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Abstract: Phylum Cnidaria has been an excellent source of natural products, with thousands of me-
tabolites identified. Many of these have not been screened in bioassays. The aim of this study was
to explore the potential of 5600 Cnidaria natural products (after excluding those known to derive
from microbial symbionts), using a systematic approach based on chemical space, drug-likeness,
predicted toxicity, and virtual screens. Previous drug-likeness measures: the rule-of-five, quantita-
tive estimate of drug-likeness (QED), and relative drug likelihoods (RDL) are based on a relatively
small number of molecular properties. We augmented this approach using reference drug and toxin
data sets defined for 51 predicted molecular properties. Cnidaria natural products overlap with
drugs and toxins in this chemical space, although a multivariate test suggests that there are some
differences between the groups. In terms of the established drug-likeness measures, Cnidaria natu-
ral products have generally lower QED and RDL scores than drugs, with a higher prevalence of
metabolites that exceed at least one rule-of-five threshold. An index of drug-likeness that includes
predicted toxicity (ADMET-score), however, found that Cnidaria natural products were more fa-
vourable than drugs. A measure of the distance of individual Cnidaria natural products to the centre
of the drug distribution in multivariate chemical space was related to RDL, ADMET-score, and the
number of rule-of-five exceptions. This multivariate similarity measure was negatively correlated
with the QED score for the same metabolite, suggesting that the different approaches capture dif-
ferent aspects of the drug-likeness of individual metabolites. The contrasting of different drug sim-
ilarity measures can help summarise the range of drug potential in the Cnidaria natural product
data set. The most favourable metabolites were around 210265 Da, quite often sesquiterpenes, with
a moderate degree of complexity. Virtual screening against cancer-relevant targets found wide ev-
idence of affinities, with Glide scores <-7 in 19% of the Cnidaria natural products.

Keywords: ADME; chemical space; drug-likeness; MarinLit; multivariate; rule-of-five; virtual
screening

1. Introduction

The diversity of natural products presents a problem: the metabolites have potential
in many therapeutic areas, but where does the potential lie? One route to defining appli-
cations for natural products is through bioassays. However, comprehensive bioassays are
resource intensive. There is therefore a need to characterise natural product databases to
identify molecules with properties that may be of value for development. In this study,
we focus on Cnidaria-derived natural products (NPs). Phylum Cnidaria (broadly, corals,
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anemones, sea pens, and jellyfish) is of interest as the second largest source of marine
natural products from invertebrates (30% compared to 46% from Porifera [1]). The sources
of natural products in both Porifera (sponges) and Cnidaria may, however, have a symbi-
ont origin. Various studies have shown associated microorganisms (Eukarya, Archaea,
Bacteria) to be the producers of many NPs [2,3]. Our current study excluded NPs known
to have a symbiont origin. Cnidaria NPs are chemically diverse, and include toxins and
venoms, terpenoids, diterpenes, prostaglandins, and steroids [4,5]. Where assays have
been carried out, these have demonstrated cnidarian NPs with antibacterial, cytotoxic,
anticancer, anti-inflammatory, and antiviral properties [1,4-6]. Despite the potential of
Cnidaria NPs, they are a poorly characterised group. The marine natural product (NP)
database MarinLit (http://pubs.rsc.org/marinlit, accessed in December 2018) has 5827 me-
tabolites isolated from Cnidaria published in 1828 papers. By randomly taking 100 papers
spread over the full period of records (1940-2018), we estimated that only 24% of papers
screened one or several metabolites against one or a few human diseases. This implies that
Cnidaria NP potential bioactivity is under-explored.

There are various routes to evaluate the potential of natural products prior to under-
taking targeted assays. These include comparing NPs with existing drugs, making com-
parisons with ligands of interest, virtual screening against potential targets, and making
predictions from structure-activity relationships. When NPs are compared with existing
drugs, these comparisons often use the feature characteristics of existing drugs to define
ranges of suitable molecular properties (a drug-likeness approach, e.g., [7,8]). An expan-
sion of the drug likeness approach is to review the relative positions of natural products
and other compounds in chemical space (e.g., [9,10]). There are implications to using ap-
proved drugs as reference data. The population of approved drugs represents many steps
beyond basic efficacy, involving processes such as commercial decisions, luck, and
changes in scientific focus. This means that opportunities may be missed if they are not
represented in the drugs that have made it through the various filters to approval. As an
alternative to looking at existing drugs as a reference space, NPs can be screened using
similarity to known ligands. Direct estimation of ligand suitability by virtual screening of
metabolites against drug targets can also be used to prioritise NPs of interest. A very flex-
ible approach is to define a desired biological function for a compound and to use quan-
titative structure-activity relationships (QSAR) to quantify how molecular properties af-
fect degree to which a compound displays this function. The uses of QSAR in drug dis-
covery include screening for specific activities or more general properties like the blood-
brain barrier permeability or toxicity of different NPs.

The application of different methods generally addresses different facets of the po-
tential value of NPs. Contrasts between methods can therefore be more informative than
the application of a single approach. The concept of ‘value’ is, of course, multifaceted and
depends on the application. We are interested in the general characterisation of a large
taxonomically-defined group of marine NPs. In this study, we apply examples of drug-
likeness (QED, RDL, and rule-of-five), ligand likeness, molecular docking, and toxicity
QSAR (ADMET-score) to define NP potential and provide a synthesis for metabolites
from Cnidaria. Cnidaria NPs were compared to both drug and toxin reference sets using
51 properties, including absorption, distribution, metabolism, and excretion (ADME) var-
iables derived using the Schrodinger QikProp software.

2. Results

Cnidaria NPs (n = 5600), drugs (1 = 2009) and a reference set of active, non-drug mol-
ecules (‘toxic’, n = 2012) do not appear to be particularly separate in the first two dimen-
sions of a PCA based on QikProp generated properties (Figure 1). The centre of the drug
and cnidarian point clouds are closer to each other than either are to the centre of the toxin
points. The outer ranges of the different sets of molecules, however, largely overlap (Fig-
ure 1b). The two axes of the PCA (PC1 and PC2) account for 58.9% of the overall variation
among molecular Qikprop properties. Molecules with higher predicted central nervous
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system activity (CNS), higher predicted apparent Caco-2 cell permeability (QPPCaco, a
model for the gut-blood barrier), higher predicted apparent MDCK cell permeability
(QPPMDCK, a model for the blood-brain barrier), and better human oral absorption tend
to be towards the left side of the horizontal axis: PC1 (Table 1. These predictors have neg-
ative correlations, so have high values when PC1 values are negative). Variables associ-
ated with more positive values along PC1 are the number of violations of Lipinski’s rule-
of-five, the number of heavy atoms (X.nonHatm, linked to metabolism) and the predicted
polarisability (QPpolrz). The strongest influence on molecule position along PC2 was oral
absorption.
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Figure 1. Relationships among approved drugs, Cnidaria NPs and toxic compounds based on a
principal components analysis of 51 QikProp-generated variables for each molecule. Group mem-
bership for individual molecules is highlighted in (a), with centroids and outliers of each group
emphasised in (b).

Table 1. Correlations of QikProp variables with the first two principal component analysis (PCA)
axes and associated contributions. Correlations (Cor.) indicate the degree and type of association
between a variable and the PCA axis. Contributions (Contrib., %) indicate the variance due to a
single variable compared to that of all the variables combined. Note that only variables with a %
contribution superior to the expected average contribution for a Qikprop variable are reported
here. This expected average contribution is 100/51 = 1.96%.

PC1 PC2
Variable Cor. Contrib. Variable Cor. Contrib.
RuleOfFive 0.100 3.17 HumanOralAbsorption 0.386 54.73
X.nonHatm 0.095 2.90 glob 0.113 4.67
QPpolrz 0.090 2.60 WPSA -0.092 3.11
volume 0.088 248 X.stars -0.106 4.14
XrtvFG 0.085 2.32 RuleOfFive -0.116 4.92
RuleOfThree 0.085 2.29 RuleOfThree -0.129 6.15
FOSA 0.084 2.23 QPPCaco -0.156 8.92
X.noncon 0.080 2.03 QPPMDCK -0.163 9.80
HumanOralAbsorption -0.131 5.44
%HumanOralAbsorption -0.136 5.90
QPPMDCK -0.204 13.22
QPPCaco -0.222 15.71

CNS -0.259 21.35
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Despite the overlap in two dimensions (Figure 1), there were differences in the loca-
tion and/or spread of the cloud of points for each category (Permanova, n =3, 2=0.15, p
=0.001, F29618= 834.5).

The differences among compound categories in multivariate space are reflected by
differences in drug-likeness scores. All drug-likeness scores and the ADMET-score had
some differences among groups (Table 2). Not surprisingly, drugs generally had higher
QED scores than toxins or Cnidaria NPs (Figure 2). The use of the number of structural
alerts in QED and RDL was not sufficient for the toxin group to receive relatively poor
scores, the toxins had more favourable scores than Cnidaria NPs in both cases. The AD-
MET-scores were generally higher (more favourable) for Cnidaria NPs than the other
groups, indicating low predicted toxicity. As would be expected, the toxin group had the
lowest median ADMET-score, reflecting higher predicted toxicities. The ADMET-score
was therefore informative in identifying harmful properties that were not identifiable
from the variables used to define the RDL. Data for the rule-of-five (Ro5) have too few
categories for a box plot to be particularly informative for comparisons, but the proportion
of molecules where at least one threshold was exceeded was greater for Cnidaria NPs and
toxins (37% and 39% of molecules with at least one variable outside the Ro5 thresholds)
than it was for drugs (26% of molecules with at least one exception to the Ro5).

Table 2. Differences among median drug-likeness indices for drugs, Cnidaria NPs and toxins.
Significance difference among groups tested with a Kruskal-Wallis (KW) test, with pairwise com-
parisons using Wilcoxon rank sum tests.

Drug-Likeness Index KW Chi-Squared  df p Significantly Different Pairs

Drug > Cnidaria
QED (high values imply drug like) 4648.5 2 <0.001 Drug > Toxic
Toxic > Cnidaria

Drug > Cnidaria
RDL (high values imply drug like) 1035.6 2 <0.001 Toxic > Drug
Toxic > Cnidaria
Cnidaria > Drug

Ro5 ber of i 57.7 2 <0.001
05 (number of exceptions) Toxic > Drug

Cnidaria > Drug
1193.7 2 <0.001 Drug > Toxic

ADMET-score (high values imply

1 dicted toxici
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Figure 2. Boxplots of drug-likeness indices and ADMET-score for drug, Cnidaria, and toxic com-
pounds: (a) QED, (b) RDL, (c) Rule-of-five violations (Ro5) and (d) ADMET-Score. All drug-like-
ness scores are standardised to a 0-1 range, with higher QED, RDL, and ADMET-score indicating
molecules with more drug-like properties.
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Some drug-likeness indices were correlated, reflecting similar information being
used to generate the value (e.g., QED and RDL, overall correlation using drug, NP and
toxin data = 0.355, p < 0.05). Measures of chemical space similarity between Cnidaria NPs
and drugs also tended to show correlations, but the patterns were more complex (Table
3). The Jaccard score for the similarity of a Cnidaria NP to drugs was correlated to the
NP’s RDL and ADMET-score. However, this measure of apparent drug-likeness was not
reflected by the corresponding QED score, with a weak, but significant, negative correla-
tion. The negative correlation of Jaccard score and Rob is less surprising: higher Jaccard
values indicate a metabolite closer to the centre of the cloud of drugs and with a lower
frequency of Ro5 threshold exceedance. The calculated Jaccard coefficient also reflects the
spread of points in the PCA, with more drug-similar metabolites to the left of PC1 and
higher on PC2. The Tanimoto score summarises different information about the Cnidaria
NP, although this is not so easy to interpret as the correlations are relatively weak, even
when significant.

Table 3. Pearson’s correlations for Cnidaria NPs between the similarity indices indicating relative
positions in chemicals space (Jaccard, Tanimoto), the drug-likeness indices (QED, RDL, Admet
Score and Rule-of-five), and the main PCA axes (PC1, PC2). Correlations for which the coefficient
shows a moderate to strong correlation (>0.4) are shaded in grey. Rows starting with ‘R’ show the
value of the correlation coefficient, with the probability for the observed value indicated by ‘p’. No
p-value is appropriate for the Tanimoto-Tanimoto correlation, indicated by ‘x’.

Tanimoto | QED | Rpr | Admet | Rule-of- PC1 PC2
Score five
jaccard | K 0.016 0134 | 0483 0.291 ~0.740 ~0.507 0.778
p 0.239 <0.001 | <0.001 | <0.001 <0.001 <0.001 <0.001
Tamimoto | B 1.000 0.025 | -0.038 | -0.077 ~0.040 ~0.019 ~0.159
p x 0064 | 0005 | <0.001 0.003 0.153 <0.001

The screen of Cnidaria metabolites using BindingDB identified over 17 thousand po-
tential targets, with a maximum of 51 for a single NP, but 2730 metabolites in the NP
dataset with no identified target. The number of BindingDB hits for a metabolite was
weakly correlated with the metabolite’s Jaccard, Tanimoto, RDL, ADMET-score, and Ro5
values. While these relationships were significant, they were weak and negative for Jac-
card, Tanimoto, and RDL (range -0.097 to —0.057). The number of BindingDB hits that a
coral metabolite had were positively correlated with the ADMET-score and Ro5, but cor-
relations were weak: below 0.166. Glide screening also identified potential ligands for pro-
teins of interest, with 1530 ‘conformational hits” (Glide score < -7) from 1076 (19%) of the
Cnidaria NPs.

The various indices summarise different aspects of a Cnidaria NP’s potential value.
They also emphasise that a single index, such as the QED, may not give a full picture (e.g.,
the best QED values are from drugs, but drugs are generally less favourable considering
the ADMET-score). One way to identify the most favourable metabolites is to combine
different indices. To do this, values were standardised by subtracting values from the in-
dex mean and dividing by the standard deviation. This reduces the scope for a single in-
dex to dominate the response. A summed index was then calculated using the Jaccard,
Tanimoto, RDL, ADMET-score, and (-Ro5). The number of BindingDB hits was omitted
from the summed index due to the weak correlation with other indices and the large num-
ber of zeros. All the included index values are positively correlated with the Jaccard index
and indicate generally drug-like properties. Note that multiplying the standardised Ro5
score by -1 means that positive values represent fewer Lipinski threshold exceedances and
therefore more drug-like properties. QED was left out of the summed index. The weaker
negative correlation of QED with the Jaccard coefficient (Table 3), indicates that these
measures may contain different information about metabolite drug likeness. The post-
treatment summation of indices therefore left two scores to evaluate Cnidaria NPs: a
summed index (mean 0, SD 3.23) and QED.
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The tails of the summed index and QED distributions can be used to indicate Cni-
daria NPs with consistent drug-likeness, NPs with drug-likeness in one index and not the
other, and NPs that are consistently least like drugs. The most consistently druglike NPs
are those with a high summed drug-likeness index and a high QED. Cnidarian metabo-
lites with these properties included sesquiterpenes and a nitrogenous azulene derivative
(Figure 3). Only one of the source description papers reported bioactivity (barnacle cyprid
inhibition and Artemia nauplii mortality in 1, [11]). This pattern of bioactivity is consistent
with a view of sesquiterpenes as defensive metabolites, also reflected in activity against
Vibrio harveyi [12]. The docking scores from Glide indicate that three of the favourably
ranked metabolites could quite possibly bind to target proteins, with five hits overall. Me-
tabolite 2 had a score of —8.7 with a sex hormone binding globulin (UniProlD PO4278).
Metabolite 3 had scores of -7.6 and —7.0 with the sex hormone binding globulin and serum
albumin respectively. There were also Glide hits for 4: —8.5 for sex hormone binding glob-
ulin and —8.2 for the G-protein coupled estrogen receptor.

1 2 3 4 5

Figure 3. Cnidaria NPs with relatively high QED (>0.55) and summed drug index values (>2.42).
Unique identifiers in MarinLit and names (where a name was used in the original description) are
as follows: (1) L22017, (2) L1211 N,N-dimethylamino-3-guaiazulenylmethane, (3) L1854 furanotri-
ene, (4) L339, (5) L2401 tubipofuran. Three of the metabolites had at least one Glide score more
negative than -7.

The key molecular properties of the QED were chosen for oral bioavailability and to
reduce the chances of a drug having undesirable properties [13]. The molecules with
higher summed drug index scores, but poor QED values reflect this (Figure 4). The me-
tabolites are noticeably larger and more complex than those in Figure 3. The original de-
scriptions noted a chemical defence activity against grazing fish for 6, L12916. The para-
zoanthines (e.g., 7) are a series of metabolites that have been identified as agonists of the
CXCR4 chemokine receptor [14]. Potential cancer target activity was also reflected by the
docking in the current study, with a glide score of —10.2 against Tyrosine-protein kinase
ABLI1 for one of the parazoanthines.

Figure 4. Metabolites from Cnidaria with poor QED scores (=0), but favourable summed drug sim-
ilarity indices (>2.06). MarinLit codes and names are: (6) L12916 3-methoxy-8-hydroxylophotoxin,
(7) L27157 parazoanthine F, (8) L24340 sinumaximol I.

The Cnidaria NPs ranked as least druglike by summed index and QED were rela-
tively large metabolites: glycosphingolipids, ceramides, sarcoehrenosides, glycosides,
and sphingolipids (Figure 5). This group was not without activity in the original descrip-
tions of the molecules. Metabolite 9 (L24815) was shown to have some activity against
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H5NT1 avian influenza [15]. None of this group had activity in the virtual docking screen-
ing with Glide.
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Figure 5. Cnidaria NPs with low QED (=0) and negative (unfavourable) summed drug similarity
scores (<-12.94). MarinLit information: (9) L24815, (10) L15811, (11) L17422 firmacoside B.

A small group of molecules had QED scores above 0.5 but relatively low summed
index values (Figure 6). The majority of the metabolites were furanosesquiterpenes (e.g.,
12), with one dikelsoenyl ether (13). The good QED scores presumably reflect good solu-
bility and hydrogen donor/acceptor properties. No activities were reported in the original
articles describing these metabolites. There were also no affinities identified in the virtual
docking carried out using Glide.

Figure 6. Cnidaria NPs with negative (unfavourable) averaged drug similarity scores (<-2.6), but
higher QED values (>0.53). MarinLit references are: (12) L1250 and (13) L25758 dikelsoenyl ether.

3. Discussion

Cnidaria are clearly a source of many potentially useful drugs and drug leads. The
Cnidaria NPs superficially occupy a similar chemical space to drugs and toxins, based on
ADME and molecular properties. Multivariate analysis, however, indicates that the
groups can be distinguished, with category (NP, drug, or toxin) explaining 15% of the
variation among molecules. In terms of indicators based on eight or fewer molecular prop-
erties (QED, RDL, Ro5), many Cnidaria NPs do not have particularly drug-like properties.
However, in terms of predicted toxicity (ADMET-score) Cnidaria NPs are generally more
favourable than drugs or the toxin reference set. When the ADMET-score was created [16],
toxicity was disassociated from the ADME properties, showing no difference in overall
ADME properties between approved and withdrawn drugs but a significant difference in
terms of toxicity between them. This implies that information on toxicity is independent
of other information about the properties of drug candidates [16]. Monitoring a com-
pound’s ADMET problems early on in drug development is a powerful optimisation strat-
egy [17]. Cnidaria metabolites had a similar level of carcinogenicity to drugs and better
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results in terms of Ames mutagenicity (carcinogenicity and intrauterine toxicity), acute
oral toxicity, and human ether-a-go-go-related gene inhibition (hERG, cardiovascular tox-
icity). In the ADMET sense, Cnidaria metabolites are good starting points for drug devel-
opment.

A relatively poorer performance for Cnidaria NPs in QED, RDL, and Ro5 is not sur-
prising as these indices were not derived with biologically-sourced molecules in mind.
Many, if not all, of the biologically sourced molecules are under evolutionary selection
pressure to be active in living systems, so may have features that make thresholds affect-
ing synthetic molecules redundant [18]. These drug likeness indices do, however, allow
both individual metabolites and the whole cnidarian library to be compared to the ideal-
ised properties of established drugs.

When considering just the Cnidaria NPs, the different measures of drug-likeness or
similarity are not all aligned: they emphasise different information. For example, close
proximity to the centre of drugs in the QikProp variable space (measured by Jaccard sim-
ilarity) is not correlated to a Cnidaria NP’s QED score. A weak correlation (0.12) between
ADMET-score and QED was also noted for the set of drugs and toxins analysed by [16].
Using combinations of indices (e.g., Figures 3-6) can therefore identify coherent groups
of drugs for different purposes and give a fuller exploration of potentially useful chemical
space than reliance on one index alone. A similar PCA approach [19] also emphasised
areas in the expanded chemical space occupied by NP-derived drugs compared with the
more narrowly defined synthetic drug space.

The use of drug-likeness or drug-similarity measures implies that it is good to be
similar to an existing drug. The Ro5 has been a useful reference point [20] despite some
exceptions among drugs; however, there is no absolute value for the similarity between a
pair of molecules that could be a universal decision point; in addition similarity measures
are dependent on representation and context [21,22]. An example of similarity pairs is
given in Figure 7. Quite different drugs are selected with different similarity measures.
One might want to distinguish between physico-chemical and structural properties when
considering whether similarity to a drug is desirable or not [23]. Structural similarity has
been a pillar of drug discovery and is based on the observation that structurally similar
molecules tend to have similar properties [21]. If a structure binds to a target, then small
structural change to this compound should retain biological activity against this target
[24]. However, activity cliffs occur [22,25]. From a structural point of view, both similarity
(for example, privileged structure, [26]) and novelty (for example, novel building blocks,
[27]) have been praised, therefore being similar to a drug can be positive or negative. Being
similar or not may be relevant for understanding side effects. Alternatively, drug similar-
ity may identify proposals for therapeutic use on multiple targets, or new uses for existing
drugs (polypharmacology and repurposing, [22,28]).
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Figure 7. Closest drugs to 14 (L22061, asterolaurin H), a xenicane diterpenoid (Lin et al. 2011 [29]).
This metabolite had relatively high Jaccard and Tanimoto values with respect to approved drugs,
but average QED, RDL, and Admet scores. Lin et al. 2011 [29] reported cytotoxic activity against
Hep-2 (human laryngeal carcinoma), Daoy (human medulloblastoma), MCF-7 (human breast ade-
nocarcinoma), and WiDr (human colon adenocarcinoma) tumour cells.

The question of desirability of similarity is less problematic for physico-chemical
properties. Physico-chemical property similarity has also guided the development of nu-
merous drugs. For example, the rule-of-five was built on the notion of shared properties
among oral drugs [7]. However, such rules with hard filters are subject to scepticism [30].
Trying to be similar to known drugs may have caused a reluctance to explore novel chem-
ical space where important drug discovery opportunities may exist [31]. Some targets are
classified as difficult to drug as they have binding sites that are large, highly lipophilic or
polar, flexible, flat, or featureless [31] and so have poor affinity with drugs following
Lipinski’s rule. Thus, future drugs may be very different from existing examples, with
expanded ranges of physico-chemical properties and more non-oral drugs. Balancing ad-
vances in the sort of molecule that may become a drug are the limits of what works in
humans. Therefore, future drugs will still need to follow some administration, distribu-
tion, metabolism and excretion rules (even if these are not defined as yet), which may
restrict the degree of variability in physico-chemical properties compared to structural
properties.

The relative under-exploration of Cnidaria NPs in assays does not appear to be re-
lated to the degree of drug-likeness for any particular molecule. For example, the theoret-
ically most favourable molecules (Figure 3) were not noticeably more assayed in their
original descriptions compared to other Cnidaria NPs. Follow-up assay papers were rare,
with most citations of original descriptions relating to descriptions of similar compounds
or consisting of reviews. For example, [29] (original description of 14) has been cited seven
times in Web of Science to date, with four reviews or general citations, two papers on the
same source organisms and one study describing a novel, related, metabolite ([32], L28930
in MarinLit).

The contrasting of different drug-likeness and similarity measures may be a tool to
direct future assay activity, for example, by identifying metabolites that are in the drug-
like physico-chemical space, but with less structural similarity (implying more chance of
novelty). Alternatively, bioassays could be targeted across a gradient of drug-likeness val-
ues, while holding another property in a narrow range, to explore potential activity. These
studies can be combined with virtual screens. In the current study, we were able to iden-
tify candidate ligands for cancer-related proteins. The chance of a Glide hit was higher in
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the most favourable NPs (Figure 3, 3/5 molecules with at least one Glide score <-7) com-
pared to low summed index metabolites (Figures 5 and 6, no Glide scores <-7). Overall,
our conclusions are similar to those made by [33] in respect of traditional Chinese medi-
cines: Cnidaria NPs have good drug-likeness profiles and provide a diverse range of me-
tabolites for future exploration.

4. Materials and Methods
4.1. Data Collection and Variable Generation

The study is based on a Cnidaria natural product dataset but involves comparisons
of likeness with approved drugs. Furthermore, a toxicant dataset was used as alternative
point of reference, to control for cases that might be drug-like, but also share feature of
toxic compounds.

Cnidaria natural product (NP) molecules were identified from the Marine natural
product (NP) database MarinLit (http://pubs.rsc.org/marinlit, accessed in December
2018). Metabolites that were obtained from virus/microbes/bacteria associated with col-
lected Cnidaria were removed from the dataset. The drug data were retrieved from Drug-
bank (https://www.drugbank.ca/, [34-36]) versions 5.1.0 in May 2018. The relevant com-
pounds for comparison with NPs are small organic molecules, so only these were in-
cluded. The list of drugs included approved and withdrawn molecules. If molecules were
withdrawn for toxicity or side effect reasons, they were not included here. However, if
they were withdrawn because a newer, more efficient molecule replaced it or because the
producing pharmaceutical company shutdown, then these withdrawn drugs were re-
tained. The approved drugs were also filtered to exclude contrasting, dying, or fluorescent
agents (e.g., Gadofosvet), metal containing compounds (e.g., Merbromin), and approved
additives (e.g., xanthan gum) as none of these molecules are relevant to natural product
comparisons. The toxicant data were gathered from the Toxin and Toxin Target Database
(T3DB, http://www .t3db.ca/, [37,38]) in June 2019. Drugs (except those withdrawn for tox-
icity) as well as inorganic molecules were removed from the toxin dataset. Individual me-
tabolites from Marinlit are referred to using their reference codes in the database (e.g.,
L15811) as many do not have an agreed name.

All drug, Cnidaria, and toxic compounds were downloaded with 2D structures.
Physical, chemical, and a small number of absorption-distribution-metabolism-excretion
(ADME) properties were defined for each compound using Schrodinger QikProp (51 var-
iables in total, Table S1). LigPrep 4.0 [39] was used to pre-process and minimise all com-
pounds according to the OPLS3 force field before generating variables with QikProp 5.0.
If a compound had multiple neutral structures predicted by LigPrep, all resulting ADME
properties were averaged. Some variables are used for drug likeness, but not generated
by QikProp: the number of rotatable bonds and the octanol-water partition coefficient.
Values for these two variables were obtained by submitting drug SMILES codes to Chem-
icalize -ChemAxon (https://chemicalize.com/) for the number of aromatic rings and Swis-
SADME (http://www.swissadme.ch/ [40]) for the number of structural (Brenk) Alerts (e.g.,
potentially mutagenic nitro groups, [41]). The drug SMILES codes were downloaded from
Drugbank. Comparisons were based on properties generated for 2009 drugs, 2012 toxi-
cants, and 5600 Cnidaria NP.

4.2. Drug Likeness Approaches

Comparisons of drugs, toxicants, and NPs were made by calculating a panel of drug
likeness scores for each group. This involved the quantitative estimate of drug-likeness
(QED, [13]), the relative drug likelihood (RDL, [42], the rule-of-five (Ro5, [7]) and the AD-
MET-score [16]. The QED [13] is defined using eight drug property histograms: for mo-
lecular mass (M), octanol:water partition coefficient (ALOGP), number of hydrogen bond
donors (HBDs), number of hydrogen bond acceptors (HBAs), molecular polar surface area
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(PSA), number of rotatable bonds (ROTBs), number of aromatic rings (AROMs) and num-
ber of structural (Brenk) alerts (ALERTS). Peaks in the histograms represent desirable
properties for drugs (as they are common), whereas areas falling outside peaks represent
undesirable properties. The QED for a molecule is the geometric mean of individual de-
sirability scores based on the molecule’s properties. As the desirability scores for each
separate molecular property lie between 0 and 1, the QED for a molecule also lies within
this range, with a score close to 0 indicating a lack of similarity to the properties of drugs,
and a score close to 1 indicating a molecule similar to most common property values in
the reference data set of drugs.

The relative drug likelihood (RDL, [42]) was calculated using the same eight molec-
ular properties as the QED. The difference between the likeness measures is that the RDL
is based on Bayesian estimates of the relative likelihood that a molecule is a drug. For
example, a particular molecular weight may be common in drugs and less commonly
found in a reference set of compounds (the non-drug toxins as an additional reference in
the current study). This situation would lead to a higher relative likelihood that a molecule
is a drug at the particular molecular weight. The RDL is calculated for each molecule from
the geometric mean of relative likelihoods derived across the eight molecular properties.
Values closer to 1 indicate greater drug similarity. The rule-of-five score (Ro5) is based on
the thresholds for oral drugs defined by [7]: logarithm of the octanol:water partition coef-
ficient (log P) < 5, molecular weight < 500 Da, number of H-bond donors (HBDs) <5 and
number of H-bond acceptors (HBAs) <10. A molecule falling within all the thresholds has
a score of 0 and would be the most druglike in Ro5 terms, with the maximum score (least
druglike) being 4.

In contrast to drug-likeness scores based on molecular properties, the ADMET-score
is based on 18 variables (e.g.,, AMES mutagenicity, acute oral toxicity) predicted from
QSAR structure-activity relationships [16]. Admet variables for each compound were
generated using the web server admetSAR 2.0 (http://lmmd.ecust.edu.cn/admetsar2/
[43,44]). The final ADMET-score is a weighted average of whether the 18 variables are
predicted to be positive/beneficial (coded as 1) or negative/harmful (coded as 0). Two of
the weights were unchanged from [16]: the performance of the QSAR model and the rel-
ative importance of the endpoint in overall ADMET properties. One weight is based on
the frequency of a specific property in the reference drug dataset. The drug data used in
the current paper (2009 drugs) differs slightly from that of [16] (1124 drugs), so the weight-
ings used are slightly different (w1 in [16]). For Cnidaria and toxic compounds, we used
the same w1 obtained for drugs and standardised (range 0-1) the data using the minimum
and maximum values obtained for drug compounds.

4.3. Drug Similarity Approaches

A 2D representation of the relationships among drugs, NPs, and toxicants can be
generated using a principal component analysis (PCA, e.g., [45,46]). PCA is a data reduc-
tion technique that reprojects multivariate data with the aim of describing the variability
in the dataset using a limited number of dimensions. The 51 chemical descriptor variables
generated by QikProp had different ranges. Before PCA, data were standardised by sub-
tracting the drug minimum value and dividing by the difference between the drug mini-
mum and drug maximum values [47], so that values fell between 0 and 1. The same drug
values were used to rescale and standardise the toxicant and Cnidarian ADME properties.
Points in the PCA represent individual drugs, toxins, and NPs.

In theory, points close together in the PCA represent molecules with similar proper-
ties. A 2D PCA may, however, only explain part of the variation among points. This sep-
aration can be examined without the restriction of a 2D visualisation using a statistical
test, Permanova [48], which compares the observed separation between groups to the pat-
terns generated from random permutation among groups. Permanova was carried out
using the adonis function of the vegan [49] R package (999 permutations, method = Eu-
clidian). Measurements of the similarity between pairs of molecules in multivariate space
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can be made using indices. These similarities were calculated using the Jaccard method in
R (vegan package). Each NP had a pairwise Jaccard similarity to each drug, with values
towards 0 indicating little similarity in the QikProp variables while maximum similarity
occurs at a Jaccard value of 1. Values were summarised as the mean Jaccard drug similar-
ity for each metabolite, representing the separation between a Cnidaria NP and the centre
of the drug cloud in multivariate space.

As an alternative to multivariate summaries of patterns in the 51 QikProp variables,
the similarity of molecules can be summarised using molecular fingerprints or common
molecular substructures. Fingerprints are a series of binary digits representing the pres-
ence or absence of particular sub-structures in a molecule. Fingerprints of drug and Cni-
daria molecules were computed from their sdf files (sdf2ap and desc2fp function of Chem-
mineR package, [50]). Some compounds could not have their fingerprint generated this
way and we used a reduced dataset for the analysis: 1965 drugs and 5416 Cnidaria. Fin-
gerprint Tanimoto similarities between drug and Cnidaria fingerprints were computed
with the fpSim function of ChemmineR. The Tanimoto similarity is 0 if no substructures
in the fingerprint are in common between molecules and 1 if all substructures are in com-
mon. Alongside the fingerprint approach, a Tanimoto similarity based on maximum com-
mon sub-structures (MCS) was generated for all pairs of Cnidaria NP and drugs. MCS is
a graph-based similarity concept defined as the largest sub-graph shared among two mol-
ecules. As such MCS differs from structural feature list strategies like fingerprints [50].
The Tanimoto similarity based on maximum common sub-structures (MCS) was com-
puted from the sdf files of drug and Cnidaria compounds using the fmcsR function (fmcsR
package, [51]). The two Tanimoto similarities were combined into an index as

Tanimoto index = \/ (fingerprint Tanimoto)? + (MCS Tanimoto)?

where fingerprint Tanimoto is the similarity based on molecular fingerprints and MCS Tan-
imoto is the index based on maximum common substructures. As with the Jaccard simi-
larities, paired Tanimoto index values between Cnidaria NPs and drugs were averaged
for each Cnidaria NP to provide an overall similarity to the chemical features of the refer-
ence drug set.

4.4. Ligand Similarity and Docking

An alternative to comparisons of NPs with drug properties is to conduct virtual
screens with ligands of interest or to dock metabolites with drug target proteins. An initial
screen was carried out using the BindingDB database, a public web-accessible database of
measured binding affinities [52]. The ‘find my compound target’ tool was used to generate
a list of targets based on the principle that similar compounds (here Cnidaria NPs and
BindingDB ligands) tend to bind to the same proteins. BindingDB ligands are small, drug-
like molecules (lead compounds). BindingDB reports based on fingerprint Tanimoto sim-
ilarities above 0.7 between test compound and ligand. We used the number of targets
identified as an index of the drug potential of a NP molecule.

A more focussed screening for potential cancer activity was carried out using com-
putational docking (Glide in Schrodinger). Target sites from BindingDB were used to gen-
erate a screening panel (Table 4). The RCSB Protein Data Bank (www.rcsb.org, PDB) and
the Universal Protein Resource (UniProt, https://www.uniprot.org/) were used to obtain
20 targets that were similar to those from BindingDB. Schrodinger’s Maestro 11.9 software
was utilised to perform ligand preparation, protein preparation, and receptor grid gener-
ation for each target. With the assistance of Glide’s Ligand Docking tool, the entire Cni-
daria NP set of metabolites was virtually docked using rounds of high-throughput virtual
screening (HTVS), standard precision (SP), and extra precision (XP). Glide scores (XP
GScores) are a unitless approximation of the ligand binding free energy derived from a
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number of terms that include electrostatic attraction and various interactions that can in-
fluence binding affinity. Glide scores below -7 were used to identify natural products of
potential interest for activity against the screening panel of target proteins.

Serum albumin (P02768) binding affinity may seem an unlikely target property of
drugs. However, serum proteins may be effective vectors for the delivery of therapeutics
to solid tumours [53] and interactions with albumin can extend drug half-life and aid in-
tracellular delivery [54].

Table 4. Target proteins used in Glide screening.

Entry Target Name UniProID PDB ID
1 Mitogen-activated protein kinase kinase kinase MLT Q9NYL2 6JUU
2 Mast/stem cell growth factor receptor Kit P10721 6HH1
3 Amidophosphoribosyltransferase Q06203 6CZF
4 Tyrosine-protein kinase BTK Q06187 6AUB
5 Receptor-type tyrosine-protein kinase FLT3 P36888 4XUF
6 LIM domain kinase 1 P53667 SNXC
7 Platelet-derived growth factor receptor alpha P16234 5GRN
8 Tyrosine-protein kinase ABL1 P00519 4WA9
9 Thyroid hormone receptor alpha P10827 4LNW
10 Histone deacetylase 3 015379 4A69
11 Mitogen-activated protein kinase 14 Q16539 3UVR
12 Alpha-1-acid glycoprotein 1 P02763 3KQO0
13 Vascular endothelial growth factor receptor 1 P17948 3HNG
14 G-protein coupled estrogen receptor 1 Q99527 2R6Y
15 Histone deacetylase 8 Q9BY41 1T69
16 Matrix metalloproteinase-16 P51512 1RMS
17 Thyroid hormone receptor beta P10828 10Q4X
18 Serum albumin P02768 4LA0
19 Sex hormone-binding globulin P04278 1D25

20 Glucocorticoid receptor P04150 6DXK

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/article/10.3390/md20010042/s1, Table S1: QikProp descriptors and properties gen-
erated for molecules.
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