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Abstract: The aim of this study was to evaluate the effects of fucoidan isolated from C. crinita on
histamine-induced paw inflammation in rats, and on the serum levels of TNF-α, IL-1β, IL-6, and IL-10
in rats during systemic inflammation response. The levels of TNF-α in a model of acute peritonitis in
rats were also investigated. The isolated crude fucoidan was identified as a sulfated xylogalactofucan
with high, medium, and low molecular weight fractions and a content of fucose of 39.74%, xylose of
20.75%, and galactose of 15.51%. Fucoidan from C. crinita showed better anti-inflammatory effects
in the rat paw edema model, and this effect was present during all stages of the experiment. When
compared to controls, a commercial fucoidan from F. vesiculosus, the results also displayed anti-
inflammatory activity on the 60th, 90th, and 120th minute of the experiment. A significant decrease in
serum levels of IL-1β in rats treated with both doses of C. crinita fucoidan was observed in comparison
to controls, whereas TNF-α concentrations were reduced only in the group treated with fucoidan
from C. crinita at the dose of 25 mg/kg bw. In the model of carrageenan-induced peritonitis, we
observed a tendency of decrease in the levels of the pro-inflammatory cytokine TNF-α in peritoneal
fluid after a single dose of C. crinita fucoidan, but this did not reach the statistical significance margin.
Single doses of C. crinita fucoidan did not alter serum levels of the anti-inflammatory cytokine IL-10
in animals with lipopolysaccharide-induced systemic inflammation.

Keywords: fucoidan; Cystoseira crinita; TNF-α; IL-1β; peritonitis; rat paw edema; cytokines;
anti-inflammatory effect

1. Introduction

The inflammation, as an initial response of the immune system, could occur under the
influence of harmful stimuli such as injury, stress, or infections. These stimuli (e.g., bacterial
endotoxin lipopolysaccharides (LPS) and other foreign antigens) cause the migration of
macrophages and neutrophils to the site of contact. The activated cells produce and
release pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin-
1β (IL-1β), and interleukin 6 (IL-6). The increased levels of these substances promote

Mar. Drugs 2022, 20, 714. https://doi.org/10.3390/md20110714 https://www.mdpi.com/journal/marinedrugs

https://doi.org/10.3390/md20110714
https://doi.org/10.3390/md20110714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0002-5167-3278
https://orcid.org/0000-0003-2864-4388
https://orcid.org/0000-0002-9370-8205
https://orcid.org/0000-0003-3605-1929
https://orcid.org/0000-0003-4399-8838
https://orcid.org/0000-0002-5772-8030
https://orcid.org/0000-0001-6640-8226
https://orcid.org/0000-0002-5578-7862
https://doi.org/10.3390/md20110714
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md20110714?type=check_update&version=2


Mar. Drugs 2022, 20, 714 2 of 20

prolonged inflammation [1,2]. These cytokines induce more infiltration of monocytes,
granulocytes, lymphocytes, and mast cells at the site of injury, which aims at antigen
elimination and tissue restoration. Augmented infiltration and activation of these cells is
related to an increased risk of tissue damage due to excessive inflammation and its main
symptoms, such as pain and edema [3,4].

Cystoseira crinita (C. crinita) is a brown macroalgae with wide distribution in the
Mediterranean region and the Black Sea. Even though some research on C. crinita from
Mediterranean coasts has been performed, the brown macroalgae from the Black Sea region
has been left out of scope. Moreover, the pharmacological properties of fucoidan, derived
from this species, remain unknown.

Fucoidans are a group of sulfated polysaccharides, often detected in the cell walls of
brown seaweed and other marine species [5]. Recently, fucoidans derived from algae have
been the subject of much research regarding their multiple biological activities and possible
therapeutic potential. Several research studies focus on their various pharmacological
effects, including antitumor, immunomodulatory, anti-viral, anti-microbial, anti-diabetes,
nephroprotective, anti-oxidant, anti-inflammatory, and anti-coagulant effects [1,6–8].

However, the development of standardized fucoidan supplements is a complicated
process due to their complex chemical composition. The chemical composition is greatly
influenced by the source, species, geographic location, and extraction process. The activity
of the sulfated polysaccharides depends not only on the composition but also on the
molecular weight, the structure of the molecules, and the route of administration. Moreover,
fucoidans, isolated from the same algal source, could have the opposite effect when tested
on different animal models.

The aim of this study is to identify the chemical composition and structure of fucoidan
isolated from C. crinita and to evaluate its effects on an experimental model of paw inflam-
mation in rats, and on the serum levels of TNF-α, IL-1β, IL-6, and interleukin 10 (IL-10) in
rats with systemic inflammation. The levels of TNF-α in a model of acute peritonitis in rats
were also investigated.

2. Results
2.1. Extraction Yield and Chemical Composition

The chemical content and extraction yield of C. crinita fucoidan are presented in Table 1.
The extraction yield of C. crinita fucoidan was 5.15%, calculated as a percent of the dry
weight of the alga. Colorimetric assays revealed that the tested fucoidan contained mainly
neutral sugars (46.64%) and a minor amount of uronic acids (13.15%). The sulfate content
was relatively low (17%), a characteristic of fucoidan for the Cystoseira genus compared to
other brown algae genus [9,10]. Polyphenolic (<0.10%) and protein content (0.56%) were
low due to the pre-extraction and purification steps of the dried, pulverized algal material.

Table 1. Extraction yield and chemical content of C. crinita crude fucoidan.

Sample Extraction
Yield (%)

Neutral Sugars
(%, w/w)

Uronic Acid
(%, w/w)

Sulfates
(%, w/w)

Total
Polyphenols

(%)
Protein (%)

C. crinita crude
fucoidan 5.15 ± 0.62 46.64 ± 2.58 13.15 ± 0.34 17.00 ± 2.00 <0.10 0.56 ± 0.05

The monosaccharide composition of C. crinita crude fucoidan and a standard com-
mercial sample from F. vesiculosus (Sigma-Aldrich, Saint Louis, MO, USA) were ana-
lyzed by HPAEC-PAD after chemical hydrolysis using trifluoroacetic acid (TFA). The
monosaccharide contents were expressed in terms of a molar percentage of the total
monosaccharides detected.

As mentioned in Table 2, crude fucoidan extracted from C. crinita was principally com-
posed of fucose (39.74%), xylose (20.75%), galactose (15.51%), and glucuronic acid (13.52%),
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but also contained small amounts of glucose (5.50%), rhamnose (2.37%), and arabinose
(2.13%). The sugar profiles of uronic acid analysis have noted the presence of two other
monosaccharide residues, mannuronic and guluronic acids, in C. crinita crude fucoidan and
fucoidan standard with retention times of 18.25 and 19.10 min, respectively. The relative
retention times of these two uronic acids were different from those obtained with glucuronic
and galacturonic acids being analyzed under the same conditions [9,11,12]. Without access
to mannuronic and guluronic acid standards, it was not possible to accurately quantify
these two minor constituents.

Table 2. Monosaccharide composition (molar percentage) of fucoidan extracted from C. crinita (crude
fucoidan) and fucoidan standard from F. vesiculosus (standard fucoidan).

Molar Percentage (%)

Samples Fucose Rhamnose Arabinose Galactose Glucose Xylose Glucuronic
Acid

Crude
fucoidan 39.74 ± 0.15 2.37 ± 0.11 2.13 ± 0.12 15.51 ± 0.12 5.50 ± 0.08 20.75 ± 0.22 13.52 ± 0.11

Standard
fucoidan 55.69 ± 1.47 2.04 ± 0.52 0.81 ± 0.03 13.40 ± 1.27 1.20 ± 0.06 14.71 ± 0.14 11.41 ± 0.44

A structural comparison with a standard fucoidan from F. vesiculosus (Sigma-Aldrich),
carried out under the same experimental analysis conditions as described above, confirmed
that fucose was the most represented sugar among the neutral monosaccharides forming
the structure of the standard fucoidan and the crude fucoidan isolated from C. crinita
(Table 2). In addition, the amount of fucose (55.69%) was higher in the standard fucoidan
sample than in the crude fucoidan extract (39.74%). The decrease in the amount of fucose in
C. crinita crude fucoidan was compensated by an increase in other sugars such as rhamnose,
arabinose, galactose, and glucose.

2.2. FTIR Spectroscopy Analysis

The Fourier-transform infrared (FTIR) spectrum of C. crinita crude fucoidan is shown
in Figure 1. The band at 3427 cm−1 was associated to O-H stretching of sugar residues [13].
The absorption signal at 1611 cm−1 was attributed to the vibration of (C=O) ester groups in
the acid residues, which confirmed the presence of uronic acids [14]. The peak obtained at
1412 cm−1 could be assigned to the stretching of -CH2 groups of neutral monosaccharides
and to the -CH3 groups of the fucosyl residues [9]. The band observed at 1135 cm−1 could
be ascribed to the stretching models of pseudosymmetric sulfate groups (O=S=O) and the
hemiacetal groups of fucosyl residues [9,15].
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2.3. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy

The structural characterization of fucoidan was assessed by 1H NMR analysis. From
our NMR data, the signal attribution was based on the interpretation, identification, and
comparison of the 1H NMR spectrum of native fucoidan polysaccharides obtained in
previous studies, which included ours [10,16,17].

Firstly, the acquired spectra of the fucoidans had a low resolution, essentially due to
their complex sulfated heterogeneous structure. However, there were strong similarities
between the 1H NMR spectra of the isolated fucoidan from C. crinita (crude fucoidan) and
the standard commercial fucoidan (Figure 2).
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Figure 2. 1H NMR spectra of the sulfated fucoidan polysaccharides (a) C. crinita crude fucoidan and
(b) commercial standard fucoidan from F. vesiculosus at 80 ◦C in D2O solution.

Secondly, the two spectra exhibited five regions characteristic of fucoidans. The in-
tense peaks at 1.2 and 1.4 ppm were assigned to the methyl group (CH3), which is the
main characteristic of the fucopyranose unit. The residues with the signals at 1.2 ppm
may be attributed to α-(1→3)-linked L-fucosyl residues. Methyl signals appearing around
1.40 ppm can be assigned to α-(1→4)-linked L-fucose [18]. The signals at 2.2 ppm observed
only in the spectra of standard fucoidans referred to CH3 protons of O-acetyl groups,
which are frequently detected in algal polysaccharides. These signals were absent in the
spectrum of crude fucoidan isolated in this study from C. crinita. Strong signals detected
around 2.5 and 2.7 ppm in the crude fucoidan spectrum could be correlated, on the one
hand, in agreement with the literature, to the functional group acetyl amine of the hexose
(N-acetyl-galactosamine) or pentose (N-acetyl-fucosamine) sugar moiety [19]. On the other
hand, these strong signals could be assigned to the presence of functional groups such
as amino acids, carboxylic acids, alcohols, or phenols in biomolecules (proteins, polysac-
charides, polyphenols, and other compounds) present in the crude fucoidan extracts [20].
The 1H NMR signals, which ranged between 3.5–4.0 ppm, could be attributed to H2–H6
protons of sugar residues.

Finally, it is well known that the chemical shift of the anomeric proton signal cor-
responds to α-type when it is >5 ppm and to β-type when it is <5 ppm [21]. So, the
signal region between 5.3 and 5.6 ppm denoted α-anomeric protons, which appeared
as two broad unresolved multiplets centered at 5.3 and 5.4 ppm, with two additional
small resolved doublets at 5.5 and 5.6 ppm. The high-field signal at 4.5 ppm may be
assigned as β-D-galactopyranose residue. Similar chemical shift regions were reportedly
observed previously in the 1H NMR spectra of polymers of α-linked L-fucopyranose and
β-D-galacto-xylopyranose and other sugar units incorporated into the fucoidan polymers.
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2.4. SEC-MALS Analysis

Size-exclusion chromatography-Multi-Angle Light Scattering (SEC/MALS) experi-
ments were carried out in 0.1 mol/l NaNO3 to determine the molecular weights of the
sulfated fucoidans studied. Figure 3 reports the elution profiles and thus the molecular
weight distributions of C. crinita crude fucoidan.
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Figure 3. SEC-MALS chromatogram of C. crinita crude fucoidan giving Mw (g/mol) versus V (mL)
(black), RI signal (blue), and light scattering at 90◦ (red).

Light scattering (LS; 90◦) and refractive index (RI) signals provide qualitative infor-
mation about the solution state of the system being examined. Thus, the LS signal of
fucoidan around 19 mL is correlated with the RI signal, which indicates that the solution
studied does not present any aggregates. Moreover, at the end of elution (29 mL), the
intensity of the LS signal returns to the initial level, indicating that there is no tailing
phenomenon of the compound analyzed (no interaction with the column packing material,
elution according to their hydrodynamic sizes). The polysaccharides were eluted between
19 and 28 mL, and three populations were detected: a high molecular weight fraction
(Mw = 5.34 × 105 g/mol), a medium molecular weight fraction (Mw = 7.01 × 104 g/mol),
and a low molecular weight fraction (Mw = 1.38 × 104 g/mol) (Table 3). This large dis-
tribution was noted in the literature, with similar tendencies, for fucoidan extracted from
the same species [22]. It was also mentioned that the molecular size of fucoidans varies
between 13 and 950 kDa, depending on the origin of macroalgae [23]. Furthermore, age,
geographical origin, season of harvesting, and the extraction method can influence the
physicochemical characteristics and biological activity of fucoidans.

Table 3. Average macromolecular characteristics of C. crinita crude fucoidan determined by
SEC/MALS analysis.

Peak Limit (mL) Mn (g/mol) Mw (g/mol) Polydispersity
(Mw/Mn)

19.86–27.63 2.26 × 104 1.24 × 105 5.45
19.86–21.88 4.23 × 105 5.34 × 105 1.26
21.88–25.47 5.36 × 104 7.01 × 104 1.31
25.47–27.63 1.17 × 104 1.38 × 104 1.18

2.5. Effect of Fucoidan on Histamine-Induced Paw Edema in Rats

Fucoidan from C. crinita showed well-defined anti-inflammatory effects in a model
of histamine-induced paw edema in rats, and this effect was present during all stages
of the experiment (Figure 4). Treatment with the lower dose of fucoidan (25 mg/kg)
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significantly decreased the paw edema after 5 min of the experiment in comparison
to controls (8.08 ± 1.41 vs. 31.94 ± 2.23; p < 0.001). Similar results were observed with
the higher dose (16.28 ± 3.09 vs. 31.94 ± 2.23; p < 0.05). A significant anti-phlogistic
effect of both (25 mg/kg and 50 mg/kg) tested doses of fucoidan was also registered
15 min (10.36 ± 2.77 and 16.52 ± 3.49 vs. 50.72 ± 4.05; p < 0.001) and 30 min (13.20 ± 4.24
and 16.06 ± 3.56 vs. 59.94 ± 3.85; p < 0.001) after the histamine injection when compared to
controls at the same time points. After 60 min of the experiment, the anti-inflammatory
effect of both doses of C. crinita fucoidan was also present (7.49 ± 3.43 and 9.94 ± 2.83
vs. 52.32 ± 2.98; p < 0.001). These effects persisted until the end of the experiment and
the values at the 90th and 120th min in comparison to controls, which were 4.21 ± 1.93
vs. 43.44 ± 4.52 (p < 0.001) and 2.85 ± 1.30 vs. 38.58 ± 5.03 (p < 0.001) for the lower dose fu-
coidan, and 8.06± 2.10 vs. 43.44± 4.52 (p < 0.001) and 3.45± 1.26 vs. 38.58± 5.03 (p < 0.001)
for the higher dose fucoidan. When compared to controls, fucoidan from F. vesiculosus also
showed anti-inflammatory activity at the 60th min (34.27 ± 4.90 vs. 52.32 ± 2.98; p < 0.01),
at the 90th min (28.18 ± 5.51 vs. 43.44 ± 4.52; p < 0.05), and at the 120th minute of the
testing (20.65 ± 4.31 vs. 38.58 ± 5.03; p < 0.01). The isolated fucoidan from C. crinita was
more active in comparison to the standard (fucoidan from F. vesiculosus) during the late
stages of the inflammation (15 to 120 min; Table 4).
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Figure 4. Effects of diclofenac, fucoidan standard from F.vesiculosus (50 mg/kg bw), and fucoidan
test from C. crinita (25 and 50 mg/kg bw) on paw edema induced by histamine in rats. * p < 0.05 vs.
controls at the same time; ** p < 0.01 vs. controls at the same time; *** p < 0.001 vs. controls at the
same time; # p < 0.05 vs. diclofenac at the same time; ## p < 0.01 vs. diclofenac at the same time.

Table 4. Mean percentages of increase in the rat paw volume in a model of histamine-induced edema
after treatment with saline (controls), diclofenac sodium (diclofenac 25 mg/kg), fucoidan standard
from F. vesiculosus (fucoidan standard 50 mg/kg), and fucoidan test from C. crinita in two doses
(fucoidan test 25 mg/kg and fucoidan test 50 mg/kg), respectively.

Groups

Time Point
5 min 15 min 30 min 60 min 90 min 120 min

Controls
Mean 31.94 50.72 59.94 52.32 43.44 38.58

SEM 2.23 4.05 3.85 2.98 4.52 5.03
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Table 4. Cont.

Groups

Time Point
5 min 15 min 30 min 60 min 90 min 120 min

diclofenac 25
mg/kg

Mean 12.57 ** 19.25 *** 20.48 *** 18.05 *** 15.24 *** 12.90 ***

SEM 1.73 1.50 2.13 1.91 2.40 2.22

fucoidan
standard 50

mg/kg

Mean 29.28 # 39.34 # 45.58 ## 34.27 #** 28.18 * 20.65 **

SEM 4.61 7.72 7.82 4.90 5.51 4.31

fucoidan test
25 mg/kg

Mean 8.08 ***† 10.36 ***††† 13.20 ***††† 7.49 ***††† 4.21 ***††† 2.85 ***††

SEM 1.41 2.77 4.24 3.43 1.93 1.28

fucoidan test
50 mg/kg

Mean 16.28 * 16.52 ***† 16.06 ***†† 9.94 ***††† 8.06 ***†† 3.45 ***††

SEM 3.09 3.49 3.56 2.83 2.10 1.26
* p < 0.05 vs. controls at the same time; ** p < 0.01 vs. controls at the same time; *** p < 0.001 vs. controls at the
same time; # p < 0.05 vs. diclofenac at the same time; ## p < 0.01 vs. diclofenac at the same time; † p < 0.05 vs.
fucoidan standard at the same time; †† p < 0.01 vs. fucoidan standard at the same time; ††† p < 0.001 vs. fucoidan
standard at the same time.

2.6. Changes in Pro-Inflammatory Cytokine Levels (TNF-α, IL-1β and IL-6) in Serum and
Peritoneal Fluid

As shown in Figure 5A, a significant decrease in IL-1β levels in the serum of rats treated
with both doses of C. crinita fucoidan in comparison to controls was observed; however,
the effect was dose-dependent, and the decrease was more prominent in rats treated with
the higher dose of fucoidan (50 mg/kg bw). The estimated levels were 747.67 ± 40.26 vs.
1052.58 ± 114.71 (p < 0.05) for the lower dose and 327.55 ± 45.61 vs. 1052.58 ± 114.71
(p < 0.001) for the higher dose, respectively. This decreasing effect was observed also in
TNF-α serum levels of animals treated with fucoidan from C. crinita in a dose of 25 mg/kg
bw in comparison to controls (67.86 ± 11.58 vs. 173.48 ± 26.83; p < 0.01; Figure 5B). No
differences in the IL-6 levels were observed after a single dose of fucoidan (Figure 5C).

We observed a tendency towards lower levels of the pro-inflammatory cytokine TNF-α
in the peritoneal fluid of rats with a model of peritonitis after a single dose of C. crinita
fucoidan, but these effects did not reach statistical significance (Figure 6).

2.7. Changes in Anti-Inflammatory Cytokine Levels (IL-10) in Serum

Single doses of C. crinita fucoidan did not alter serum levels of the anti-inflammatory
cytokine IL-10 in animals with lipopolysaccharide-induced systemic inflammation. This
observation is supported by the data shown in Figure 7.
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3. Discussion

Brown algae fucoidan has been the subject of intensive research. Many scientific
reports proved that the biological activities of fucoidans were intimately dependent on
the extraction process, chemical structure, and molecular weight [24]. Algae fucoidan is
usually found to form complexes with different molecules, such as polyphenols, proteins,
lipids, and other polysaccharides (alginates), tightly adsorbed to it during the process of
extraction [25]. Therefore, an appropriate pre-treatment procedure is needed to achieve
high purity in the final product. In the present study, a pre-treatment procedure with
ethanol:formaldehyde:water (80:5:15, v/v/v) was chosen due to the ability of formaldehyde
to link and fix phenols and make them insoluble. Furthermore, the ethanol:water solution
prevents the extraction of fucoidan during the purification procedure and leads to a higher
polysaccharide yield [25].

Fucoidans can be obtained by multiple-step extraction using diluted mineral acids,
water, or enzymes or by some novel techniques, such as microwave- or ultrasound-assisted
extraction [24]. In the current study, a dilute acid extraction of fucoidan was preferred
due to the high production yield obtained (5.15%), the cost-efficiency of this method, and
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its potential application for industrial valorization of the abundant macroalgae C. crinita
from the Bulgarian Black Sea coast. The obtained fucoidan had a sulfate content (17%)
like previously reported Cystoseira sp. fucoidans extracted through different methods, for
example: C. compressa (14.65%), C. barbata (22.51%) and C. costata (23.2%), obtained using
acid extraction [9,26,27], and C. sedoides (16.3%), C. crinita (15.7%), and C. compressa fucoidan
(16.6%), obtained using sequential extraction with an aqueous solution of CaCl2 [28].

Contrary to other fucoidans that typically contained only fucose as the major neutral
monosaccharide, fucoidan extracts isolated from different species of the genus Cystoseira
(C. compressa, C. barbata, and C. costata) have been known as sulfated galactofucans pos-
sessing high content of fucose and galactose [29]. The fucose content (39.74%) of the crude
fucoidan was quite similar to the fucose content (43.4%) of the Mediterranean C. crinita
fucoidan reported by Hadj Ammar et al. [22], but smaller compared to those obtained from
other Cystoseira sp. (54.5–61.5%) [9]. In addition to fucose and galactose, xylose was among
the main constitutive neutral monosaccharides of fucoidan extracted from C. crinita. There-
fore, crude fucoidan may be qualified as a xylogalactofucan with a Fucp/Galp ratio of 2.56
(Table 2). These results are consistent with earlier studies reported on fucoidans extracted
from A. cribrosum, S. vulgare, C. costata, and S. gurjanovae, which contained Fucp/Galp ratios
of 2.63, 2.15, 2.08, and 3.11, respectively [9,26,30,31].

The monosaccharide profiles of fucoidans are known to vary depending on the ex-
traction method, even within the same seaweed source, because of the heterogeneity of
fucoidan structures [32]. Furthermore, the significantly higher fucose and lower xylose
and glucose contents of the standard fucoidan sample as compared to the crude fucoidan
extract might be attributed to the different processing procedure used in its preparation.

Likewise, it was suggested that the purification process (e.g., alcohol precipitation, dial-
ysis, and ultrafiltration) used to remove the lower molecular weight fractions (LMWF) from
the initial extract for isolating only the high-molecular-weight fraction (HMWF) may have
helped to reduce the high content of xylose, galactose, and glucose in standard fucoidan
polysaccharide. Globally, the monosaccharide compositions of the two fucoidans (crude
and standard) were comparable, confirming the presence of sulfated xylogalactofucan
polysaccharide structures.

Fucoidans are usually high molecular weight polysaccharides, but medium and low
molecular fractions are often also detected [22,23]. The molecular weight of fucoidan can
influence the polymer’s biological activity and its therapeutic application. However, an
unambiguous relationship between the anti-inflammatory activity and molecular weight
of fucoidan is still not established [27]. For example, Park et al. demonstrated that the
oral administration of HMWF of fucoidan with Mw = 100 kDa augmented the severity of
arthritis and the levels of collagen-specific antibodies, while LMWF with Mw < 30 kDa
reduced arthritis through the suppression of Th1-mediated immune reactions [33]. Other
authors have proven that Saccharina longicruris galactofucan (MW = 638–1529 kDa) reduced
fibroblast proliferation, but once depolymerized under 10 kDa, it had no effect on fibroblast
cell growth and protein secretion [27,34]. Moreover, some studies reported similar anti-
inflammatory effects for high and low-molecular-weight fucoidans. For example, LMWF
from Sargassum hemiphyllum with Mw = 0.8 kDa and HMWF fraction from Sargassum horneri
with Mw > 30 kDa both showed, at the same tested dose (100 µg/mL), decreased levels of
TNF-α and some interleukines [28,35].

In investigating the anti-inflammatory effects of fucoidan, most of the authors focus on
the in vitro effects of this sulfated polysaccharide. Many models of experimental inflamma-
tion are described in the literature, and the selection of appropriate pro-inflammatory agents
often depends on the stage of the inflammatory response, which is the object of this study.
The main mediators during the initial stage of the inflammation are histamine, bradykinin,
platelet-activating factor, TNF-α, and prostaglandins. Respectively, the histamine-induced
model of inflammation is often used for studying this stage of the response. Histamine also
augments the tissue infiltration with inflammatory cells and the following release of nitric
oxide (NO), cytokines, and chemokines [36,37].
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Our results indicated that fucoidan from C. crinita exhibited marked anti-inflammatory
activity in histamine-induced rat paw edema. Other studies reported about the same
activity for fucoidan from different sources (Undaria pinnatifida and Turbinaria ornata);
however, the polysaccharides were tested on carrageenan-induced paw edema [38,39]. In
addition, fucoidan from Cystoseira sedoides, C. compressa, and C. crinita also reduced the
paw inflammation in this model [22]. Moreover, the characteristics of C. crinita fucoidan
reported by the authors were quite similar to those of the present fucoidan from C. crinita
(fucose content of 43.4% vs. 41.36%). Manikandan et al. [40] have reported that fucoidan
derived from Turbinaria decurrens has an anti-inflammatory effect on formalin-induced paw
edema in mice.

Anti-inflammatory mechanisms described for fucoidan include the scavenging of free
radicals, suppression of the production of nitric oxide, TNF-α, prostaglandin E2, IL-1β,
and IL-6 [41]. The observed anti-inflammatory effect of fucoidan could also be related
to its high polyphenolic content. The anti-inflammatory activity of the polyphenols was
discussed by Mhadhebi et al. [42,43]. The authors have proposed that such effects may be
due to polyphenols and sulfated polysaccharides as the main compounds responsible for
the antioxidant and anti-inflammatory activity of the evaluated organic and water extracts
of seaweeds from the Cystoseira genus [42,43].

The polyphenol content, sulfate content, and molecular weight are also involved in
the free-radical scavenging activity. Pozharitskaya et al. [44] reported strong antioxidant
activity of F. vesiculosus fucoidan with the following characteristics: Mw of approximately
735 kDa, neutral carbohydrates of 79.5%, sulfate residues of 27.0%, and uronic acid of 0.7%.
The carbohydrates include: fucose (73.5 mol%), glucose (11.8 mol%), galactose (3.7 mol%),
xylose (6.6 mol%), mannose (0.2 mol%), and arabinose (0.2 mol%). The authors report
the significant inhibition of cyclooxygenase (COX-1 and 2) enzymes, hyaluronidase, and
mitogen-activated protein kinase (MAPK) p38 as the main pathways responsible for the
registered anti-inflammatory activity. Sulfate content, fucose content, and polyphenols are
suggested to contribute to these activities [44]. However, the inflammation is a complex
process and is not limited to the formation of free radicals and activation of the COX
enzymes. A recent study by Obluchinskaya et al. [45] reported a significant reduction of the
protein denaturation and stabilization of human RBC membranes in vitro after treatment
with F. vesiculosus fucoidan. The authors explained the obtained results with the high fucose
and sulfate contents of the studied fucoidan [45].

Jeong et al. [1] reported that the treatment of murine RAW 264.7 macrophages with
fucoidan from Fucus vesiculosus diminished the secretion of TNF-α and IL-1β in these
cells and inhibited the neutrophil infiltration, which revealed its potential to suppress
the early stages of the inflammation. Indeed, histamine-induced paw inflammation in
rats is a model used primarily for screening anti-inflammatory activity during the early
stages of the inflammatory response. Reduced infiltration of the colon tissues with in-
flammatory cells and decreased submucosal edema are reported by Lean et al. [46] in a
model of acute colitis in mice. Oral intake of fucoidan extracts from Fucus vesiculosus also
significantly lowered the levels of IL-1α, IL-1β, and IL-10 derived from the colon tissues
in mice. The anti-inflammatory activity of fucoidan in histamine-induced paw edema is
probably related to a decreased release of pro-inflammatory cytokines. In our experiments,
we observed decreased serum levels of the pro-inflammatory cytokines TNF-α and IL-1β
in rats after treatment with fucoidan from C. crinita. Lee et al. [47], Ni et al. [48], and
Fernando et al. [49] also reported such a decrease after in vitro treatment with fucoidan
fractions derived from Ecklonia cava, Saccharina japonica, and Chnoospora minima on LPS stim-
ulated RAW 264.7 macrophages. Decreased levels of TNF-α, IL-1β, and IL-6 in rats were
reported by Aleissa et al. [7]. The authors observed elevated levels of the pro-inflammatory
cytokines in a model of streptozotocin-induced diabetes mellitus in rats, and treatment
with fucoidan isolated from Saccharina japonica reduced these levels. Recent research from
Wang et al. (2021) revealed a similar decrease in the pro-inflammatory cytokines after
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treatment of LPS-stimulated RAW 264.7 macrophages with sulfated polysaccharides from
a Celluclast-assisted extract of Sargassum fulvellum [50].

Another study performed by Tabarsa et al. [51] evaluated the effect of Nizamuddinia
zanardinii fucoidan on the RAW264.7 murine macrophage cell line. The authors reported
increased secretion of NO, TNF-α, IL-1β, and IL-6 after treatment with fucoidan. Similar
results were reported in a recent study by Wang et al. [50] after treatment of the cell culture
with sulfated polysaccharides isolated from Sargassum fulvellum. Regarding IL-6, we also
observed a slight increase in the serum levels, however, the statistical significance margin
has not been reached. Probably, the different algal source determines different effects on
cytokine levels.

Our study on the levels of the anti-inflammatory cytokine IL-10 showed no significant
changes in serum levels after treatment with fucoidan. In contrast, Hwang et al. [28]
reported increased levels of this cytokine after in vitro treatment of the Caco-2 cell line.
The different results could be related to the molecular weight of the fractions. Hwang
et al. [22] tested oligofucoidan with a molecular weight of 0.8 kDa from a different algal
source (Sargassum hemiphyllum). The role of the molecular weight of fucoidan was discussed
by Park et al. [33]. In the study, low-molecular-weight fucoidan fractions from Undaria
pinnatifida (1 kDa) reduced cartilage and bone destruction and tissue infiltration with
inflammatory cells in a model of rheumatoid arthritis in mice, while high-molecular-weight
fractions had the opposite effect.

The importance of the algal source was reported by other authors in a model of chronic
colitis in mice. Fucoidan derived from Cladosiphon okamuranus Tokida decreased both IFN-γ
and IL-6 synthesis and increased levels of IL-10 in the lamina propria of the colon, while
fucoidan from Fucus vesiculosus did not induce changes in the levels of these cytokines [52].
However, another important factor for the activity of fucoidan is the molecular weight.
Low molecular weight (LMW) and high molecular weight (HMW) fucoidan could have
opposite effects, as reported by Park et al. [33]. The fucoidan isolated from C. crinita
consists of two fractions and could be classified as LMW fucoidan. Recent research by
Wu et al. [53] showed the anti-inflammatory activity of fucoidan from L. japonica and similar
characteristics to C. crinita fucoidan (Mw 8.1 kDa and high fucose content). The authors
found decreased levels of TNF-α and IL-6 in lung tissues after treatment with bleomycine.
Chen et al. [54] also reported decreased synthesis of TNF-α in LPS-treated Hep-G cells after
treatment with LMW S. siliquosum fucoidan (3kDa).

L-fucose is found to decrease elevated levels of TNF-α, IL-1β, and IL-6 in serum
and colonic tissues of mice with a model of colitis [55]. The anti-inflammatory effect and
the changes in the cytokine levels in the current study could be partially related to the
high fucose content of the isolated fucoidan. Pozharitskaya et al. (2020) also demon-
strated the anti-inflammatory activity of fucoidan with high fucose content (79.5% neutral
carbohydrates represented by 73.5 mol% fucose [44].

We evaluated the effects of C. crinita fucoidan using the intraperitoneal route of appli-
cation. However, other routes could also be found suitable for this sulfated polysaccharide.
Fucoidan isolated from Fucus vesiculosus has shown good skin penetrating properties after
topical application in rats, and cream formulations containing the same fucoidan reduced
carrageenan-induced allodynia in rats [41,56]. Low- (7.6 kDa) and medium-MW (35 kDa)
fucoidans from Laminaria japonica also showed good absorption after oral administration
to rats [57].

No significant changes in the levels of TNF-α were observed after a single dose
of C. crinita fucoidan in rats with carrageenan-induced peritonitis. Fucoidan from Cla-
dosiphon okamuranus decreased the neutrophil infiltration of the peritoneal cavity in a
model of acute peritonitis in rats, as reported by Cumashi et al. [58]. However, the lev-
els of pro-inflammatory cytokines in the peritoneal fluid have not been determined. To
our knowledge, this is the first study that reports an evaluation of these levels in the
peritoneal fluid.
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4. Materials and Methods
4.1. Algae Material and Chemicals

Fucoidan was isolated from Cystoseira crinita (Desf.) Bory, collected near Arapya beach,
the Black Sea region, Bulgaria (42◦11′17.9′ ′ N, 27◦50’20.0” E), in July 2019. The taxonomic
identification of algae species was performed on the basis of diagnostic macroscopic
features, with the assistance of the Institute of Oceanology “Fridtjof Nansen” and the
Department of Pharmaceutical Botany, Medical University-Plovdiv (assoc. prof. Plamen
Stoyanov, PhD) (Figure 8).
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The following solutions for injection were purchased from a pharmacy store and used:

1. Diclofenac sodium (Almiral®, Limassol, Cyprus)–manufacturer: Medochemie; batch
number: A902B0; expiration date: 09.2023; excipients: benzyl alcohol, sodium
formaldehyde sulfoxylate, propylene glycol, sodium metabisulfite, sodium hydroxide,
and water for injections.

2. Dexamethasone phosphate (Dexamethason KRKA®, Novo Mesto, Slovenia)-manufacturer:
KRKA; batch number: A67892; expiration date: 30 March 2023; excipients: glycerol,
disodium EDTA, sodium phosphate dihydrate, water for injections.

3. Heparin sodium (Heparinum WZF®, Warsaw, Poland)–manufacturer: Warsaw Phar-
maceutical Works Polfa S.A., Poland; batch number: 01BK1219; expiration date:
12.2022; excipients: NaCl, Benzyl alcohol, 10% NaOH, water for injection.

Fucoidan from Fucus vesiculosus (Product No. F5631; Batch No. SLBC4004V), lipopolysac-
charides from Escherichia coli O55:B5 (LPS), histamine, and all other reagents were obtained
from Sigma-Aldrich and were of analytical grade. All tested fucoidans (from Fucus vesicu-
losus and C. crinita), histamine, and λ-carrageenan were dissolved in saline on the day of
each experiment.

4.2. Animals

Male Wistar rats with an average weight of 170–270 g were used. Animals were
housed under standard laboratory conditions: temperature 22 ± 1 ◦C, humidity 45%, a
12:12 h light/dark cycle, food, and water ad libitum.

4.3. Extraction of Fucoidan

The collected fresh algae were cleaned of available epiphytes, washed with tap
water, and dried in the sun at an average daily temperature of 35 ◦C until a constant
weight was obtained. Prior to the extraction process, the algae were treated with an
ethanol:chloroform:water solution (80:5:15, v/v/v) to remove pigments, lipids, and phenolic
substances [59]. Then, the extraction and separation of fucoidan followed the protocol
proposed by Hentati et al. [9], with slight modifications. Dried algae mass was treated
twice with 0.1 M HCl (algae:solvent ratio 1:20, w/v) during 2 h at 60 ◦C with continuous
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stirring (650 rpm). The obtained extract was separated by centrifugation (40 min, 5000 rpm,
4 ◦C) and filtered through a glass filter (16–40 µm). The filtrate was then neutralized to pH
7.5 with 3 M NaOH, concentrated, and precipitated three times with three volumes of 96%
ethanol (−20 ◦C). Subsequently, the supernatant was removed by centrifugation (15 min,
5000 rpm, 4 ◦C), and the pellet was suspended in water (30 g/L) for 12 h, precipitated with
ethanol, and finally dried at 50 ◦C using a drying oven (Figure 9).
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4.4. Chemical Content of Crude Fucoidan from C. crinita

Previously to the analyses, the fucoidan polysaccharides were dissolved in distilled wa-
ter at a concentration of 10 g/L. The amount of neutral sugars was determined by the phenol-
sulfuric acid method of Dubois et al. [60] using glucose as a standard (20–100 µg/mL).
Uronic acid content was estimated following the protocol of Blumenkrantz & Asboe-
Hansen [61] using H2SO4/tetraborate and a standard of glucuronic acid (25–150 µg/mL).
Sulfate content was carried out by Dogson and Price [62] methodology using K2SO4 and
BaCl2. Phenolic compounds were estimated by the method of Singleton and Rossi [63]
using the Folin–Ciocalteu reagent and gallic acid as a standard (0–20 µg/mL). A protein
assay was carried out by the Bradford method [64] calibrated against bovine serum albu-
min (0–100 µg/mL). All measurements were performed on a Beckman Coulter DU 800
spectrophotometer, Brea, CA, USA.

4.5. Monosaccharide Composition

Prior to analysis, the fucoidan polysaccharides (2.5 mg) were hydrolyzed at 100 ◦C for
4 h using 4 M TFA in a sealed 8 mL Pyrex glass screw-cap tube, and the remaining TFA was
evaporated to dryness at 30 ◦C in a speed-vac centrifuge under low pressure. The dried
samples were dissolved in 1 mL of Milli-Q water and analyzed by HPAEC-PAD according
to Boucelkha et al. [11].

HPAEC-PAD analyses were performed on a Dionex ICS-3000 system (Dionex Corp.,
Sunnyvale, CA, USA) consisting of an SP gradient pump, an AS autosampler, an ED elec-
trochemical detector with a gold working electrode, an Ag/AgCl reference electrode,
and Chromeleon version 6.5 (Dionex Corp., Sunnyvale, CA, USA). A Carbopac PA1
(4 × 250 mm, Dionex) column with a guard column (4 × 50 mm, Dionex) was used as
a stationary phase, using different eluents depending on the nature of the monosaccharides
being analyzed. Two eluents were used for effective uronic acid separation: eluent A
(100 mM NaOH) and eluent B (100 mM NaOH and 1 M NaOAc). The two eluents were
mixed to form the following gradient (% of B in A): t = 0 min: 0%; from 0 to 60 min: linear
gradient of 0 to 100%. After each run, the column was washed for 10 min with 100% B and
preequilibrated for 15 min with the starting conditions of the employed gradient. Samples
(2.5 mg/mL) were injected through a 25 µL full loop, and separations were performed at a
rate of 1 mL/min.

The neutral monosaccharides were eluted isocratically with 16 mM NaOH at a flow
rate of 1 mL/min. Each neutral monosaccharide concentration was determined after
integration of the respective areas and compared with standard curves obtained with
rhamnose, arabinose, mannose, galactose, xylose, glucose, and fucose (Sigma-Aldrich). For
eluent preparation, Milli-Q water and 50% (w/v) NaOH and NaOAc were used. All eluents
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were degassed before use by flushing helium through for 30 min; subsequently, they were
kept under a constant helium pressure (eluent degassing module, Dionex).

4.6. FTIR Spectroscopy

Fourier-transform infrared (FTIR) measurements were carried out using a Nicolet iS
10 FTIR spectrometer (Thermo Fisher Scientific, Pittsburgh, PA, USA), equipped with a dia-
mond attenuated total reflection (ATR) accessory. The IR spectra (64 scans) were recorded
at room temperature (referenced against air) with a wavenumber range of 650–4000 cm−1

and a resolution of 4 nm.

4.7. H NMR Analysis

The freeze-dried samples were dissolved in D2O at 10–15 g/L. 1H NMR spectrum was
recorded at 80 ◦C on a Bruker Avance 500 MHz spectrometer operating at 500.08 MHz for
1H, using a multinuclear probe BBI 5 mm. A 1D proton with a water suppression pulse
sequence (NOESY 1D) was acquired. The sequence repeat was –D1-t-90◦-t-90◦-tm-90◦-AQ,
where D1 (10 s) is the relaxation delay, 90◦ is the already determined 90◦ radio-frequency
pulse length, t (9.49 µs) is a very short delay, tm (0.15 s) is a mixing time delay, and AQ
(5.45 s) is the data acquisition time. Low-power rf irradiation was applied at the water
frequency during D1 and tm to presaturate the water signal. The spectrum was acquired
using 256 scans of 64 K data points with spectral widths of 6009.62 Hz. The resulting 1H
spectrum was manually phased, baseline-corrected, and calibrated to TMSP (TriMethyl Silyl
propionate) at 0 ppm, all using TopSpin 3.6 (BRUKER BioSpin, Rheinstetten, Germany) [11].

4.8. SEC-MALLs Analysis

The molecular weight of the sulfated fucoidan polysaccharides was determined by
size-exclusion chromatography (SEC) equipped with multi-angle light scattering (MALS).
The SEC line consisted of an SB-G guard column as protection and three columns in series
(SB-806 HQ, SB-804 HQ, and SB-803 HQ, 300 mm L × 8 mm I.D., Shodex Showa Denko
K.K., Tokyo, Japan). The elution was performed at a flow rate of 0.5 mL/min (LC-20AD,
Shimadzu, Duisburg, Germany). NaNO3, 0.1 M, and NaN3, 2.5 mM, used as carriers, were
filtered through a 0.02 µm, 47 mm membrane filter (Anotop 47, Whatman, Maidstone, UK),
and carefully degassed. Samples (2.5 mg/mL) were filtered through a 0.45 µm membrane
filter (Grace Altech, Darmstadt, Germany) and were injected through a 100 µL full loop.
Detection was achieved with a light scattering detector (MiniDAWN TREOS II, Wyatt
Technology Corporation, Santa Barbara, CA, USA) and a refractive index detector (RID-10
A, Shimadzu, Duisburg, Germany). Data acquisition and processing were performed using
ASTRA 7.2.2 software. Specific refractive index increments (dn/dc) of 0.150 were used
according to the literature.

4.9. Histamine-Induced Paw Edema

Forty male Wistar rats (weight 170–210 g) were divided into five groups (n = 8) and
treated intraperitoneally as follows: 1st group (control)—treated with saline (0.1 mL/100 g
bw), 2nd group (diclofenac)—treated with diclofenac sodium in a dose of 25 mg/kg bw,
3rd group (fucoidan standard)—treated with 50 mg/kg bw fucoidan from Fucus vesiculosus,
4th group (fucoidan 25 mg/kg)—treated with 25 mg/kg bw fucoidan from C. crinita, and
5th group (fucoidan 50 mg/kg)—treated with 50 mg/kg bw fucoidan from C. crinita. The
volume of each injection was 0.1 mL/100g bw. One hour after the treatment, the animals
received a subplantar injection of 0.1 mL of a 0.1% solution of histamine in saline into the
right paw [65]. Before the injection of histamine and 5, 15, 30, 60, 90, and 120 min after it,
the anti-inflammatory effect was measured using a plethysmometer (UgoBasile, Gemonio,
Italy), as described previously [66].

The paw edema was calculated according to the formula:

Percentage of increase (%) =
Vn −V0

V0
× 100 (1)
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Vn = the volume of the right hind paw measured after carrageenan injection at the
n minute;

V0 = the volume of the right hind paw measured for the same animal before
histamine injection.

4.10. Detection of Immunomodulatory Cytokines

The experimental protocol and the tested groups were designed according to the
articles by Kostadinov et al. [67] and Ohgy et al. [68]. Twenty-four male Wistar rats (with a
weight of 170–270 g) were divided into three groups (n = 8) and treated intraperitoneally as
follows: 1st group (control)—treated with saline (0.1 mL/100 g bw), 2nd group (fucoidan
25 mg/kg)—treated with 25 mg/kg bw fucoidan from C. crinita, and 3rd group (fucoidan
50 mg/kg)—treated with 50 mg/kg bw fucoidan from C. crinita. Thirty minutes after
the application, a solution of LPS in saline was injected intraperitoneally at a dose of
0.25 mg/kg. Four hours after the second injection, the rats were sacrificed, and blood
samples were collected in monovettes. The monovettes were transported immediately to
the Department of Microbiology in an ice container.

In the Department of Microbiology and Immunology, blood samples and peritoneal
fluids were immediately centrifuged at 1000× g for 10 min at room temperature. The
supernatants were subsequently achieved, aliquoted (250–500 µL) to avoid repeated freeze-
thaw cycles, and stored at −80 ◦C until use. The serum concentrations of TNF-α, IL-1β,
IL-6 and IL-10 and TNF-α concentrations in peritoneal fluid were measured by a specific
enzyme-linked immunosorbent assay (ELISA) using pre-coated strip plates. The tests were
performed using the Rat IL-6 ELISA KIT of Diaclone (CEDEX—Besançon, Franche-Comté,
France), Rat TNF-α ELISA KIT of Diaclone (CEDEX—Besançon, Franche-Comté, France),
Rat IL-1β ELISA KIT of Diaclone (CEDEX—Besançon, Franche-Comté, France), and Rat IL-
10 ELISA KIT of Diaclone (CEDEX—Besançon, Franche-Comté, France), strictly following
the manufacturer’s recommendations. The optical density was detected at 450 nm with an
optional 620 nm reference filter using the Tecan Sunrise Microplate Reader (Tecan Austria
GmbH, Groedig, Salzburg,) and Magellan™ Data Analysis Software (Tecan Trading AG,
V 7.2., Männedorf, Switzerland). Each sample concentration was calculated from the
linear equation derived from the standard curve of the concentrations of the cytokine. The
concentrations of inflammatory factors were presented as picograms per milliliter (pg/mL).

4.11. Carrageenan-Induced Model of Peritonitis

The experiment was performed as described by de Carvalho et al. [69]. Twenty-four
male Wistar rats (weight 170–260 g) were divided into three groups (n = 8) and treated
intraperitoneally as follows: 1st group (control)—treated with saline (0.1 mL/100 g bw), 2nd
group (dexamethasone)—treated with dexamethasone phosphate at a dose of 0.2 mg/kg bw,
and 3rd group (fucoidan)—treated with 25 mg/kg bw fucoidan from C. crinita. One hour
later, a solution of λ-carrageenan in saline (0.5 mg/mL; 1 mL) was injected intraperitoneally.
Four hours after the second injection, the rats were sacrificed, and peritoneal fluid was
obtained after washing the peritoneal cavity with a solution containing 50 UI of heparin
and 10 mL saline. The abdominal part of the rats was massaged gently, and a volume
of 5 mL peritoneal fluid was obtained from each animal. The monovettes containing the
fluid were transported immediately in an ice container to the Department of Microbiology
and Immunology.

4.12. Statistical Analysis

Statistical analysis was performed using SPSS 17.0. The normal distribution was eval-
uated with a one-sample Kolmogorov–Smirnov test. A one-way ANOVA and Bonferroni
post hoc test were employed for further analysis. The number of tested animals is given as
n. The results are presented as mean ± SEM and are considered significant at p < 0.05.



Mar. Drugs 2022, 20, 714 17 of 20

5. Conclusions

Fucoidan from C. crinita showed a well-defined anti-inflammatory effect in the histamine-
induced model of paw inflammation in rats. This sulfated polysaccharide also attenuated
the levels of some pro-inflammatory cytokines (TNF-α and IL-1β) in rat blood serum after
LPS challenge, while changes in the anti-inflammatory cytokine IL-10 were not observed.
The decreased levels of pro-inflammatory cytokines, the low Mw, and the chemical com-
position of C. crinita fucoidan may provide an explanation for the anti-phlogistic activity
of the sulfated polysaccharide. Finally of note to mention is that further study should be
conducted in the future to highlight the mechanisms of this C. crinita fucoidan involved in the
anti-inflammatory reaction.
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