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Rich Source of Omega-3 Fatty Acids and Astaxanthin-Esters,
and Reveals Potential Anti-Adipogenic Effects in
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Abstract: The province of Newfoundland and Labrador, Canada, generates tons of shrimp processing
by-product every year. Shrimp contains omega (n)-3 polyunsaturated fatty acids (PUFA) and
astaxanthin (Astx), a potent antioxidant that exists in either free or esterified form (Astx-E). In this
study, shrimp oil (SO) was extracted from the shrimp processing by-product using the Soxhlet
method (hexane:acetone 2:3). The extracted SO was rich in phospholipids, n-3 PUFA, and Astx-E. The
3T3-L1 preadipocytes were differentiated to mature adipocytes in the presence or absence of various
treatments for 8 days. The effects of SO were then investigated on fat accumulation, and the mRNA
expression of genes involved in adipogenesis and lipogenesis in 3T3-L1 cells. The effects of fish oil
(FO), in combination with Astx-E, on fat accumulation, and the mRNA expression of genes involved in
adipogenesis and lipogenesis were also investigated. The SO decreased fat accumulation, compared
to untreated cells, which coincided with lower mRNA expression of adipogenic and lipogenic genes.
However, FO and FO + Astx-E increased fat accumulation, along with increased mRNA expression of
adipogenic and lipogenic genes, and glucose transporter type 4 (Glut-4), compared to untreated cells.
These findings have demonstrated that the SO is a rich source of n-3 PUFA and Astx-E, and has the
potential to elicit anti-adipogenic effects. Moreover, the SO and FO appear to regulate adipogenesis
and lipogenesis via independent pathways in 3T3-L1 cells.
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1. Introduction

Obesity is a chronic medical condition and a major public health concern that is
increasing in prevalence throughout the world. One in four adult Canadians or about
6.3 million people, were obese in 2011–2012 [1]. In 2018, 26.8% of Canadians 18 years of
age and older (roughly 7.3 million adults) were reported as obese [2]. Newfoundland
and Labrador (NL) has the highest rate of obesity in all of Canada [1,2]. Individuals
with obesity are at a greater risk of chronic diseases such as cardiovascular diseases,
dyslipidemia, hypertension, and diabetes [3–5]. Obesity is linked to changes in adipocytes
function, thereby increasing the adipose tissue mass and size [6]. Adipocyte dysfunction is
associated with insulin resistance, and alterations in the secretory function of adipocytes
that lead to chronic low-grade inflammation [7].

The primary function of adipose tissue is to store energy by accumulating triacylglyc-
erols (TAG) [8]. Adipose tissue is involved in regulating lipid metabolism, insulin-regulated
glucose uptake, and inflammatory response [9,10]. Adipose tissue has substantial capacity
to expand, which is evident by the storage of TAG in adipocytes resulting in the expansion
of the adipose tissue (hypertrophy) [11–13] or adipocyte hyperplasia (increase in number).
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There are intricate sequences of events that regulate the TAG pool within the adipocyte such
as de novo synthesis from carbon precursors called lipogenesis, and the process of TAG
hydrolysis called lipolysis [14]. The process of differentiation of committed fibroblast-like
preadipocytes into the lipid-laden adipocytes defines the process of adipogenesis [8,10].

A crucial step towards adipocyte differentiation involved the activation of regula-
tory genes such as, CCAAT enhancer-binding protein (C/EBP)-β, which is necessary for
activation of peroxisome proliferator-activated receptor-γ (Pparγ) and C/EBPα that regu-
lates adipocyte differentiation [15]. The regulation of lipogenesis in adipocytes involves
another important transcription factor called sterol regulatory element-binding protein
(SREBP)-1c [16], which promotes adipocyte differentiation by regulating the expression
of genes linked to fatty acids and cholesterol synthesis [17]. Genes such as acetyl-CoA
carboxylase (ACC1), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD1), and
diacylglycerol acyltransferase (DGAT2) are regulated by SREBP-1c [18].

Omega (n)-3 polyunsaturated fatty acids (PUFA) have been shown to regulate adipocyte
function, and to improve insulin resistance [19–23]. Although fish and fish oil supplements
are the popular choices for n-3 PUFA supplements, Northern shrimp (Pandalus borealis), a
cold-water shrimp found in the North Atlantic, is another popular marine source. North-
ern shrimp contains a high content of n-3 PUFA, and is rich in antioxidants [24], with a
potential to provide health benefits [25]. The majority of the lipids in shrimp are present
in the head and tail, however, these parts are commonly discarded as a waste material
at shrimp processing units. The lack of information and data towards the nutritional
value and health potential, along with the lack of regulation of ocean discharge for the
fish processing plant, leads to shrimp heads and tails being discarded as waste. These
body parts represent around 45–60% of the whole shrimp [26,27]. Commercially, shrimp
are also separated by size, and the small size that does not meet the selling scale gets
discarded. Since 2010, the total global capture stated for the Northern shrimp species is
between 315,511–446,909 tons [28]. This potentially translates to ~150,000–220,000 tons
of by-product discharged to the ocean. This leads to both, a loss of value, as well as
detrimental environmental impact in the form of increased organic load on the ocean.

The shrimp processing by-product is a rich source of astaxanthin (Astx) and lipids [29].
Astx (3,3′-dihydroxy-beta, beta-carotene-4,4′-dione) is a xanthophyll carotenoid [30] that
exists in either free form, conjugated with protein or esterified with one or two fatty acids,
i.e., monoester or diester form, which stabilizes the molecule [31]. The antioxidant potential
of Astx is suggested to be 10 times higher than other carotenoids, and Astx is an almost
100 times more potent antioxidant than vitamin E and C [30]. Esterified astaxanthin (Astx-E)
has higher antioxidant activity, compared to free Astx [32]. In 2010, Astx extracted from
H. pluvialis received the “generally recognized as safe (GRAS)” status from the US Food and
Drug Administration (FDA) [33]. Astx is reported to reduce body weight gain, decrease
hepatic and plasma total cholesterol and TAG levels, and improve insulin sensitivity in mice
fed obesity-promoting diet [34], however, the Astx form (free/Astx-E) was not specified.

Different methods have been used to extract shrimp oil (SO) from shrimp [27,30,35,36],
however, there is very little information in the literature on the methods to extract quality
shrimp oil from shrimp processing by-product. Furthermore, there are no reports to
date to establish the effects of SO extracted from shrimp processing by-product on the
process of adipogenesis and lipogenesis. In the present study, we extracted SO from
shrimp processing by-product using the Soxhlet method, and studied the lipids and
Astx composition of shrimp extract. Then, we investigated the effects of shrimp extract
(SE) and SO on fat accumulation, adipogenesis, and lipogenesis in 3T3-L1 adipocytes.
Furthermore, we investigated whether a combination of fish oil (FO) plus Astx-E will
reduce fat accumulation and inhibit adipogenesis to a greater extent, compared to FO
alone. Our findings are the first to show the potential of shrimp processing by-product as a
meaningful resource to develop nutraceuticals with anti-obesity properties.
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2. Results
2.1. Lipid Composition of SO

The total lipids content was 3.92 mg/g wet shrimp processing by-product. The lipid
composition showed that SO is rich in phospholipids (64.20 wt%) (Table 1). Other lipid
components included TAG (13.66 wt%), alcohols (4.46 wt%), sterols (21.18 wt%), wax/steryl
esters (0.67 wt%), methyl esters (0.56 wt%), ethyl esters (1.32 wt%), and free fatty acids
(0.33 wt%).

Table 1. Lipid composition of shrimp oil extracted from shrimp processing by-product.

Lipid Composition
Wt (%) Shrimp Oil

Wax/Steryl esters 0.67 ± 0.09
Methyl esters 0.56 ± 0.06
Ethyl esters 1.32 ± 0.11

Triacylglycerols 13.66 ± 5.35
Free fatty acids 0.33 ± 0.47

Alcohols 4.46 ± 0.36
Sterols 21.18 ± 1.69

Phospholipids 64.20 ± 4.68
Total lipids were extracted and analyzed as explained in the Methods section. Data are expressed as the percentage
weight of the total extracted lipids, values are expressed as mean ± SD, n = 2.

2.2. Fatty Acids Composition of Oils

SO contained 18.33% (nmol/nmol) SFA, 40.58% (nmol/nmol) MUFA, and 41.08%
(nmol/nmol) PUFA (Table 2). SFA comprised mainly of C16:0 (15.73% (nmol/nmol)) and
C18:0 (2.42% (nmol/nmol)), while MUFA comprised mainly of C16:1n7 (9.58% (nmol/nmol)),
C18:1n9 (21.33% (nmol/nmol)), and C18:1n7 (6.49% (nmol/nmol)). SO was high in n-3
PUFA (37.09% (nmol/nmol)), of which 21% (nmol/nmol) was EPA (C20:5n3) and 13.89%
(nmol/nmol) was DHA (C22:6n3). SO contained a small amount of total n-6 PUFA (3.99%
(nmol/nmol)), mainly comprising of C18:2n6 (1.96% (nmol/nmol)) and C20:4n6 (1.69%
(nmol/nmol)).

Table 2. Fatty acids composition of shrimp oil extracted from shrimp processing by-product and fish oil.

Fatty Acids (% nmol/nmol) Shrimp Oil Fish Oil

C14:0 0.17 ± 0.00 0.09 ± 0.00
C16:0 15.73 ± 0.33 21.03 ± 0.06

C16:1n7 9.58 ± 0.65 18.30 ± 0.36
C18:0 2.42 ± 0.07 2.73 ± 1.13

C18:1n9 21.33 ± 1.03 5.95 ± 3.51
C18:1n7 6.49 ± 1.56 8.30 ± 5.78
C18:2n6 1.96 ± 0.12 1.95 ± 0.04
C18:3n6 0.30 ± 0.09 0.55 ± 0.01
C18:3n3 0.61 ± 0.08 1.69 ±0. 03
C20:1n9 0.45 ± 0.20 0.27 ±0. 00
C20:4n6 1.69 ± 0.14 1.62 ±0. 03
C20:5n3 21.10 ± 0.11 20.14 ± 0.4
C22:4n6 0.03 ± 0.05 0.33 ±0. 00
C22:5n3 1.48 ± 0.11 3.28 ±0. 07
C22:6n3 13.89 ± 0.13 13.77 ± 0.28
∑SFA 18.34 ± 0.25 23.85 ± 1.06

∑MUFA 40.58 ± 0.09 32.82 ± 1.89
∑n-3 PUFA 37.09 ± 0.04 38.88 ± 0.8
∑n-6 PUFA 3.99 ± 0.11 4.44 ± 0.03

The fatty acids composition of shrimp oil and fish oil was measured as described in the Methods section. Data are
expressed as the percentage nmol of the total extracted fatty acids; values are expressed as mean± SD, n = 2. ΣSFA:
Sum of saturated fatty acids; ΣMUFA: Sum of monounsaturated fatty acids; ΣPUFA: Sum of polyunsaturated
fatty acids; Σn-3 PUFA: Sum of omega-3 PUFA; Σn-6 PUFA: Sum of omega-6 PUFA.
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FO contained 23.85% (nmol/nmol) SFA, 32.82% (nmol/nmol) MUFA, and 43.32%
(nmol/nmol) PUFA (Table 2). SFA comprised of C16:0 (21.03% (nmol/nmol)) and C18:0
(2.73% (nmol/nmol)), while MUFA comprised mainly of C16:1n7 (18.30% (nmol/nmol))
and C18:1 (14.26% (nmol/nmol)). FO was high in n-3 PUFA (38.88% (nmol/nmol)),
of which 20.14% (nmol/nmol) was EPA (C20:5n3) and 13.77% (nmol/nmol) was DHA
(C22:6n3). FO contained a small amount of total n-6 PUFA (4.44% (nmol/nmol)), mainly
comprising of C18:2n6 (1.95% (nmol/nmol)) and C20:4n6 (1.62% (nmol/nmol)).

2.3. Astaxanthin Content of SO

The TLC analysis confirmed the presence of Astx in SO, along with other unknown
carotenoids (data not shown). Soxhlet extraction recovered 4.38 mL shrimp extract/g of
shrimp processing by-product. Yields of free Astx and Astx-E were 24.03 and 187.76 µg/g
of shrimp processing by-product, respectively (Table 3). Thus, the Astx-E content was
almost 8 times higher than the free Astx.

Table 3. Astaxanthin content of shrimp extract.

Fraction Concentration
(µg/mL Shrimp Extract)

Astaxanthin Yield
(µg/g Shrimp Processing By-Product)

Free Astx 8.24 24.03
Astx-E 64.37 187.76

The astaxanthin spots corresponding to each fraction were scrapped from TLC plates, and analyzed spectrophoto-
metrically as mentioned in the Methods section. Free Astx: Free astaxanthin; Astx-E: Esterified astaxanthin.

2.4. SO Reduced Fat Accumulation in 3T3-L1 Adipocytes

Preadipocytes were differentiated to mature adipocytes in the presence or absence of
various treatments for 8 days. Oil Red O staining of SO, SE, and Astx-E treated cells revealed
a decrease in fat accumulation, compared to untreated cells, while FO and FO + Astx-E
(FOA) showed an increase in fat accumulation, compared to untreated cells (Figure 1A).
Quantification of extracted Oil Red O confirmed a significant decrease (p = 0.01) in fat
accumulation with SE, while FO and FOA significantly increased (p = 0.01) fat accumulation,
compared to untreated cells (Figure 1B). Interestingly, quantification of extracted Oil
Red O showed no significant effect on fat accumulation after treatment with SO and
Astx-E, compared to control cells, even though Oil Red O staining revealed a decrease in
fat accumulation.

2.5. Shrimp Oil Decreased, While Fish Oil Increased the mRNA Expression of Pparγ and Srebp1c
in Mature 3T3-L1 Adipocytes

The mRNA expression of Pparγ decreased significantly in 3T3-L1 mature adipocytes
after treatment with SO (p = 0.0006), SE (p = 0.004), and Astx-E (p = 0.0001), compared to
untreated cells (Figure 2A). However, the mRNA expression of Pparγ increased significantly
after treatment with FO (p = 0.01) and FOA (p = 0.01). Both FO and FOA had higher mRNA
expression of Pparγ, compared to SO, SE, and Astx-E (p < 0.05). There was no effect of
respective doses of the vehicle controls (PC, DMSO, PC + DMSO) on the mRNA expression
of Pparγ, compared to the untreated cells (Supplementary Figure S1A).

The mRNA expression of Srebp1c decreased significantly in 3T3-L1 mature adipocytes
after treatment with SO (p = 0.0004), SE (p < 0.0001), and Astx-E (p = 0.001), compared to
untreated cells (Figure 2B). The treatment with SO, SE, and Astx-E also revealed signif-
icantly lower (p < 0.0001) mRNA expression of Srebp1c, compared to FO. However, the
mRNA expression of Srebp1c was significantly higher after treatment with FO (p = 0.01),
compared to untreated cells. There was no statistical difference between the cells treated
with FOA and untreated cells, however, FOA revealed lower (p < 0.05) mRNA expression
of Srebp1c, compared to FO. There was no effect of respective doses of the vehicle controls
(PC, DMSO, PC + DMSO) on the mRNA expression of Srebp1c, compared to the untreated
cells (Supplementary Figure S1B).
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Figure 1. Shrimp extract decreased, while fish oil increased fat accumulation in 3T3-L1 mature adipocytes. Preadipocytes 
were differentiated to mature adipocytes in the presence or absence of various treatments for 8 days, and Oil Red O stain-
ing and quantification was performed as explained in the Methods section. (A) Representative images of the cells stained 
with Oil Red O on day 8 (400× magnification); (B) fat accumulation measured spectrophotometrically. Values are ex-
pressed as mean ± SD, n = 3. Data were analyzed using one-way ANOVA and Tukey’s post-hoc test; p < 0.05 was consid-
ered significant. Superscripts (a, b, c) represent significant differences. Untreated: Untreated cells; SE: Shrimp extract; SO: 
Shrimp oil; Astx-E: Esterified astaxanthin; FO: Fish oil; FOA: FO + Astx-E. Untreated vs. SE (p = 0.01); untreated vs. FO (p 
= 0.01); untreated vs. FOA (p = 0.01). 
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Figure 1. Shrimp extract decreased, while fish oil increased fat accumulation in 3T3-L1 mature adipocytes. Preadipocytes
were differentiated to mature adipocytes in the presence or absence of various treatments for 8 days, and Oil Red O staining
and quantification was performed as explained in the Methods section. (A) Representative images of the cells stained with
Oil Red O on day 8 (400× magnification); (B) fat accumulation measured spectrophotometrically. Values are expressed
as mean ± SD, n = 3. Data were analyzed using one-way ANOVA and Tukey’s post-hoc test; p < 0.05 was considered
significant. Superscripts (a, b, c) represent significant differences. Untreated: Untreated cells; SE: Shrimp extract; SO: Shrimp
oil; Astx-E: Esterified astaxanthin; FO: Fish oil; FOA: FO + Astx-E. Untreated vs. SE (p = 0.01); untreated vs. FO (p = 0.01);
untreated vs. FOA (p = 0.01).
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Figure 2. SO decreased, while FO increased the mRNA expression of Pparγ and Srebp1c in 3T3-L1 mature adipocytes. The
cells were differentiated to mature adipocytes in the presence or absence of various treatments for 8 days, and the mRNA
expression of (A) peroxisome proliferator-activated receptor (Pparγ), and (B) sterol regulatory element-binding protein
(Srebp1c) was measured as explained in the Methods section. The mRNA expression was normalized to RPLP0 as the
reference gene, and expressed as Log2 fold change. Data were analyzed using one-way ANOVA and Tukey’s post-hoc test;
p < 0.05 was considered significant. Superscripts (a, b, c) represent significant differences, n = 3. Untreated: Untreated cells;
SE: Shrimp extract; SO: Shrimp oil; Astx-E: Esterified astaxanthin; FO: Fish oil; FOA = FO + Astx-E. Pparγ, untreated vs. SO
(p = 0.0006); untreated vs. SE (p = 0.004); untreated vs. Astx-E (p = 0.0001); untreated vs. FO (p = 0.01); untreated vs. FOA
(p = 0.01). Srebp1c, untreated vs. SO (p = 0.0004); untreated vs. SE (p < 0.0001); untreated vs. Astx-E (p = 0.001); untreated vs.
FO (p = 0.01); FO vs. SO (p < 0.0001); FO vs. SE (p < 0.0001); FO vs. Astx-E (p < 0.0001).
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2.6. SO Decreased, While FO Increased the mRNA Expression of Lipogenic Genes and Glut-4 in
Mature 3T3-L1 Adipocytes

The mRNA expression of Dgat2 was significantly lower after treatment with SO
(p = 0.01) and SE (p < 0.0001), compared to untreated cells (Figure 3A). Furthermore, the
Dgat2 mRNA expression was significantly lower after treatment with SO and SE (p < 0.0001),
compared to FO. There was no effect of Astx-E treatment on the expression of Dgat2,
compared to untreated cells. Interestingly, the FO treatment showed significantly higher
(p < 0.05) mRNA expression of Dgat2, compared to untreated cells. There was no statistical
difference between the cells treated with FOA and untreated cells, however, the treatment
with FOA showed significantly lower (p < 0.05) mRNA expression of Dgat2, compared to
FO. There was no effect of respective doses of the vehicle controls (PC, DMSO, PC + DMSO) on
the mRNA expression of Dgat2, compared to the untreated cells (Supplementary Figure S1C).
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L1 adipocytes. The cells were differentiated to mature adipocytes in the presence or absence of various
treatments for 8 days, and the mRNA expression analysis of (A) diacylglycerol O-acyltransferase 2
(Dgat2), (B) fatty acid synthase (Fasn), (C) stearoyl-coA desaturase-1 (Scd1), and (D) glucose trans-
porter type-4 (Glut-4) was performed. Gene expression of the target genes was normalized to RPLP0
as the reference gene, and expressed as Log2 fold change. Data were analyzed using one-way
ANOVA and Tukey’s post-hoc test; p < 0.05 was considered significant. Superscripts (a, b, c) represent
significant differences, n = 3. Untreated: Untreated cells; SE: Shrimp extract; SO: Shrimp oil; Astx-E:
Esterified astaxanthin; FO: Fish oil; FOA = FO + Astx-E. Dgat2, untreated vs. SO (p = 0.01); untreated
vs. SE (p < 0.0001); untreated vs. FO (p = 0.01); FO vs. SO (p < 0.0001); FO vs. SE (p < 0.0001); FO vs.
FOA (p = 0.01). Fasn, untreated vs. FO (p = 0.01); untreated vs. FOA (p = 0.007). Scd1, untreated vs.
FO (p = 0.0009); FO vs. FOA (p = 0.003). Glut-4, untreated vs. FO (p = 0.0003); untreated vs. FOA
(p = 0.01); SO vs. FO (p < 0.0001); SO vs. FOA (p < 0.0001); Astx-E vs. FO (p < 0.0001); Astx-E vs. FOA
(p < 0.0001).
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There was no significant effect of SO, SE, and Astx-E on the mRNA expression of
Fasn, compared to untreated cells (Figure 3B). However, FO (p = 0.01) and FOA (p =
0.007) significantly increased the mRNA expression of Fasn, compared to untreated cells
(Figure 3B). There was no effect of respective doses of the vehicle controls (PC, DMSO, PC +
DMSO) on the mRNA expression of Fasn, compared to the untreated cells (Supplementary
Figure S1D).

The treatment with SO, SE, and Astx-E had no significant effect on the mRNA ex-
pression of Scd1, compared to untreated cells (Figure 3C). Interestingly, the treatment
with FO significantly increased (p = 0.0009) the mRNA expression of Scd1, compared to
untreated cells. There was no statistical difference between the cells treated with FOA and
untreated cells, however, Scd1 mRNA expression was lower in the FOA (p = 0.003) treated
cells, compared to FO. There was no effect of respective doses of the vehicle controls (PC,
DMSO, PC + DMSO) on the mRNA expression of Scd1, compared to the untreated cells
(Supplementary Figure S1E).

The treatment with SE, SO, and Astx-E showed no significant effect on the mRNA
expression of Glut-4, compared to untreated cells (Figure 3D). FO (p = 0.0003) and FOA
(p = 0.01) showed higher mRNA expression of Glut-4, compared to untreated cells. SO
and Astx-E revealed lower mRNA expression of Glut-4 (p < 0.05), compared to both FO
and FOA (Figure 3D). There was no effect of respective doses of the vehicle controls (PC,
DMSO, PC + DMSO) on the mRNA expression of Glut-4, compared to the untreated cells
(Supplementary Figure S1F).

3. Discussion

In this study, we have demonstrated that SO extracted from shrimp processing by-
product is a rich source of n-3 PUFA, phospholipids, and Astx-E. Furthermore, the treatment
of 3T3-L1 cells with SO and SE extracted from shrimp processing by-product reduced fat
accumulation, and showed a lower mRNA expression of genes involved in adipogenesis
and lipogenesis. Interestingly, FO, alone or in combination with Astx-E, increased fat
accumulation, and had a higher mRNA expression of genes involved in adipogenesis
and lipogenesis. Previously, our laboratory has shown that marine species, such as blue
mussels and sea cucumber that are rich in n-3 PUFA and other bioactives, reduced fat
accumulation and decreased the mRNA expression of adipogenic and lipogenic genes in
3T3-L1 adipocytes with a potential to elicit anti-obesity effects [37,38]. The effects of SO and
SE were similar to our previous observations. Furthermore, Shikov et al. [39] showed that
lipids extracted from sea urchins body wall inhibit MAPK p38, cyclooxygenase COX-1, and
COX-2, and suggested that these lipid fractions can be used towards drug development
with anti-inflammatory activity. It is likely that the shrimp extract has anti-inflammatory
properties, which needs to be tested in future studies.

Shrimp oil from shrimp processing by-product was rich in phospholipids (64.20 wt%).
Previously, it has been shown that phospholipid-bound n-3 PUFA such as EPA (C20:5n3)
and DHA (C22:6n3) are better absorbed due to better bioavailability, and therefore more
efficiently delivered [40]. SO was also rich in n-3 PUFA, the amount of total n-3 PUFA
was 37.09% nmol/nmol, with 21% EPA (C20:5n3) and 13.89% DHA (C22:6n3). A high
proportion of phospholipids in SO extracted from shrimp processing by-product, along
with a high amount of n-3 PUFA may suggest that these fatty acids are associated with
phospholipids. SO extracted from shrimp processing by-product had a very small amount
of free fatty acids (0.33 wt%). Generally, high free fatty acids cause hydrolytic rancidity
and affect the quality of oils, thus, the amount of free fatty acids is considered as a quality
parameter for oils [41]. The acceptable range of free fatty acids in commercially available
krill oils is suggested to be up to 2 wt% [42], while the extracted SO contained much lower
amounts of free fatty acids confirming superior quality.

The SE from shrimp processing by-product had significantly higher amounts of Astx-E,
compared to free Astx. The Astx-E content was found to be almost 8 times higher than free
Astx. It has been reported that Astx-E has a higher antioxidant activity compared to free
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Astx [32]. Thus, high amounts of Astx-E found in our shrimp extract compared to free Astx
suggests it may have better health potential than free Astx. Overall, our findings suggest
that the Soxhlet extraction method yields good quality oil from shrimp processing by-
product. Early results show that the method of extraction impacts the distribution of lipids
and yield of Astx in the final extract. While Soxhlet is a useful extraction method at the
laboratory scale, scaling up is costly (economically and environmentally). Moreover, it has
been stated that the use of edible oils as a “Green” solvent for extraction, and as a “Green”
co-solvent in supercritical extraction can serve as an alternative to organic extractions [36].
Our results show that the “Greener” extraction methods have the potential for a higher
quality product, however, the product needs to be tested in animal studies in the future.

N-3 PUFA and free Astx have independently been shown to reduce fat accumulation
in 3T3-L1 cells [43–45]. However, there are no studies to date to show the effects of Astx-E
on fat accumulation. Since shrimp processing by-product extracts (SE and SO) had high
amounts of both n-3 PUFA and Astx-E, we investigated their effects on fat accumulation
in 3T3-L1 cells. Preadipocytes were differentiated to mature adipocytes in the presence
or absence of treatments for 8 days. SO and SE decreased fat accumulation, compared
to untreated cells. On the other hand, FO and FO + Astx-E increased fat accumulation,
compared to untreated cells. Interestingly, the Astx-E treatment reduced fat accumulation,
while FO + Astx-E increased fat accumulation. These findings suggest a dominant effect of
FO to regulate fat accumulation. Free Astx has been shown to reduce fat accumulation in
3T3-L1 adipocytes [45], which is similar to our findings with Astx-E.

Fat accumulation in the adipose tissue follows a sequential expression of genes in-
volved in TAG synthesis and storage [46]. The crucial steps towards differentiation of
preadipocytes into mature lipid laden adipocytes involves regulatory genes such as Pparγ,
an important regulator of adipogenesis [47]. N-3 PUFA, such as EPA and DHA, and their
metabolites are natural ligands for Pparγ [48], and act as antagonists. SO and SE from
shrimp processing by-product decreased the mRNA expression of Pparγ significantly in
mature adipocytes, compared to untreated cells. Furthermore, Astx-E also decreased the
mRNA expression of Pparγ. On the other hand, FO and FO + Asx-E increased the mRNA
expression of Pparγ, which coincided with an increase in fat accumulation. N-3 PUFA,
such as EPA and DHA have generally been shown to decrease the mRNA expression of
Pparγ in 3T3-L1 adipocytes [44,49,50]. However, we found an increase in Pparγ mRNA
expression and fat accumulation after the treatment with FO. It is important to consider that
we used FO to treat 3T3-L1 cells, and not pure n-3 PUFA, such as EPA or DHA. Although
FO is rich in EPA and DHA, it contains other fatty acids and antioxidants that may exert a
different effect on adipogenesis. That said, FO supplementation in animal studies have also
been shown to reduce the mRNA expression of Pparγ [51]. However, there are no other
studies to date to reveal the effects of FO and SO on adipogenesis in 3T3-L1 adipocytes.
Previously, our laboratory has shown that arachidonic acid, an n-6 PUFA, has a dominant
effect on the regulation of lipogenic genes when given along with EPA and DHA in 3T3-L1
adipocytes [52]. Therefore, it is possible that the effects observed with FO on adipogenesis
are due to a combination of different fatty acids and other components in FO. Future studies
will focus on animal studies to compare the effects of FO and SO on adipose tissue function.

The regulation of lipogenesis in adipocytes involves Srebp1c, another important tran-
scription factor [16]. Srebp1c promotes adipocyte differentiation by regulating the expres-
sion of genes linked to fatty acid synthesis [17,53]. SO, SE, and Astx-E decreased the mRNA
expression of Srebp1c, suggesting downregulation of lipogenesis. N-3 PUFA have been
shown to reduce the mRNA expression of Srebp1c [54,55]. Interestingly, FO increased
the mRNA expression of Srebp1c, while FO + Astx-E decreased the mRNA expression of
Srebp1c, compared to FO. These findings suggest that Astx-E has a dominant effect on
the regulation of Srebp1c, compared to FO. Previously, it has been reported that free Astx
inhibited Akt activity, and reduced Srebp1c phosphorylation, which delayed nuclear translo-
cation of Srebp1c and subsequent lipogenesis [56]. We did not measure phosphorylation or
nuclear translocation of Srebp1c with various treatments. It is possible that the treatments
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affect post-transcriptional and post-translations modifications of Srebp1c, thereby affecting
lipogenesis, which will be explored in the future.

Another key lipogenic gene that catalyzes the steps involved in the synthesis of
palmitate (C16:0) from acetyl-CoA and malonyl-CoA is Fasn [57]. N-3 PUFA have been
shown to downregulate the mRNA expression of Fasn in 3T3-L1 cells [50]. We found that
SO, SE, and Astx-E had no significant effect on the mRNA expression of Fasn, compared to
untreated cells. However, FO and FO+Astx-E revealed an increase in the mRNA expression
of Fasn, compared to untreated cells. This coincides with an increase in fat accumulation
after treatment with FO and FO+Astx-E, suggesting upregulation of lipogenesis. The
synthesis of C16:0 by Fasn provides substrates for the synthesis of MUFA, specifically
oleic acid (C18:1) from stearic acid (C18:0), a reaction catalyzed by Scd1 [58]. SCD1 is the
rate-limiting enzyme for the synthesis of MUFA from SFA, while MUFA are important
for the synthesis of TAG [59]. N-3 PUFA reduce the mRNA expression of Scd1 in 3T3-L1
adipocytes [44,50]. However, SO, SE, and Astx-E had no significant effect on the mRNA
expression of Scd1. Although FO increased the mRNA expression of Scd1, FO + Astx-E had
no effect. Furthermore, FO + Astx-E had lower mRNA expression of Scd1, compared to
FO alone. These findings again suggest a dominant effect of Astx-E on the regulation of
lipogenic genes, compared to FO. Our findings suggest that SO, FO, and Astx-E regulate
lipogenesis via independent pathways.

Dgat2 catalyzes the final step of mammalian TAG synthesis [60], thus, it is an important
lipogenic gene responsible for fat accumulation in adipocytes. SO and SE reduced the
mRNA expression of Dgat2, compared to untreated cells, which may be responsible for
a decrease in fat accumulation. On the other hand, FO increased the mRNA expression
of Dgat2, however, FO + Astx-E decreased the mRNA expression of Dgat2, compared to
FO. This is similar to the effects of FO + Astx-E on Srebp1c, suggesting a dominant effect of
Astx-E on Dgat2 mRNA expression. Suppression of Dgat2 is protective against excessive
fat accumulation, obesity, and improved insulin resistance [61]. Our findings suggest that
Astx-E may regulate Dgat2 mRNA via Srebp1c. Since SO and SE had no significant effects on
lipogenic genes, it is possible that the decrease in fat accumulation is via β-oxidation of fatty
acids in 3T3-L1 adipocytes [62,63]. A recent study by Tsai et al. [64] showed that the effect
of astaxanthin on fat accumulation and lipogenic genes is dose dependent. These authors
found that a dose of 5 µg/mL of astaxanthin decreased fat accumulation, however, there
was no effect on the mRNA expression of lipogenic genes. Increasing the astaxanthin dose
to 25 µg/mL decreased fat accumulation, along with a decrease in lipogenic genes. It is
possible that SO and FO have a dose dependent effect on fat accumulation and adipogenic
and lipogenic gene expression, which will be explored in the future, along with measuring
protein expression levels of the studied genes.

Fat accumulation in adipocytes is an essential process [65], however, excess fat ac-
cumulation predisposes cells towards insulin resistance [66]. Adipogenesis is associated
with insulin sensitivity via insulin-mediated glucose uptake [67]. The increased uptake of
glucose via GLUT-4 is positively linked with insulin sensitivity in adipose tissue [68]. SE,
SO, and Astx-E had no significant effect on the mRNA expression of Glut-4, compared to
untreated cells. On the other hand, FO and FO + Astx-E increased the mRNA expression of
Glut-4. SO and Astx-E revealed lower mRNA expression of Glut-4, compared to both FO
and FOA. In addition, we observed that FO and FO + Astx-E increased fat accumulation.
Peyron-Caso et al. [69] reported that FO improves insulin sensitivity by regulating glucose
transport as a result of increasing the GLUT-4 protein and mRNA levels in adipocytes
of Sucrose-fed rats. It is likely that the effects of FO in 3T3-L1 adipocytes are associated
with improving insulin sensitivity, whereas the effects of SE and SO are associated with
the inhibition of adipogenesis and lipogenesis or increased beta-oxidation. Moreover, the
effects of SO and SE were not always consistent, even though we used the same amount
of SO and SE in our treatments. SE contained a lower amount of oil compared to SO,
while SE also likely contained both water-soluble and insoluble components, due to the
combination of polar and nonpolar solvent used for extraction. Further investigations
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are needed to understand the molecular mechanisms by which FO, SO, and SE regulate
adipocyte function. Our findings demonstrate that the shrimp processing by-product is a
valuable source for extracting bioactives, and for developing nutraceuticals with potential
anti-obesity properties. Effective solutions to the problems of modern life are often found
at the local level. Innovations which advocate approaches towards a circular economy are
essential, as we seek to move towards a more sustainable future. This study intends to lay
the groundwork for one such innovation. Such scientific approaches that encourage the
concept of circular economy are especially pertinent to advance towards more sustainable
ways of production and processing to develop novel nutraceuticals.

4. Materials and Methods
4.1. SO Extraction from Shrimp Processing By-Product
Soxhlet Method

The shrimp extract was prepared from the Northern shrimp (Pandalus borealis) process-
ing by-product (provided by St. Anthony Basin Resources Inc. (SABRI), St. Anthony, NL,
Canada). The Soxhlet method of extraction was used to extract lipids and carotenoids from
the wet shrimp processing by-product (Supplementary Figure S2). The Northern shrimp
(20 g) was ground to fine particles and placed in the thimble of the Soxhlet apparatus, to
which 200 mL of hexane:acetone (2:3, v/v) was added and refluxed for 6 h. Four indepen-
dent batches of extraction were performed. The extracts were pooled, concentrated in a
rotatory evaporator (BUCHI Corporation, New Castle, DE, USA) at a temperature of 40 ◦C
under a vacuum, and stored at 4 ◦C until further use. SO was extracted from the shrimp
extract using the Folch method [70], and stored at 4 ◦C for future studies. Both the shrimp
extract and SO were used for cell culture experiments.

4.2. Lipids and Fatty Acids Composition Analysis of Oils

The lipid composition of SO was analyzed using Thin Layer Chromatography-flame
ionization detection (TLC-FID) (Mark VI Iatroscan, NTS, USA), and PeakSimple soft-
ware (version 4.54, 6 channel, SRI Instruments, Torrance, CA, USA). The samples were
spotted on silica coated chromarods, which were developed as per a previously estab-
lished method [71,72]. Lipid classes for each chromarod were obtained using the regres-
sion equations derived during calibration to determine the percentage lipid composition
(wt%), along with the total lipid content. The calibration was performed using a standard
(Sigma Chemicals, St. Louis, MO, USA) with the composition: Nanodecane (hydrocar-
bons, 1.360 g/L), cholesteryl palmitate (wax ester/steryl esters, 1.060 g/L), 3-hexdecanone
(ketones, 2.410 g/L), tripalmitin (triacylglycerol, 2.110 g/L), palmitic acid (free fatty acids,
1.030 g/L), cetyl alcohol (alcohol, 2.020 g/L), cholesterol (sterol, 1.480 g/L), monopalmitoyl
(acetone mobile polar lipids, 2.070 g/L), phosphatidylcholine dipalmitoyl (phospholipids,
2.330 g/L). The calibration was performed by spotting two consecutive chromarods with
0.5, 1, 1.5, 2, and 3 µL of the standard. The correlation coefficients were attained by consid-
ering the amount of lipid extracts spotted on the chromarod of TLC-FID and the obtained
peak area for each rod, while maintaining R2 values above 0.95 (correlation above 95%) for
each lipid class.

Total lipids (SO and FO) were transmethylated, along with an internal standard
(heptadecanoate, C17:0), and the fatty acids composition was analyzed using gas chro-
matography (GC)-FID (PerkinElmer, Waltham, MA, USA) as per our previously published
method [73]. The concentration of each fatty acid was determined using the internal
standard, and expressed as the percentage nmol of the total extracted fatty acids.

4.3. Astaxanthin Analysis

Astaxanthin from the shrimp extract was analyzed using TLC [74]. The shrimp
extract was spotted on pre-coated Silica gel-G plates (# 805012; Macherey-Nagel, Düren,
NRW, Germany), along with free Astx and Astx-E standards (Sigma-Aldrich, Oakville,
ON, Canada; # SML0982 and # 1044210, respectively) and eluted using a mobile phase of
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acetone:hexane (25:75, v/v). The spots corresponding to each fraction were scraped, and
collected in 250 µL of ethanol. Since astaxanthin is prone to oxidation, the procedure was
undertaken with minimal exposure to light. The Astx content of each fraction was measured
spectrophotometrically using respective standard curves for free and Astx-E standards
(free Astx; # SML0982, Astx-E; # 1044210, Sigma-Aldrich, Canada) [74,75]. Calibration
curves for free Astx were in the range of 2.5–40 µg/mL, and for esterified astaxanthin were
10–100 µg/mL. Ethanol was used as a blank. The absorbance was recorded at 472 nm using
a spectrophotometer by following the method of Meyers and Bligh [74,75].

4.4. The 3T3-L1 Cell Culture
4.4.1. Materials

The 3T3-L1 preadipocytes were obtained from American Type Culture Collection
(ATCC, # CL-173, Manassas, VA, USA). Dulbecco’s Modified Eagle Medium (DMEM; #
41965039; Gibco Life Technologies, Burlington, ON, Canada), sodium pyruvate (100 mM; #
11360070; Gibco Life Technologies, Canada), newborn calf serum (NBCS; # 26010074; Gibco
Life Technologies, Canada), and fetal bovine serum (FBS; # 12484028; Gibco Life Tech-
nologies, Canada). Insulin solution (10 mg/mL in 25 mM HEPES, pH 8.2; # I0516; Sigma-
Aldrich, Canada), 3-isobutyl-1-methylxanthine (IBMX; # I5879; Sigma-Aldrich, Canada),
and dexamethasone (Dex; # D4902; Sigma-Aldrich, Canada). L-α-phosphatidylcholine (PC;
# P3556; Sigma-Aldrich, Canada), dimethyl sulfoxide (DMSO; # D2650; Sigma-Aldrich,
Canada), Menhaden fish oil (FO; # F8020; Sigma-Aldrich, Canada), and glycerol (# G2025;
Sigma-Aldrich, Canada).

4.4.2. Culturing 3T3-L1 Cells

The 3T3-L1 preadipocytes were maintained in DMEM, containing 10% calf serum
(NBCS) in a 5% CO2, humidified environment at 37 ◦C. Once the preadipocytes reached
70–80% confluency, differentiation was induced using the fresh medium containing
DMEM + 10% FBS, insulin (10 µg/mL), IBMX (0.5 mM), and Dex (1 µM), and desig-
nated as Day 0 [52,76]. The differentiation medium was replaced with DMEM + 10% FBS
and 10 µL/mL insulin after 48 h (day 2). Then, culture media were changed to fresh
DMEM + 10% FBS on days 4 and 6 until day 8 of differentiation, with day 8 representing
fully differentiated mature adipocytes.

4.4.3. Preparation of Lipid Emulsions to Treat 3T3-L1 Cells

Lipid emulsions were prepared [77] to treat 3T3-L1 cells. Lipid emulsions were pre-
pared using L-α-phosphatidylcholine (1.2%, w/v), glycerol (2.5%, w/v), fish oil or shrimp
oil (10%, w/v), and autoclaved water, followed by ultrasonication using a modification to
the method followed by Meisel et al. [78]. To prepare the oil emulsions, autoclaved water
was slowly added to a mixture of PC and glycerol, followed by dropwise addition of the
oil sample. The mixture was sonicated for 3 min with 60 s intervals using a 22.5 KHz soni-
cator (MicrosonTM, Model XL-2000, Ultrasonic liquid processor, Newtown, CT, USA). The
samples were kept on ice during the entire process. Fresh lipid emulsions were prepared
for all experiments.

The size distribution of emulsion particles was characterized using the dynamic light
scattering (DLS) method [79] to confirm the uniform distribution of the lipid emulsion.
DLS measurements were carried out using a Zetasizer 1000/3000 Hs (Malvern Instruments,
Malvern, WR, UK), which uses a helium neon laser light and integrated analysis software.
The temperature was adjusted to 25 ◦C, and the scattering angle was set to 90◦ before
the measurements. The data were expressed as the z-average (d. nm) and polydispersity
index (PDI). The size of the particles was in the nano-range with a Z-average of 0.61 nm
(Supplementary Figure S3). The PDI value of 0.0 is considered as a perfectly uniform
sample, whereas a value of 1.0 value is considered as a highly polydisperse sample with
respect to the particle size [80]. The PDI of the emulsion particles was 0.16, indicating a
relatively uniform (monodisperse) distribution of the particles.
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4.4.4. Pilot Study to Establish the Effects of Oil Emulsions on Cell Differentiation

In a pilot study, the effects of various concentrations of fish oil emulsions (0.25, 0.5,
0.75, 1 mg/mL culture medium) was investigated on adipogenesis in 3T3-L1 adipocytes.
The 3T3-L1 preadipocytes were grown in a culture medium (DMEM + 10% NBCS) as
described above until reaching 70–80% confluency. Differentiation was then induced as
described above, in the presence or absence of lipid emulsions. The differentiation medium
was replaced with DMEM + 10% FBS and 10 µL/mL insulin, along with treatments after
48 h (day 2). Then, culture media were changed to fresh DMEM + 10% FBS on days 4
and 6, in the absence or presence of treatments until day 8 of differentiation. The 3T3-
L1 preadipocytes were also treated with various doses of PC (30, 60, 90, 120 µg/mL
culture medium) that were used to prepare lipid emulsions. Untreated normal control cells
received culture media only. On day 8, the cells were viewed using a Leica DMIL-LED
Microscope (Leica Microsystems, Concord, ON, Canada) at 40× magnification, and the
Infinity Camera Analyze Software (version 6.5.5, Lumenera Corporation, Ottawa, ON,
Canada) was used for capturing the images (Supplementary Figure S4). Fish oil at a
concentration of 0.25 mg/mL showed no adverse effects on 3T3-L1 cells until day 8 of
differentiation, compared to control untreated cells (Supplementary Figure S4), while a
0.5 mg/mL concentration caused cell detachment by day 8, and the higher concentrations
caused cell detachment within 3 days. Thus, future experiments were designed using
0.25 mg/mL of oil emulsions.

4.4.5. Cell Metabolic Activity

Preadipocytes with a density of 1 × 104 cells per well were seeded in 96-well mi-
croplates and incubated for 24 h. The culture medium was then replaced with fresh culture
media (DMEM + 10% NBCS), along with different concentrations of the oil emulsions: SO,
SE, and FO (0.125, 0.25, and 0.5 mg/mL culture medium). These concentrations of SO and
SE contained 7.95, 15.9, and 31.8 ng Astx-E, respectively. Thus, cells were also treated with
Astx-E (7.95, 15.9, and 31.8 ng/mL culture medium) and FO + Astx-E (0.125 mg + 7.95 ng,
0.25 mg + 15.9 ng, and 0.5 mg + 31.8 ng)/mL culture medium). The cells were also treated
with various concentrations of PC that were used to prepare lipid emulsions, and DMSO
to dissolve astaxanthin, and PC + DMSO. Untreated normal control cells received culture
media only. The cells were incubated for 48 h, and then the MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole) colorimetric assay was performed
to measure the cell metabolic activity [81]. The absorbance was recorded at 570 nm using
a spectrophotometer, and the cell metabolic activity was calculated as a percentage fold
change with respect to the untreated control cells. Vehicles used in the treatments (PC,
DMSO, PC + DMSO) revealed no effect on the cell metabolic activity, compared to the
untreated cells (Supplementary Figure S5A). Various concentrations of SE, SO, Astx-E, FO,
and FO + Astx-E had no effect on the cell metabolic activity, compared to untreated cells
(Supplementary Figure S5B).

4.4.6. Treatments of 3T3-L1 Preadipocytes with Oil Emulsions to Measure Fat
Accumulation, and the Expression of Adipogenic and Lipogenic Genes

The 3T3-L1 preadipocytes were grown in a culture medium, and differentiated as
described above in the presence or absence of treatments until day 8 of differentiation
(Figure 4). Cells were differentiated to mature adipocytes in the presence or absence of
SE, SO or FO at a final concentration of 0.25 mg/mL, for 8 days. This concentration of SO
contained 15.9 ng Astx-E, thus, cells were also treated with 15.9 ng/mL of Astx-E, and FO
plus 15.9 ng/mL of Astx-E. Cells also received the appropriate vehicles (30 µg/mL PC,
0.06% DMSO, and 30 µg/mL + 0.06% PC + DMSO). Fully differentiated cells were washed
with 1× PBS and harvested to perform Oil Red O staining to study fat accumulation, and
total RNA extraction to measure gene expression.
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Figure 4. Experimental design to investigate the effects of shrimp extract, shrimp oil, and fish oil with
or without Astx-E, on adipogenesis in 3T3-L1 cells. The 3T3-L1 preadipocytes were differentiated
to mature adipocytes in the presence or absence of various treatments for 8 days, fat accumulation
and the mRNA expression of genes involved in adipogenesis and lipogenesis were studied. Un-
treated: Untreated cells; PC: L-α-phosphatidylcholine; DMSO: Dimethyl sulfoxide; PC + DMSO:
L-α-phosphatidylcholine + dimethyl sulfoxide; SE: Shrimp extract; SO: Shrimp oil; Astx-E: Ester-
ified astaxanthin; FO: Fish oil; FOA: FO + Astx-E; DMEM: Dulbecco’s modified eagle medium;
NBCS: Newborn calf serum; Dex: Dexamethasone; IBMX: 3-isobutyl-1-methylxanthine; FBS: Fetal
bovine serum.

4.5. Oil Red O Staining

Lipid accumulation in 3T3-L1 adipocytes was measured using Oil Red O staining
(# O1391, Sigma-Aldrich, Canada) as per the protocol. Oil Red O-stained cells were viewed
using a Leica DMIL-LED Microscope at 400× magnification, and Infinity Camera Analyze
Software (version 6.5.5) was used to capture the images. Oil Red O-dye was extracted
from cells by adding isopropanol, the absorbance of extracted dye was measured using a
spectrophotometer at 520 nm, and isopropanol was used as a blank.

4.6. Total RNA Extraction and Real-Time Quantitative Polymerase Chain Reaction

Total RNA was extracted from mature, fully differentiated 3T3-L1 adipocytes on
day 8 using the TRIzol (Invitrogen, Carlsbad, CA, USA) method [82]. DNA contamination
was removed using the DNase treatment (Promega, Madison, WI, USA). Nanodrop 2000
(Thermo Scientific, Waltham, MA, USA) was used to determine the concentration and
purity (260/280) of extracted RNA, and RNA integrity was confirmed using 1.2% agarose
gel. The gene expression analysis was performed using the Bio-Rad CFX96TM Real-Time
System. Primers used in the real-time quantitative polymerase chain reaction (qPCR) were
designed using NCBI primer blast, and purchased from IDT Technologies (Coralville, IA,
USA). The efficiency of all primers was within the acceptable range of 90–110%. Primer
sequences are presented in Supplementary Table S1. Amplification was carried out using
iQ SYBR Green Supermix (# 1708880, Bio-Rad, Hercules, CA, USA), and a reaction volume
was 10 µL with 50 ng of cDNA per reaction as per our previous publications [83]. Data
analyses were carried out using the CFX Manager TM Software, version 3.0 (Bio-Rad,
Hercules, CA, USA). The delta Ct values for each gene of interest were obtained, and
the mRNA expression of target genes was normalized to RPLP0 as the reference gene, a
large ribosomal protein. The expression of target genes was calculated using the ∆∆Ct
method [84].
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4.7. Statistical Analysis

The GraphPad Prism Software, version 8 (GraphPad Software, San Diego, CA, USA),
was used for analyzing all data. Gene expression data were analyzed using one-way
ANOVA, followed by Tukey’s post-hoc test. Results were expressed as mean ± standard de-
viation (SD), n = 3 (each experiment was repeated three times with three independent wells);
p < 0.05 was considered significant. Superscripts (a, b, c) represent significant differences.

5. Conclusions

Overall, we found that shrimp oil extracted from shrimp processing by-product using
the Soxhlet extraction method reduced fat accumulation in 3T3-L1 cells, whereas fish oil
increased fat accumulation. Interestingly, fish oil increased the mRNA expression of Glut-4,
while shrimp oil showed no significant effect. Furthermore, shrimp oil had no significant
effect on Scd1 and Fasn, whereas fish oil increased it. We have proposed the pathways for the
actions of shrimp oil and fish oil on adipogenesis and lipogenesis (Figure 5). It is likely that
the effects observed with shrimp oil and fish oil on adipogenesis are not just due to the n-3
PUFA, but due to other fatty acids and components. Furthermore, different effects of shrimp
oil and shrimp extract may also be due to the presence of Astx, along with other unknown
carotenoids. It is clear that fish oil and shrimp oil regulate adipogenesis via independent
pathways that need to be investigated in the future. Nonetheless, findings from this study
have established a method to extract high quality shrimp oil from shrimp processing
by-product, which can be used as a nutraceutical with potential anti-obesity properties.
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