) for Gracilaria conferta and Hypnea musciformis, cultivated under the different
environmental conditions. Evaluation was preformed using dry weight (DW). Supplementary S2.3:
Pearson coefficient (r) between the antioxidant activity and the different compounds/attributes
evaluated in the present study for the three species: Ulva rigida, Gracilaria conferta, and Hypnea
musciformis. Green: positive correlation. (-) no available data. ** p < 0.01, * p < 0.05.
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