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Abstract: Marine biomass is a treasure trove of materials. Marine polysaccharides have the charac-
teristics of biocompatibility, biodegradability, non-toxicity, low cost, and abundance. An enormous
variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans,
and microorganisms. The most studied marine polysaccharides include chitin, chitosan, alginates,
hyaluronic acid, fucoidan, carrageenan, agarose, and Ulva. Marine polysaccharides have a wide
range of applications in the field of biomedical materials, such as drug delivery, tissue engineering,
wound dressings, and sensors. The drug delivery system (DDS) can comprehensively control the
distribution of drugs in the organism in space, time, and dosage, thereby increasing the utilization
efficiency of drugs, reducing costs, and reducing toxic side effects. The nano-drug delivery system
(NDDS), due to its small size, can function at the subcellular level in vivo. The marine polysaccharide-
based DDS combines the advantages of polysaccharide materials and nanotechnology, and is suitable
as a carrier for different pharmaceutical preparations. This review summarizes the advantages and
drawbacks of using marine polysaccharides to construct the NDDS and describes the preparation
methods and modification strategies of marine polysaccharide-based nanocarriers.

Keywords: marine polysaccharide; drug delivery system; nanocarrier; cancer therapy

1. Introduction

Because the human body has a complex physiological environment and defense ca-
pabilities, whether it is administered by oral, intramuscular, or intravenous injection, the
utilization of drugs has been severely weakened [1]. The hydrophilicity and hydrophobicity
of drug molecules determine the absorption, distribution, metabolism, and excretion of
drugs in the body [2]. The hydrophobic structure in some drug molecules, such as benzene
rings, can increase the hydrophobicity of the drug. The development of nano-drug delivery
systems (NDDSs) brings hope to overcome the above obstacles. The drug molecules can be
encapsulated in the interior or adsorbed on the surface by physical action or can be con-
nected to the framework or matrix of the nanocarrier by chemical bonding [3,4]. At present,
nanocarriers have been widely used to deliver drugs [5], peptides [6], and nucleic acids [7].
Nanocarriers can (1) help drugs avoid rapid clearance during circulation and prolong their
time in the blood [8], (2) be enriched at the lesion site through enhanced permeability and
retention effect (EPR effect) or active targeting, which improves the utilization of drugs and
reduces toxic and side effects [9], and (3) realize the controlled release of drugs through
internal (e.g., pH) or external (e.g., radiation) stimulation signals [10]. Some DDSs have
realized the transformation from laboratory to clinical [11].

The materials for constructing nanocarriers need to have good biocompatibility and
biodegradability. A large number of organic and inorganic materials have been studied
to construct carriers [12,13]. As a kind of natural polymer, polysaccharides are non-toxic,
biodegradable, and rich in reserves, and have shown great application prospects in the
fields of biology, medicine and pharmaceuticals [14–16]. Polysaccharides have various
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resources from terrestrial and marine animals, plants, and microorganisms. Marine polysac-
charides bear important physiological functions in marine organisms and are an important
type of biomass. Compared with polysaccharides extracted from the land, polysaccharides
extracted from marine organisms (shells, crabs, shrimps, sharks, squids, seaweed, etc.)
have absolute advantages in terms of biodiversity and simple preparation process. Marine
polysaccharides and their derivatives are excellent substrates for the construction of DDSs.

Some marine polysaccharides have biological activities, such as anti-tumor, anti-
viral, anti-cardiovascular disease, and immune regulatory effects [17,18]. For example,
hyaluronic acid (HA) can be specifically targeted to the CD44 receptor that is overexpressed
on many tumor cells [19]. Chitosan (CS) has effective antibacterial ability [20]. Besides,
there are a large number of active functional groups on the backbone of marine polysaccha-
rides, such as hydroxyl, amino, and carboxylic acid groups. Marine polysaccharides can
be chemically modified through these active sites to expand their application fields [21].
Drug molecules can be conjugated to the backbone of polysaccharide molecules through
cleavable chemical bonds [22]. The charged drug molecules can form nanoparticles with
charged polysaccharides through electrostatic interaction [23,24]. Drug molecules can
be encapsulated in the internal cavities of micelles formed by polysaccharide-based am-
phiphilic polymers through hydrophobic interaction [25]. The construction of the marine
polysaccharide-based DDS can make DDSs possess the various advantages of nanoscale
systems while also possessing the properties of polysaccharides.

This review summarizes the advantages and disadvantages of marine polysaccharides
and introduces the preparation and modification methods of marine polysaccharide-based
DDSs in detail. We look forward to the future applications of marine polysaccharides, and
hope that this review will inspire the research and development of marine polysaccharide
products.

2. Characteristics of Marine Polysaccharides
2.1. Structure and Classification

Polysaccharides are a class of carbohydrates with complex and large molecular
structures. Polysaccharides are formed by the dehydration of multiple monosaccharide
molecules. The structural units of polysaccharides are connected by glycoside bonds.
Common glycoside bonds include α-1,4-, β-1,4- and α-1,6-glycosidic bonds. The structural
unit can be connected into a straight chain or a branched chain. The straight chain is
generally connected by α-1,4-glycosidic bonds (such as starch) or β-1,4-glycosidic bonds
(such as cellulose); the connection point in the branched chain is often α-1,6-glycosidic
bonds [26,27]. The polysaccharides composed of single monosaccharide are defined as
homopolysaccharides, such as starch, cellulose, and glycogen [26]. The polysaccharides
composed of diverse monosaccharides are called heteropolysaccharides such as HA, chon-
droitin, and alginate (Alg) [28–30]. Marine polysaccharides can be divided into marine
animal polysaccharides, marine plant polysaccharides, and marine microbial polysaccha-
rides, according to their sources. There are many kinds of active polysaccharides isolated
from marine animals, such as chitin in crustaceans, chondroitin sulfate in cartilaginous
fish bones, sulfated polysaccharides in sea cucumbers and starfish, and glycosamines in
mollusks, scallops, clams, and abalones. The seaweeds (such as brown algae, red algae,
and green algae) are the main source of marine plant polysaccharides. Brown algae are rich
in algin and fucoidan; red algae mainly contain carrageenan and agar polysaccharides; the
Ulva polysaccharide is the main ingredient in green algae. Marine microbial polysaccha-
rides are polysaccharides produced by marine bacteria, microalgae, or fungi. The chemical
structure, source, and feature of typical marine polysaccharides are summarized in Table 1.

2.2. Advantages of Marine Polysaccharide-Based DDSs

Biocompatibility, biodegradability, low immunogenicity, and high natural availability
are recognized advantages of marine polysaccharides [31,32]. The presence of multifunc-
tional groups (such as hydroxyl, carboxyl, and amine) on the molecular backbone makes
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it easy to be modified by chemical, biochemical, or enzymatic modification (Figure 1).
Common construction methods include: (i) esterification of hydroxyl groups with acylating
agents; etherification of hydroxyl groups with alkylation agents; oxidation of primary
alcohols to carboxyl groups; oxidation of vicinal secondary hydroxyl groups to aldehydes;
(ii) ester bonds consist of hydroxyl groups linked to carboxyl groups; amide bonds consist
of carboxyl groups linked to amino groups; hydrazone bond formed by the reaction of
-COOH and -NHNH2; (iii) interaction between amino groups and hydroxyl or carboxyl
groups. Drug molecules can be grafted onto polysaccharides through the reaction with
the active groups on the polysaccharides. Carboxymethyl groups can be introduced into
the polysaccharide backbone through the esterification reaction of polysaccharides and
carboxylic acid derivatives. Carboxymethylation can increase the solubility and electroneg-
ativity of polysaccharides. In addition, some types of marine polysaccharides have unique
physicochemical properties and pharmacological effects due to their unique structure.
For instance, CS is the only alkaline polysaccharide in nature. The amino groups in its
molecular chain can combine with protons to generate cations in weak acid solutions,
thus having a broad-spectrum antibacterial activity [33,34]. Some marine polysaccharides
retain several recognition functions, permitting specific receptor recognition or adhesion,
as well as providing neutral coatings with low surface energy and avoiding non-specific
protein adsorption. HA can recognize the CD44 receptor on the cell surface [35]. The
carrier with the negative surface can prevent the adhesion of proteins in the blood and
prolong the circulation time of the carrier. Marine polysaccharides such as HA and Alg
exhibit negative charge under physiological conditions, and in some cases, can be used as
a substitute for poly(ethylene glycol) (PEG) segments. The mentioned advantages make
marine polysaccharides an ideal candidate material for the design and preparation of
DDSs.
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2.3. Drawbacks of Using Polysaccharide in Drug Delivery

Although many marine polysaccharide-based products, such as wound dressings
and dermal filler, have been used clinically, most of these products are used in vitro or
in specific locations in the body [36,37]. As for the carrier, it is usually required to have
a clear structure and clear metabolism in the body [38,39]. Marine polysaccharide-based
materials are at a disadvantage in this regard. Because the source of marine polysaccharides
is destined to have its molecular weight and structure susceptible to the season and place
of production [40]. Even though high-quality and stable products can be obtained through
industrial refinement, it is usually accompanied by a substantial increase in cost. In
addition, due to the uncertainty of selecting model drugs in most studies, it is necessary to
fully study the interaction between drug molecules, polysaccharides, and the human body,
including absorption, distribution, metabolism, and excretion.
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Some marine polysaccharides have poor solubility in common solvents, which limits
the chemical modification of polysaccharides. For example, CS can only be dissolved in
some dilute inorganic or organic acids. Only by reducing the molecular weight or making
hydrophilic modification can the water solubility of CS be increased [41]. Alg is soluble in
an aqueous solution, but after multiple steps of modification, its solubility in an aqueous
solution is usually greatly reduced. Considering these drawbacks, the design of DDSs
based on marine polysaccharides should be considered holistically.

In fact, some of the drawbacks mentioned above are not only the existence of marine
polysaccharide-based DDSs, but carriers of other materials also face these problems. There-
fore, starting from the bottom, optimizing the design, flexible modification, the all-around
carrier may be obtained. Figure 2 summarizes the advantages and disadvantages of marine
polysaccharides in the construction of DDSs.
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3. Preparation and Modification of the Marine Polysaccharide-Based DDS
3.1. Preparation of Marine Polysaccharide-Based Nanoparticles (NPs)

The preparation of marine polysaccharide-based NPs can be categorized as self-
assembly and covalent crosslinking. Self-assembled NPs are formed under the action
of non-covalent bonds. The driving force mainly includes polyelectrolyte complexation,
hydrophobic interaction, and ionic interactions [21,42]. There are many ways to achieve
covalent crosslinking, such as chemical crosslinking and radiation crosslinking [43,44].
Depending on the synthesis method, the obtained NPs can be nanogels, micelles, or
vesicles [45–47].

3.1.1. Polyelectrolyte Complexation (PEC)

Marine polysaccharides containing ionizable groups can be classified as natural poly-
electrolytes. The polyelectrolyte complexation is formed by electrostatic interaction be-
tween oppositely charged components. Naturally charged polysaccharides can easily
form PEC with oppositely charged polyelectrolytes. The only cationic polysaccharide, CS,
can form PEC with negative polysaccharides, peptides, and polyacrylic acid family [48].
Furthermore, CS can also form complexes with nucleic acids, serving as a matrix for
gene carriers [49]. However, it should be noted that due to the poor water solubility of
CS, more studies have been conducted on CS derivatives, such as glycol chitosan [50,51].
Malhotra et al. used sodium hydride to catalyze the etherification reaction between chlo-
rinated chitosan and methyl-PEG, and PEG-grafted chitosan was successfully synthe-
sized [50]. Under physiological conditions, some groups become negatively charged after
ionization, such as the carboxylate in HA and Alg, and the sulfonate in chondroitin sulfate,
thus that polysaccharide molecules can interact with positively charged polymers [52,53].
Figure 3a shows a schematic diagram of the formation of NPs by electrostatic interaction
between CS and semi-flexible polyethylene glycol [54]. The molecular weight and flex-
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ibility of each component will affect the particle size. Similarly, the NPs formed by the
complexation of CS and nucleic acid are also affected by factors such as the ratio of nitrogen
to phosphorus and pH (Figure 3b) [55]. At a low N/P ratio, cationic compounds are not
enough to compress nucleic acids into nanoparticles, and loose complexes with low trans-
fection and low toxicity efficiency can be formed through weak electrostatic interaction. As
the N/P ratio increases, when the cationic compounds reach a sufficient amount, compact
complexes with ideal transfection efficiency but quite a cytotoxicity can be formed [7].
Both the nucleic acid and the cell membrane are negatively charged, thus the charge of
the carrier not only affects the loading of the nucleic acid but also affects the affinity of
the nanocarrier and the cell membrane. These positively charged nanocarriers are easily
attached to the cell membrane surface and then taken up by the cell. The main advantage
of this method for preparing marine polysaccharide-based NPs is a simple operation. NPs
can be formed in situ by simply mixing two polyelectrolytes with opposite charges in a
solution. However, the stability of the complex requires attention. The formation and
stability of the PEC depend on the structure, molecular weight, surface charge density, and
mixing ratio of the polyelectrolyte. External conditions such as pH, temperature, ionic
strength, and solvent properties also affect the preparation process of NPs.
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Figure 3. (a) Schematic representation of the effect of CS molar mass on the particle size of PEC
formed with semi-flexible polynion, adapted from [54]. (b) Common preparation methods of chitosan
nanocarrier for DNA/siRNA delivery. Adapted from [55].

3.1.2. Hydrophobic Interaction

Micelle is a thermodynamically stable nanosystem self-assembled of amphiphilic
polymers in an aqueous solution. The hydrophobic cavity of the micelle can be loaded
with poorly water-soluble drugs to realize the solubilization of the drug; the hydrophilic
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shell of the micelle can protect the drug from non-specific uptake by the reticuloendothelial
system and prolong the retention of the drug in the blood circulation. When hydrophilic
polysaccharides are grafted with hydrophobic fragments, amphiphilic copolymers based
on polysaccharides are obtained [56,57]. Commonly used hydrophobic fragments include
cholesterol, steroid acids, deoxycholic acid, and hydrophobic polymers [58]. The hy-
droxyl, amino, and carboxyl groups on the polysaccharide backbone are common sites
for connecting hydrophobic fragments. When in an aqueous solution, to achieve the
minimum free energy, the hydrophobic segment can spontaneously form micelles or
self-aggregates through the interaction between the intermolecular and intramolecular hy-
drophobic parts [58]. For instance, Zhong et al. used HA (MW ~ 9.5 kDa) as the hydrophilic
segment to prepare endosomal pH-activatable paclitaxel prodrug micelles for active target-
ing and effective treatment of CD44-overexpressing human breast cancer xenografts in nude
mice (Figure 4) [59]. The in vivo pharmacokinetics and biodistribution studies showed
that the HA-shelled acid-activatable paclitaxel prodrug micelles (HA-dOG-PTX-PM) had a
prolonged circulation time in the nude mice and a remarkably high accumulation in the
MCF-7 tumor (6.19%ID/g at 12 h post-injection). The size and thermodynamic stability of
micelles depend on the ratio of hydrophilic and hydrophobic parts.
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Figure 4. (a) Endosomal pH-activatable HA-bdendritic oligoglycerol (HA-dOG-PTX-PM) for active
CD44-targeted paclitaxel (PTX) delivery in vivo; (b) in vivo fluorescence images of MCF-7 human
breast tumor-bearing nude mice at different time points following injection of DIR-loaded HA-
dOG-PTX-PM; (c) quantification of PTX accumulated in tumor and different organs using HPLC
measurements. PTX uptake is expressed as injected dose per gram of tissue (%ID/g). Data are
presented as mean ± SD (n = 3); (d) photographs of typical tumor blocks collected from different
treatment groups of mice on day 29. Adapted from [59].

3.1.3. Ionic Interaction

The ionic interaction is also a kind of electrostatic interaction. The polyelectrolyte
polysaccharide interacts with oppositely charged ions to crosslink [60]. Ionic interaction
strategy is the most useful method to crosslink Alg. Alg is a polysaccharide containing
beta-D-mannuronate (M) and alpha-L-guluronate (G) building blocks. In the presence
of divalent cations, such as Cu2+ or Ca2+, the G blocks of adjacent Alg chains could be
cooperatively chelated [61]. For example, Zhang et al. prepared a gene carrier (denoted as
Ca2+/(Alg/PEI/DNA) NPs) with calcium ions crosslinked sodium alginate as a protective
layer [62]. As shown in Figure 5, sodium alginate, which was further crosslinked by Ca2+,
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was chosen as the shielding material to improve the stability of PEI/DNA complexes.
Compared to PEI/DNA complexes and Alg/PEI/DNA complexes, Ca2+/(Alg/PEI/DNA)
NPs exhibited enhanced stability, which was confirmed by the in vitro and in vivo. Fur-
thermore, the pharmacokinetic study indicated that Ca2+/(Alg/PEI/DNA) NPs exhibited
longer circulation time in blood, which would be beneficial to the EPR effect of NPs and
could realize improved NPs accumulation at the tumor site. Factors that may affect the
formation of NPs through ionic crosslinking include the molecular weight and type of
polysaccharide, the ionic strength and pH of the solvent, and the ratio of ionic crosslinker
to the polysaccharide [63,64]. NPs crosslinked by divalent chelation alone may not provide
sufficient swelling capacity or mechanical properties because divalent ions will leak from
the NPs into the surrounding medium.
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3.1.4. Covalent Crosslinking

The NPs after covalent crosslinking are more compact and stable. The crosslinked
polysaccharide-based NPs can be used as a DDS to avoid premature dissociation and drug
leakage. Usually, the reactive functional groups (such as hydroxyl, amino, and carboxylic
acid groups) on the polysaccharide molecular backbone are used as crosslinking sites.
The complementary group can be on the chain of another component, or an additional
small molecule crosslinker can be used. Covalent crosslinking strategies mainly include
Schiff-base reaction, radical polymerization, click chemistries, and photoreaction [65,66].
The vicinal glycols in some marine polysaccharides can be specifically oxidized cleavage by
periodate to form aldehyde groups that could subsequently react with amine groups. The
Schiff-base reaction is the most commonly used method for preparing CS-based NPs [67,68].
Molecules with more than two active groups may be used as crosslinking agents. The
two aldehyde groups of glutaraldehyde can efficiently react with the amino groups on
the macromolecular chain to achieve crosslinking. Schiff-base (imine) linkages would be
hydrolyzed under acidic conditions, which is related to the degradation of the DDS and
the controlled release of drugs. It should be noted that aldehyde groups are toxic to cells
and can cause severe inflammation in the body. If crosslinking agents containing aldehyde
groups are introduced during the preparation process, especially small molecule crosslink-
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ing agents (e.g., glutaraldehyde), the residual crosslinking agents should be completely
removed, and the biocompatibility of the DDS needs to be strictly evaluated. Dialysis
and washing against distilled water are common methods to remove residual crosslinking
agents. Marine polysaccharides containing carboxyl groups (such as HA and Alg) can be
crosslinked by the condensation reaction of -COOH/-OH or -COOH/-NH2. Ester bonds
or amide bonds are formed as linkages to connect different molecular chains [28]. The
polysaccharide can also be modified in advance to introduce other chemically reactive
groups. Alg is usually crosslinked through ionic interaction, but the carboxyl group on its
backbone can also be modified [69]. More and more new types of crosslinking agents or
methods have been reported to solve the conflict between crosslinking efficiency and toxic-
ity, such as silane coupling agents, amine-reactive disuccinimidyl tartrate, and horseradish
peroxidase-catalyzed crosslinking [70–72].

Crosslinking methods, including physical crosslinking and chemical crosslinking
methods, are the most effective methods for preparing marine polysaccharide NPs. There
are other methods for preparing polysaccharide particles, such as the precipitation/coagulation
method, solvent evaporation method, and spray drying method [73–75]. However, the
particle size obtained by these methods is relatively large and uneven. The DDS prepared
by these methods is suitable for mucosal absorption administration on the skin, eyes,
cavities, etc., but is not suitable for intravenous administration.

3.2. Modification of Polysaccharide-Based NPs

A qualified DDS needs to have good dispersion stability, biocompatibility, stealth dur-
ing the circulation in the body, and targeting of the lesion [76,77]. Although polysaccharide-
based NPs have some inherent properties, such as good biocompatibility, to be a perfect
carrier, they need to be modified to be endowed with new functions and meet the require-
ments of biomedical applications. Therefore, surface modification is another important
step in the preparation of the polysaccharide-based DDS.

Similar to the description in the covalent crosslinking section, the modification of
polysaccharide-based NPs is also based on the reactive groups in the molecule. However,
compared to covalent crosslinking, the methodology used in the modification process
is more flexible. Taking the functional groups on the backbone as a starting point, the
polysaccharide couples to other molecules through the reaction between the functional
groups [78,79]. The main methods of polysaccharide modification are the formation of
esters or ethers using saccharides hydroxyl groups as nucleophiles, the chemical oxidation
of primary alcohols to aldehydes or carboxylic acids, the enzymatic oxidation of primary
alcohols to uronic acid, the formation of amide bonds between the saccharides carboxyl
group and heteroatomic nucleophiles, as well as the nucleophilic reactions or Schiff-base
reaction of the amines [21,80]. Physical adsorption is also one of the methods for surface
modification, but it is usually used for the modification of charged polysaccharide (e.g., CS,
HA, Alg) [81]. The modification process may be achieved through one or more steps.

3.2.1. Modification of Functional Molecules on Marine Polysaccharide-Based NPs

The purpose of the functional modification is to change the in vivo process of NPs
after intravenous injection, thus that they can have long circulation or targeting func-
tions, thereby enhancing drug efficacy and reducing adverse reactions. For marine
polysaccharide-based NPs, giving DDSs the ability to target lesions actively is the main
research content. Coupling or adsorbing appropriate ligands (including antibodies, hap-
tens, lectins, folic acid, etc.) on the surface of NPs, DDSs can be directed to specific cells
using the strong affinity of the ligands to specific receptors on the cell surface [82]. For
example, the surface of CS-based NPs can be efficiently targeted to tumors after being
conjugated with folic acid [83]. In addition, there are also reports that graft drug molecules
on the polysaccharide backbone to achieve drug delivery. As illustrated in Figure 6a,
Jafari et al. reported a fucoidan (MW ~70 kDa)-based DDS for minimizing the side effects
of doxorubicin (Dox) with the help of active targeting toward P-selectin [84]. P-selectin,
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which plays an important role in metastasis by enhancing the adhesion of cancer cells to
endothelium and activated platelets in distant organs, is overexpressed on many cancer
types. The fucoidan-doxorubicin conjugate (FU-Dox NPs) showed a well-controlled size
distribution and sustained release. The active targeting capability of FU-Dox NPs toward
P-selectin resulted in enhanced cellular uptake and cytotoxicity against the MDA-MB-231
cell line with high P-selectin expression compared to the MDA-MB-468 cell line with low
P-selectin expression Figure 6b. To achieve a controlled release of the pendant, cleavable
bonds will be introduced into the DDS. For example, disulfide bonds or imine bonds were
introduced between the functional molecules and the polysaccharide backbone to realize
the response release of the tumor microenvironment [85–87].
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Figure 6. (a) Synthesis route of fucoidan-doxorubicin conjugate (FU-Dox NPs) developed by direct
conjugation of Dox to the fucoidan backbone; (b) flow cytometry analysis of the cellular uptake
of FU-Dox NPs after pretreatment with 1 µM P-selectin inhibitor, KF 38789, for MDA-MB-231 and
MDA-MB-468 cell lines. Adapted from [84].



Mar. Drugs 2021, 19, 345 10 of 15

Table 1. The chemical structure, source, and feature of typical marine polysaccharides.

Polysaccharides Structure Source Feature Reference

Chitosan
(CS)
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3.2.2. Grafting Polymer Chains onto Marine Polysaccharides

Grafting polymer chains on the macromolecular backbone can effectively change
the properties of marine polysaccharides. The introduction of polymer chains can be
divided into two strategies: “graft from” and “graft to” [88,89]. The “graft from” strategy
mainly takes the active group on the polysaccharide backbone as the initiation site and
introduces functional side chains through atom transfer radical polymerization (ATRP) and
reversible addition-fragmentation chain transfer polymerization (RAFT), including cationic
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components for nucleic acid delivery, PEGylated, and zwitterionic moieties for shielding
effects, and functional species for bioimaging applications as well as bioresponsive drug
release applications [15]. Ping et al. used ATRP to functionalize CS in a well-controlled
manner [90]. As shown in Figure 7a, a series of new degradable cationic polymers (termed
as PDCS) composed of biocompatible CS (Mw ~ 150 kDa; degree of deacetylation: 83%)
backbones and poly((2-dimethyl amino)ethyl methacrylate) (P(DMAEMA)) side chains of
different length were designed as highly efficient gene vectors via ATRP. In comparison
with high-molecular-weight P(DMAEMA) and ‘gold-standard’ PEI (25 kDa), the PDCS
vectors showed considerable buffering capacity in the pH range of 7.4 to 5. They were
capable of mediating much more efficient gene transfection at low N/P ratios (Figure 7b).
At their own optimal N/P ratios for transfection, the PDCS/pDNA complexes showed
much lower cytotoxicity (Figure 7c). The “graft to” strategy is usually based on more
reactive reactions such as click chemistry reactions [47]. The properties of DDSs can be
controlled by regulation of the length of the polymer segment [15].
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polyplexes were used as controls. (mean ± SD, n = 4); (c) in vitro gene transfection efficiency of PDCS/pDNA polyplexes
in comparison with those mediated by PEI (25 kDa) (control 1) at N/P ratio of 10, ExGen 500 (control 2) at N/P ratio of
6, P(DMAEMA) (control 3) at N/P ratio of 10, and CSO (control 4) at N/P ratio of 20 in COS7 cell line in the presence of
serum. (mean ± SD, n = 3). Adapted from [90].

4. Conclusions and Perspectives

Marine polysaccharides are gifts from nature. The development and utilization of
marine polysaccharides are one of the ways to realize the high value of marine resources.
The inherent natural properties of marine polysaccharides, such as biodegradability and
biocompatibility, make marine polysaccharide-based nanocarriers a high potential platform
for developing DDS. The marine polysaccharide-based DDS integrates the advantages of
nanotechnology and is suitable as a carrier for different pharmaceutical preparations. From
the bench to industrialization is not a simple process. It is necessary to further optimize
the extraction and purification process of marine polysaccharides and integrate upstream
and downstream resources. With the development and mutual penetration of related
disciplines such as chemistry, biology, physics, and pharmacy, the application fields of
marine polysaccharide products have gradually expanded, for example, in the fields of
tissue engineering, scaffold materials, and wound accessories. There are already a large
number of products based on marine polysaccharides, such as clinical wound dressings
(e.g., Hemcon Gauze, Regenecare HA) and health products (e.g., Move Free joint health
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supplements). However, the marine polysaccharide-based DDS still has a long way to
go to clinical application. As technical issues such as preparation, quality standards, and
route of administration are resolved, marine polysaccharide-based products will have great
development prospects.
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Abbreviations

DDS Drug delivery system
NDDS Nano drug delivery system
HA Hyaluronic acid
CS Chitosan
CSO Chitosan oligomers
Alg Alginate
NPs Nanoparticles
PEC Polyelectrolyte complexation
PTX Paclitaxel
EPR Enhanced permeability and retention
Dox Doxorubicin
ATRP Atom transfer radical polymerization
RAFT Reversible addition-fragmentation chain transfer polymerization
P(DMAEMA) Poly((2-dimethyl amino)ethyl methacrylate)
PEI Polyethylenimine
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