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Abstract: Macrolides are a significant family of natural products with diverse structures and bioac-
tivities. Considerable effort has been made in recent decades to isolate additional macrolides and
characterize their chemical and bioactive properties. The majority of macrolides are obtained from
marine organisms, including sponges, marine microorganisms and zooplankton, cnidarians, mol-
lusks, red algae, bryozoans, and tunicates. Sponges, fungi and dinoflagellates are the main producers
of macrolides. Marine macrolides possess a wide range of bioactive properties including cytotoxic,
antibacterial, antifungal, antimitotic, antiviral, and other activities. Cytotoxicity is their most signifi-
cant property, highlighting that marine macrolides still encompass many potential antitumor drug
leads. This extensive review details the chemical and biological diversity of 505 macrolides derived
from marine organisms which have been reported from 1990 to 2020.
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1. Introduction

The term “macrolide” was coined by Woodward in 1957 [1] to describe antibiotics
which typically consist of 14-, 15- or 16-membered macrolactam rings and feature double
bonds and different saccharide and aminosaccharide functional groups. The naturally oc-
curring 14-membered lactones erythromycin and clarithromycin, 15-membered macrolides
azithromycin and spiramycin, and the 16-membered avermectin B1a are typical macrolide
antibiotics in clinical use [2–4]. The 26-membered macrolide oligomycin A (an inhibitor of
ATP synthase) [5,6] and the 36-membered macrocyclic lactone amphotericin B (an antifun-
gal agent) are also used clinically [7,8]. In the last thirty years, many studies have described
the molecular features, structures, and bioactivities of the intriguing macrolides obtained
from plants, animals, and microbes in terrestrial and marine ecosystems [9–12]. Macrolides
with larger macrocyclic rings have been reported, exemplified by the cytotoxic swinholide
H, with its 40-membered lactone ring, obtained from the New Zealand deep-water marine
sponge Lamellomorpha strongylata (La. strongylata) [13], and the novel 62-membered polyol
symbiodinolide from the symbiotic dinoflagellate Symbiodinium sp. [14]. Macrolides, there-
fore, can be considered more broadly as a class of uncorrelated compounds containing a
ring of twelve or more members.

This literature review from 1990 to 2020 highlights 505 new macrolides derived from
marine organisms (65.8% of which are from sponges, fungi, and dinoflagellates) (Figure 1).
Compared with terrestrial environments, the oceans exhibit more wide-ranging hyper-
saline, hyperbaric, hypoxic, cryogenic, and oligotrophic conditions. Marine organisms
must develop the capacity to produce diverse bioactive metabolites to survive in these
complex and competitive ecosystems. Marine metabolites have huge potential as new drug
leads, with nine approved pharmaceuticals and 31 compounds in clinical pharmaceutical
trials [15]. Macrolides are a significant family of natural marine products (Figure 2). The
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marine macrolides reviewed herein display cytotoxic, antibacterial, antifungal, antimitotic,
antiviral, antiplasmodial and other bioactivities, as listed in Table 1. This review discusses
the isolation, structures, and chemical and bioactive diversity of marine macrolides from
309 publications.
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2. Chemical and Biological Diversity of Marine-Derived Macrolides
2.1. Macrolides Extracted from Marine Organisms
2.1.1. Sponges

The Okinawan Theonella sp. (T. sp.) sponges produced a series of dimeric macrolides
called swinholides A–G (1–7) and isoswinholide A (8) [16–19]. Four bistheonellide-related
compounds—bistheonellide C (9), isobistheonellide A (10), and bistheonellic acids A
(11) and B (12)—are also produced by Okinawan T. sp. sponges [20]. The structure of
the macrolide miyakolide (13), which is weakly cytotoxic and obtained from Japanese
sponge Polyfibrospongia sp., was elucidated by X-ray single crystal diffraction [21]. 13-
Deoxytedanolide (14) was isolated from Mycale adhaerens (M. adhaerens) and identified by
spectroscopic analysis [22].
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The antimitotic macrolides halistatin 1 (15) and halistatin 2 (16) were isolated from

Phakellia carteri from the Comoros Islands and Axinella cf. carteri (Dendy) from the Western
Indian Ocean [23,24]. Halistatin 3 (17) was produced in extremely small quantities by
Phakellia sponges collected at Chuuk [25].
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A new 22-membered macrocyclic lactone named dictyostatin 1 (33) was isolated from
a Republic of Maldives Spongia sponge and exhibited significant cytotoxicity towards
murine P388 lymphocytic leukemia [32]. The relative stereochemistry of dictyostatin 1 was
determined by Murata’s method [33]. Two new 26-membered macrolides, reidispongi-
olides A (34) and B (35), have been produced by the marine sponge Reidispongia coerulea
(R. coerulea) [34]. The relative and absolute stereochemistries of the C-23–C-35 portion
of reidispongiolide A were determined by synthesis of an ozonolysis fragment of the
natural product [35], which was later synthesized enantioselectively [36]. The relative
stereochemistry of the C-7–C-15 fragment was reassigned through a series of diastereomers
of a degradation fragment synthesis [37].
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Cytotoxic superstolide A (36) and superstolide B (37) have been isolated from the
deep-water marine sponge Neosiphonia superstes (N. superstes) [38,39]. Another cytotoxic
macrolide, lasonolide A (38), was produced by the shallow-water Caribbean sponge Forcepia
sp. [40]. Isohomohalichondrin B (39), belonging to the halichondrin family, was isolated
from the New Zealand deep-water sponge Lissodendoryx sp. (Li. sp.) [41]. Phorboxazoles A
(40) and B (41) have an unprecedented scaffold and were isolated from the Indian Ocean
sponge Phorbas sp. (P. sp.), with complete stereochemistry and absolute configuration
determined by spectroscopy and partial synthesis [42,43]. The structures and absolute
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configurations of latrunculin A (42) and laulimalide B (43) isolated from Okinawan sponge
Fasciospongia rimosa were determined by X-ray analysis [44]. Other cytotoxic macrolides,
latrunculin S (44), neolaulimalide (45) and zampanolide (46), have been produced by the F.
rimosa genus [45,46]. Halichlorine (47), isolated from the marine sponge Halichodria okadai,
exhibited significant inhibition of vascular cell adhesion molecule 1 (VCAM-1) [47].
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Screening of extracts from a New Zealand deep-water sponge La. strongylata for cytotoxicity
towards the P388 cell line yielded swinholide H (54) [13].
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Clavosolides A–D (90–93) have been found in sponge Myriastra clavosa [74,75]. The
absolute configurations of clavosides A and B were determined by total synthesis [74–76].
Spirastrellolides A–G (94–100) are antimitotic macrolides isolated from the Caribbean
marine sponge S. coccinea [77–80]. Spirastrellolide A exhibited selective inhibition of protein
phosphatase 2A [80].
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centrotus pulcherrimus) gametes but not embryogenesis [84]. The absolute configuration of
exiguolide was determined by total synthesis of the enantiomer [85].
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An antiplasmodial macrolide, kabiramide L (119), was isolated from P. nux sponge [90].
Swinholide I (120) and the related hurghadolide A (121), with cytotoxicity towards human
colon cancer cells, were produced by T. swinhoei (Hurghada, Egypt) [91].
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Oxalatrunculin B (122) was isolated from Red Sea sponge Negombata corticata and
showed significant antifungal and anticancer activities, suggesting it as a potential member
of the bioactive latrunculin family [92]. A Lithistid sponge of the family neopeltidae
contained the macrolide neopeltolide (123) with potential cytotoxic and antifungal activities.
This compound was synthesized to determine its absolute configuration and the relative
stereochemistry of C-13 [93]. Candidaspongiolides (124), a complex mixture of acyl esters
of a macrolide related to tedanolide, was isolated from Candidaspongia sp. (Can. sp.) (Papua
New Guinea) and Can. flabellata (Great Barrier Reef, Australia) [94]. Fijianolides D–I
(125–130) were produced by sponge Cacospongia mycofijiensis (Cac. mycofijiensis) (Mele Bay,
Vanuatu) [95]. Phorbasides A–E (131–135) are chlorocyclopropane macrolides isolated from
marine sponge P. sp. [96,97].
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Latrunculin analogs, latrunculol A–C (136–138), 18-epi-latrunculol (139) and latruncu-
lones A (140) and B (141), were obtained from Cac. mycofijiensis [98]. Salarin A (142), salarin
B (143) and tulearin A (144) were obtained from repeated collections of the Madagascan
sponge Fascaplysinopsis sp. (F. sp.) [99].
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the precursor of salarins A and B [100]. Marine sponge Siliquariaspongia mirabilis contained
an antitumor macrolide lactam named mirabilin (146) [101]. The nitrogenous bismacrolide
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inhibit proliferation of K562 leukemia cells [102]. Muironolide A (148), containing a rare
hexahydro-1H-isoindolone and trichlorocarbinol ester, was isolated from marine sponge of
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The Indonesian sponge T. swinhoei yielded the dimeric macrolides isoswinholide B
(166) and swinholide K (167) [110]. An unusual carbamate, callyspongiolide (168), with
strong cytotoxicity towards human Jurkat J16 T and Ramos B lymphocytes, was isolated
from marine sponge Cal. sp. [111]. Cytotoxic polyketide macrolides phormidolides B
(169) and C (170) were isolated from Petrosiidae sponge with stereochemical assignment
via enantioselective synthesis of the macrocyclic core [112]. Cytotoxic chondropsin-type
macrolides poecillastrins E (171), F (172), and G (173) were isolated from the marine sponge
Poecillastra sp. [113].
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2.1.2. Microorganisms and Zooplankton
Fungi

The fungus Periconia byssoides (Per. byssoides), obtained from the sea hare Aplysia
kurodai (Ap. sp.), was reported to produce the cytotoxic triols pericosides A and B, and
four new macrolides, macrosphelides E–H (174–177) [114]. Macrosphelide I (178) and
macrosphelides E–H from Per. byssoides isolated from Ap. kurodai were also reported else-
where [115]. Macrosphelide E was synthesized at a high yield via a key chemoenzymatic
reaction [116]. The synthesis of macrosphelides H and G has also been described [117,118].
Absolute configurations determined by spectroscopy and chemical transformation have
been reported for macrosphelides L (179) and H produced by Per. byssoides from Ap. kurodai,
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and the cytotoxic macrosphelide M (180) [114,119,120]. Penicillum verruculosum (IMI352119)
was reported to produce three macrolides with antifungal activity: BK223-A (181), BK223-B
(182) and BK223-C (183) [121]. The mitosporic fungus Varicosporina ramulosa has been
reported to produce (6R,11S,12S,14R)-colletodiol (184), (6R,11R,12R,14R)-colletodiol (185)
and colletoketol (186) [122,123]. The 12-membered macrolides pandangolide 1 (187) and
pandangolide 2 (188) were extracted from an unidentified fungus isolated from marine
sponge collected in Indonesia [124].
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Pandangolide 3 (189), macrolide dimer pandangolide 4 (190), and a new acetyl deriva-
tive of 5-hydroxymethylfuran-2-carboxylic acid were produced by the fungus Cladosporium
herbarum (Cla. herbarum), associated with the sponge Callyspongia aerizusa (Cal. aerizusa)
and collected in Bali [125]. The cytotoxic macrocyclic trichothecene 12,13-deoxyroridin
E (191) was obtained from an extract of the marine fungus Myrothecium roridum (M. ror-
idum) [126]. The 14-membered resorcylic macrolides aigialomycins A–E (192–196) were
isolated from the mangrove fungus Aigialus parvus BCC 5311 [127]. Potential antifungal
macrocyclic polyesters 15G256ğ(197) and 15G256w (198) were obtained from the marine
fungus Hypoxylon oceanicum LL-15G256 [128]. Two cytotoxic macrolides, sporiolides A
(199) and B (200), were produced by the fungus Cladosporium isolated from the brown alga
Actinotrichia fragilis (Okinawa, Japan) [129].



Mar. Drugs 2021, 19, 180 23 of 67
Mar. Drugs 2021, 19, x FOR PEER REVIEW 24 of 70 
 

 

 
An unidentified endophytic fungus from the brown alga Sargassum sp. (Zhanjiang 

Sea, China) was the source of two 12-membered ring lactones (201–202) [130]. 12-Hy-
droxyroridin E (203), roridin Q (204) and 2,3-deoxyroritoxin D (205) were obtained from 
M. roridum on submerged wood in Palau [131]. Gliocladium sp. isolated from the alga Dur-
villaea antarctica (Tauranga Bay, New Zealand) yielded 4-ketoclonostachydiol (206) [132].  
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China) was the source of two 12-membered ring lactones (201–202) [130]. 12-Hydroxyroridin
E (203), roridin Q (204) and 2,3-deoxyroritoxin D (205) were obtained from M. roridum on
submerged wood in Palau [131]. Gliocladium sp. isolated from the alga Durvillaea antarctica
(Tauranga Bay, New Zealand) yielded 4-ketoclonostachydiol (206) [132].
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The 14-membered resorcylic acid lactone derivatives 8′-hydroxyzearalanone (207) 

and 2′-hydroxyzearalanol (208) were isolated from the marine-derived fungus Penicillium 
sp. (Pen. sp.) [133]. β-resorcylic macrolide 5′-hydroxyzearalenol (209) was obtained from 
the culture broth of the fungus Fusarium sp. 05ABR26 [134]. The cytotoxic 14-membered 
macrolides aspergillide A–C (210–212) were isolated from the culture broth of the marine 
sponge-derived fungus Aspergillus ostianus (As. ostianus) (Pohnpei, Micronesia) [135]. 

 
The marine-derived fungus As. sp. SCSGAF 0076 was reported to produce the 16-

membered macrolide aspergillide D (213) [136]. Apralactone A (214) and enantiomers of 
curvularin (215–220) were isolated from Curvularia sp. (Cur. sp.) [137,138]. The macrolide 
curvulone A (221) was produced by Cur. sp. isolated from the marine alga Gracilaria folifera 
and inhibited the growth of B. subtilis, Microbotryum violaceum, Septoria tritici, and Chlorella 
fusca [139].  

The 14-membered resorcylic acid lactone derivatives 8′-hydroxyzearalanone (207)
and 2′-hydroxyzearalanol (208) were isolated from the marine-derived fungus Penicillium
sp. (Pen. sp.) [133]. β-resorcylic macrolide 5′-hydroxyzearalenol (209) was obtained from
the culture broth of the fungus Fusarium sp. 05ABR26 [134]. The cytotoxic 14-membered
macrolides aspergillide A–C (210–212) were isolated from the culture broth of the marine
sponge-derived fungus Aspergillus ostianus (As. ostianus) (Pohnpei, Micronesia) [135].
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Three decalactones, xestodecalactones D–F (222–224), were purified from an ethyl
acetate extract of Corynespora cassiicola isolated from leaf tissues of the Chinese mangrove
medicinal plant Laguncularia racemose [140]. Seiricuprolide pestalotioprolides A (225) and B
(226) (as the diacetate) were isolated from the fungus Pestalotiopsis spp., which is associated
with mangrove twigs of Rhizophora mucronata [141]. Calcarides A–C (227–229), 15G256α
(230), and 15G256β (231) were obtained from crude extracts of the fungus Calcarisporium
sp. KF525 isolated from German Wadden Sea water samples [142].
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Thirteen new 12-membered macrolides, dendrodolides A–M (232–244), were obtained
from the fungus Dendrodochium sp. derived from sea cucumber Holothuria nobilis Selenka in
the South China Sea [143]. Dendrodolide K was obtained from a commercially available
substrate by a convergent strategy, and the dendrolides F, G, I, J, and L were synthesized
via a unified strategy employing ring-closing metathesis [144,145].
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The fungus Pen. sumatrense MA-92, associated with the mangrove Lumnitzera race-
mose, yielded the sulfur-containing curvularin derivatives sumalarins A−C (246–248) [148].
Chemical epigenetic manipulation of the marine-derived fungus Coc. lunatus (TA26-46)
with histone deacetylase inhibitors led to the elucidation of two 14-membered resorcylic
acid lactones: 5-bromozeaenol (249) and 3,5-dibromozeaenol (250) [149]. Gliomasolides
A–E (251–255) were obtained from a sponge-derived fungus Gliomastix sp. ZSDS1-F7-2,
their structures being determined by spectroscopy and single crystal X-ray diffraction [150].
Two 13-membered macrolides (256–257) were isolated from the marine-derived fungus
Pen. meleagrinum var. viridiflavum [151]. Application of published procedures for experi-
mental design and chemometric analysis to enhance the production of curvularin-related
compounds by marine-derived Penicillium sp. DRF2 led to the isolation of cyclothiocurvu-
larins (258–260) and cyclosulfoxicurvularins (261–262) [152]. Thiocladospolide E (263) was
produced by the mangrove endophytic fungus Cladosporium sp. (Cla. sp.) SCNU-F0001 and
its absolute configuration was determined by X-ray diffraction [153]. Thiocladospolides F–J
(264–268) were isolated from another mangrove-derived endophytic fungus species in the
same Cla. genus [154]. The macrolide 6,7,9,10-tetrahydromutolide (269) was isolated from
endophytic fungus Aplosporella javeedii [155]. Two trichothecene macrolides, myrothecines
H and I (270–271), were obtained from the endophytic fungus Paramyrothecium roridum
isolated from the medicinal plant Morinda officinalis [156].
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The 24-membered macrolide maduralide (272) was isolated from a marine bacterium
in the order Actinomycetales [157]. Halichomycin (273) was produced by Streptomyces
hygroscopicus (S. hygroscopicus) isolated from the marine fish Halichoeres bleekeri [158]. 7-O-
Succinyl macrolactin F (274) and 7-O-succinyl macrolactin A (275) were isolated from a
culture of marine Bacillus sp. (B. sp.) Sc026 [159].
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Cytotoxic macrolide IB-96212 (276) was obtained from marine actinomycete L-25-
ES25-008 [160]. Chalcomycin B (277) was isolated from marine Streptomycete isolate B7064
and was bioactive in both microorganisms and microalgae [161]. Lobophorins A and B
(278–279) have been extracted from culture broths of bacteria isolated from the surface of
the Caribbean brown alga Lobophora variegata (Dictyotales) [162]. Micromonospolides A–C
(280–282) were produced by Micromonospora sp. (M. sp.) and demonstrated inhibition of
gastrulation in starfish embryos [163,164].
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colides A–C (287–289), with arenicolides A showing moderate cytotoxicity [166]. Macro-
lactin S (290) has been reported in a culture of marine Bacillus sp. [167]. The actinomycete
strain CNQ-140 in the genus “Marinispora” yielded polyene macrolides marinisporolides A
(291) and B (292), which photoisomerized to the geometric isomers marinisporolides C–E,
suggesting that they may be artefacts [168]. S. hygroscopicus (associated with the marine
fish Halichoeres bleekeri) produced halichoblelides B (293) and C (294), which are cytotoxic
to tumor cells [169].
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B. subtilis isolated from marine sediment collected at Gageocho (Republic of Korea)
was a source of three new glycosylated methoxy-macrolactins (297–299) [171]. Three new
24-membered macrolactones, macrolactins X–Z (300–302), featuring an oxetane, an epoxide,
and a tetrahydropyran ring, were isolated from an ethyl acetate extract of a marine B.
sp. [172]. Cytotoxic juvenimicin C (303) was produced by a marine-derived actinomycete
strain (CNJ-878) [173]. The M. strain FIM07-0019 isolated from shallow coastal waters near
the island of Chiloe (Chile) produced a 20-membered macrolide, levantilide C (304) [174].
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Investigation of a S. sp. in sediment from Heishijiao Bay (Dalian, China) yielded
11′,12′-dehydroelaiophylin (305) and 11,11′-O-dimethyl-14′-deethyl-14′-methylelaiophylin
(306)—both 6-deoxyhexose-containing antibiotics—with the former exhibiting inhibition
of MRSA and vancomycin-resistant Enterococci pathogens [175]. A rare 18-membered
macrolide, macplocimine A (307), was produced by a marine-derived filamentous sulfur
bacteria, Thioploca sp. [176]. A potent anthrax antibiotic, anthracimycin (308), was isolated
from marine sediment-derived actinomycete S. sp. (Santa Barbara, California, U.S.A.) [177].
Fijiolides A (309) and B (310) were identified in marine-derived bacteria of the genus Nocar-
diopsis and demonstrated inhibition towards TNF-α-induced NFκB activation (fijiolide A to
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a greater extent than fijiolide B) [178]. Astolides A (311) and B (312) were obtained from S.
hygroscopicus in the alkaline soil of the Saratov region of Russia. They exhibited significant
cytotoxicity towards doxorubicin-resistant human leukemia cells [179]. Two hygrolidin
macrolides, catenulisporidins A (313) and B (314), were isolated from the actinobacterium
Catenulispora sp. KCB13F192 [180].
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Cyanobacteria Scytonema mirabile BY-8-1, S. burmanicum DO-4-1, and S. ocellatum DD-8-
1, FF-65-1 and FF-66-3 have been reported to produce tolytoxin (315). S. burmanicum DO-4-1
also yielded scytophycin B (316), 6-hydroxyscytophycin B (317), 19-O-demethylscytophycin
C (318), 6-hydroxy-7-O-methylscytophycin E (319), and scytophycin E (320) [181]. A
macrolide, oscillatoriolide (321), was isolated from Japanese Oscillatoria sp. and demon-
strated inhibition towards fertilized echinoderm eggs [182]. The marine cyanobacterium
Lyngbya bouillonii (L. bouillonii) collected on Laing Island (Papua New Guinea) produced
lyngbyaloside (322) [183] in addition to the macrolides laingolide (323), madangolide (324),
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and laingolide A (325) [184,185], and the glycosidic macrolide lyngbouilloside (326), for
which the configuration of C-11 was later revised [186,187].
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Two glycosylated swinholides, ankaraholides A (327) and B (328), together with 
swinholide A previously obtained from the marine sponge T. swinhoei [91], were isolated 
from cyanobacterium Geitlerinema sp. collected in Madagascar [188]. Cyanolide A (329), 
demonstrating significant molluscicidal activity towards the snail vector Biomphalaria gla-
brata, was also isolated from L. bouillonii from Papua New Guinea [189]. Biselyngbyolide 
A (330) was isolated from L. sp. and showed strong apoptosis-inducing activity in HeLa 
S3 and HL60 cells [190], while its analogs, biselyngbyolide B–D (331–333), were produced 
by another L. cyanobacterium sampled on Tokunoshima Island (Japan) [191]. Biselyngbyo-
lide B exhibited inhibition and apoptosis-inducing activity in HeLa S3 and HL60 cells and 
increased the cytosolic Ca2+ concentration in HeLa S3 cells [191].  

Two glycosylated swinholides, ankaraholides A (327) and B (328), together with
swinholide A previously obtained from the marine sponge T. swinhoei [91], were isolated
from cyanobacterium Geitlerinema sp. collected in Madagascar [188]. Cyanolide A (329),
demonstrating significant molluscicidal activity towards the snail vector Biomphalaria
glabrata, was also isolated from L. bouillonii from Papua New Guinea [189]. Biselyngbyolide
A (330) was isolated from L. sp. and showed strong apoptosis-inducing activity in HeLa S3
and HL60 cells [190], while its analogs, biselyngbyolide B–D (331–333), were produced by
another L. cyanobacterium sampled on Tokunoshima Island (Japan) [191]. Biselyngbyolide
B exhibited inhibition and apoptosis-inducing activity in HeLa S3 and HL60 cells and
increased the cytosolic Ca2+ concentration in HeLa S3 cells [191].



Mar. Drugs 2021, 19, 180 34 of 67
Mar. Drugs 2021, 19, x FOR PEER REVIEW 36 of 70 
 

 

 



Mar. Drugs 2021, 19, 180 35 of 67
Mar. Drugs 2021, 19, x FOR PEER REVIEW 37 of 70 
 

 

 
The Caribbean Okeania cyanobacterium VQR28MAR11-2 has been reported to pro-

duce polycavernoside D (334) [192], while four cytotoxic macrolides, leptolyngbyolides 
A–D (335–338), have been isolated from Leptolyngbya sp. collected in Okinawa [193]. 

Dinoflagellates 
Amphidinolide E (339) was isolated from the Okinawan flatworm Amphiscolops sp. 
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[194]. The absolute stereochemistry of amphidinolide E was determined by NMR spec-
troscopy, modified Mosher’s method and the exciton chirality method [195]. The potent 
cytotoxic macrolides amphidinolides F (340), G (341) and H (342) were produced by dino-
flagellate Amphidinium sp. (Amphid. sp.) associated with the Okinawan flatworm Amphis. 
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The Caribbean Okeania cyanobacterium VQR28MAR11-2 has been reported to pro-
duce polycavernoside D (334) [192], while four cytotoxic macrolides, leptolyngbyolides
A–D (335–338), have been isolated from Leptolyngbya sp. collected in Okinawa [193].

Dinoflagellates

Amphidinolide E (339) was isolated from the Okinawan flatworm Amphiscolops
sp. (Amphis. sp.) and exhibited cytotoxicity towards murine leukemia cells L1210 and
L5178Y [194]. The absolute stereochemistry of amphidinolide E was determined by NMR
spectroscopy, modified Mosher’s method and the exciton chirality method [195]. The
potent cytotoxic macrolides amphidinolides F (340), G (341) and H (342) were produced
by dinoflagellate Amphidinium sp. (Amphid. sp.) associated with the Okinawan flatworm
Amphis. breviviridis [196,197].
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from Amphis. sp. [208]. The absolute stereochemistry of amphidinolide P was confirmed
by convergent total synthesis [209]. The 12-membered macrolide amphidinolide Q (353),
showing moderate cytotoxicity towards murine lymphoma L1210 cells in vitro (IC50 6.4
µg/mL), was obtained from the symbiotic flatworm Amphis. sp. of dinoflagellate Amphid.
sp. [210]. Amphidinolide Q was synthesized stereoselectively by combined Julia coupling,
Myers alkylation, and Yamaguchi lactonization [211]. The absolute configurations at five
chiral centers in amphidinolide Q were determined as 4R, 7R, 9S, 11R, and 13R on the
basis of NMR analysis and a modified Mosher’s method [212]. Cytotoxic macrolides
amphidinolides R (354) and S (355) were also isolated from Amphid. sp. [213]. The 20-
membered macrolide amphidinolide U (356) was obtained from a cultured Amphid. sp.
Y-56 isolated from the flatworm Amphis. sp. in Okinawa [214]. A 25-membered macrolide,
amphidinolide C3 (357), was also obtained from the Y-56 dinoflagellate strain and exhib-
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ited cytotoxicity towards P388, L1210 and KB cells [215]. Y-56 has also been reported to
yield the 19-membered macrolide amphidinolide T (T1) (358) [216], while the A. sp. Y-5
produced the 14-membered polyene amphidinolide V (359) [217]. Total synthesis of am-
phidinolide V was accomplished and the absolute stereochemistry assigned [218]. Analogs
of amphidinolides T2 (360), T3 (361), T4 (362), and T5 (363) were produced by Amphid.
sp. [219,220]. Amphidinolides H2 (364), H3 (365), H4 (366), H5 (367), G2 (368), and G3 (369)
were produced by Amphid. sp. strain Y-42 isolated from marine acoel flatworms Amphis. sp.
The absolute configurations of these compounds were determined by coupling constant
data, distance geometry calculations, and chemical means [221]. Amphidinolide T2 was
synthesized using methyl (S)-lactate via a 16-step linear sequence [222]. Amphidinolide W
(370) was isolated from an Amphid. sp. and the absolute stereochemistry determined by a
combination of J-based configuration analysis and modified Mosher’s method [223]. Total
synthesis was later achieved and its C-6 stereochemistry revised [224]. Amphidinolides X
(371) and Y (372) were produced by symbiotic dinoflagellate Amphid. sp. strain Y-42 from
Okinawan Amphis. species. Amphidinolide Y exists as a 9:1 equilibrium mixture of the
6-keto- and 6(9)-hemiacetal forms (373). Both amphidinolides X and Y showed significant
cytotoxicity against murine lymphoma L1210 and human epidermoid carcinoma KB cells
in vitro [225,226]. Two 26-membered macrolides, amphidinolides B6 (374) and B7 (375),
were isolated from a culture of a symbiotic dinoflagellate Amphid. sp. from Amphis. sp. and
demonstrated cytotoxicity against human B lymphocyte DG-75 cells [227]. Amphidinolide
C2 (376) was isolated from dinoflagellate Amphid. sp. (Y-71 strain) [228].
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The Amphid. strain S1-36-5 yielded the highly cytotoxic 26-membered caribenolide I
(377) [229].

The 13-membered macrolide amphidinolactone A (378) and a 26-membered macrolide
amphidinolactone B (379) have been isolated from cultures of Amphid. sp. Amphidino-
lactone A was synthesized totally via a ring-closing metathesis reaction and the absolute
configuration was elucidated [8,230,231]. The vasoconstrictors zooxanthellatoxins A (380)
and B (381) were isolated from a symbiotic dinoflagellate Symbiodinium sp. (Y-6 strain),
which was associated with Amphis. sp. [232,233]. Bioassay-guided fractionation of a
butanol extract of the tropical dinoflagellate Prorocentrum maculosum Faust yielded the
fast-acting toxin prorocentrolide B (382) [234]. Hoffmanniolide (383) was identified in the
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marine dinoflagellate P. hoffmannianum [235]. The 20-membered iriomoteolide-1a (384), -1b
(385) and -1c (386) were isolated from a marine benthic dinoflagellate Amphid. sp. (strain
HYA024) [236,237].
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The cytotoxic 23-membered iriomoteolide-2a (387) was also obtained from Amphid.
sp. [238]. The 15-membered macrolide iriomoteolide-3a (388) containing an allyl epoxide
was obtained from Amphid. sp. strain HYA024 and was potently cytotoxic to human B lym-
phocyte DG-75 cells and Epstein–Barr virus (EBV)-infected Raji cells [239]. Iriomoteolide-4a
(389) and -5a (390) were isolated from a benthic dinoflagellate Amphid. sp. (strain HYA024)
and showed moderate cytotoxicity towards human B lymphocytes DG-75 [240]. The 15-
and 19-membered iriomoteolide-9a (391) and -11a (392) were cytotoxic towards human
cervix adenocarcinoma HeLa and murine hepatocellular carcinoma MH134 cells [241].
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adenocarcinoma HeLa and murine hepatocellular carcinoma MH134 cells [242]. The 62-
membered novel polyol macrolide symbiodinolide (395) was isolated from the symbiotic
dinoflagellate Symbiodinium sp. (S. sp.) and showed significant voltage-dependent N-type
Ca2+ channel-opening activity at 7 nM and immediately ruptured the surface tissue of
the acoel flatworm Amphis. sp. at 2.5 mM [14]. The stereochemistries of C-23–C-34 were
revised by stereoselective synthesis and the (17S,18R,21R) configurations were determined
by synthesis [243,244]. The synthesis of the C-33–C-42 fragment elucidated (36S,40S) and
(C-1′–C-25′) [243–245]. The dinoflagellate-derived macrolide acuminolide A (396) caused
potent stimulation of actomyosin ATPase activity [246]. The 25-membered polyketide-
derived macrocycle belizentrin (397) was isolated from cultures of the marine dinoflagellate
Prorocentrum belizeanum [247]. Gymnodimine D (398) was extracted and purified from a
culture of dinoflagellate Alexandrium ostenfeldii from the Baltic Sea [248]. Symbiodinolactone
A (399) was isolated from a culture of the symbiotic marine dinoflagellate S. sp. [249].
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toxin (410) and manauealide C were extracted from Hawaiian G. coronopifolia [257]. Inves-
tigation of Fijian red alga Callophycus serratus (C. serratus) led to the isolation of three diter-
pene-benzoate natural products: bromophycolides A (411) and B (412), and a nonhalogen-
ated compound (413). Bromophycolides A and B exhibited moderate antibacterial and 

2.1.3. Red algae

Polycavernosa tsudai (Gracilaria edulis) contained the macrolide polycavernoside A
(400), which led to human illness and death in Guam [250]. The relative configuration of
polycavernosolide A was assigned and the sugar substructure was synthesized [251,252].
Its structure was confirmed by total synthesis in a stereocontrolled manner [253]. Polycav-
ernosides A2 (401), A3 (402), B (403) and B2 (404) were also obtained from Polycavernosa
red algae [254].
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Two analogs of polycavernosolide A, polycavernosides C (405) and C2 (406), were
isolated from the red alga Gracilaria edulis (G. edulis) [255]. Manauealides A–C (407–409)
were isolated from extracts of red alga G. coronopifolia [256]. Anhydrodebromoaplysiatoxin
(410) and manauealide C were extracted from Hawaiian G. coronopifolia [257]. Investigation
of Fijian red alga Callophycus serratus (C. serratus) led to the isolation of three diterpene-
benzoate natural products: bromophycolides A (411) and B (412), and a nonhalogenated
compound (413). Bromophycolides A and B exhibited moderate antibacterial and anti-
fungal properties while bromophycolides A demonstrated potent anti-HIV and moderate
cytotoxic activities [258]. Bromophycolides C–I (414–420) were also isolated from extracts
of C. serratus. All the bromophycolides exhibited modest antineoplastic activity towards a
range of human tumor cell lines while bromophycolides F and I showed weak antifungal
activity [259].
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Further investigation of the C. serratus extract yielded a series of unusual antimalarial
diterpene-benzoate macrolides, bromophycolides J–Q (421–428), with a range of moderate
to strong antimicrobial and anticancer properties [260]. C. serratus was also a source of
the diterpene-benzoate macrolides bromophycolides R–U (429–432). These demonstrated
modest cytotoxicity toward selected human cancer cell lines while bromophycolide S was
active (at submicromolar concentrations) against the human malaria parasite Plasmodium
falciparum (Pla. falciparum) [261].
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The α-pyrone macrolides neurymenolides A (433) and B (434) were obtained from
the Fijian red alga Neurymenia fraxinifolia [262]. The brown alga Ecklonia stolonifera pro-
duced ecklonialactones C (435) and D (436) containing a 14-membered lactone moiety,
and ecklonialactones E (437) and F (438), with a 16-membered moiety [263]. The absolute
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configurations of ecklonialactones A, B and E were determined from chiroptical data [264].
Eight oxylipins (439–446) with a macrolide scaffold and one cymathere-type oxylipin with
an open ring were isolated from the brown alga Eisenia bicyclis. The absolute configura-
tions of compounds 439–443 and 446 were determined by NMR spectroscopy with the
relative stereochemistry at C-9 in 446 remaining unassigned [265]. The metamorphosis-
enhancing macrodiolide luminaolide (447) was isolated from the crustose coralline alga
Hydrolithon reinboldii and its absolute relative configuration was determined by NMR spec-
troscopy with the relationships of the two side chains to the macrolide ring remaining
unassigned [266,267].
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2.1.5. Bryozoans

Large-scale isolation of bryostatin 1 (450) from the marine bryozoan Bugula neritina
(L.) was carried out to provide material for clinical study [269]. Bryostatin 2 (451) has been
converted to bryostatin 1 and bryostatin 12 (452) by selective protection and deprotection
involving the C-26 hydroxyl group [270]. The stereochemistries of bryostatins 1 and 2
were assigned by X-ray analysis of p-bromobenzoate (453) [271], while the assignments
of bryostatin 1 from 1H- and 13C-NMR were later revised [272]. Bryostatin 3 was isolated
from B. neritina and reinvestigation of 2D NMR spectroscopic data revised the structure of
bryostatin 3 to structure 454 [273].
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Further investigation of B. neritina led to the identification of bryostatins 14 (455)
and 15 (456) [274]. The structures of bryostatin 3 and 20-epi-bryostatin 3 (457) have been
elucidated by NMR spectroscopy [271,273,275]. Bryostatin 3 was then synthesized in an
enantioselective manner [276]. Bryostatin 10 (458) was determined to be the major cytotoxic
component of B. neritina [277]. Three additional antileukemic macrolides, bryostatins 16
(459), 17 (460), and 18 (461), were isolated in trace amounts from B. neritina from the Gulf of
Mexico [278]. Antineoplastic bryostatin 19 (462) was isolated from B. neritina collected from
the South China Sea [279]. A further member of the bryostatins, bryostatin 20 (463), was
produced by the larvae of B. neritina and its structure determined by spectral comparison
with previously described bryostatins [280]. Bioassay-guided isolation elucidated the first
member of a new family of macrocycles, neristatin 1 (464), which was cytotoxic towards
the P388 lymphocytic leukemia cell line [281].
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Aplysiatoxin (465) was isolated from an extract of the sea hare Stylocheilus longicauda
and synthesized [282,283]. The sea hare Aplysia kurodai Baba contained the novel and po-
tently cytotoxic macrolides aplyronines A (466), B (467) and C (468). The absolute configu-
ration of aplyronine A was assigned following enantioselective synthesis of its degradation
products and total synthesis was also reported [284,285]. Five cytotoxic macrolides, aply-
ronines D–H (469–473), were also isolated from the Japanese sea hare Aplysia kurodai [286].
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The 22-membered macrolide dolabelide A (474) and the diacetyl derivative dolabelide B
(475), both cytotoxins, were obtained from the Japanese sea hare Dolobella auricularia [287].
Cytotoxic 24-membered macrolides dolabelides C (476) and D (477) were also isolated from
Dolabella auricularia, the originally assigned structure of dolabelide D being confirmed by
total synthesis [288,289]. Five unprecedented C-16 and C-18 fatty acid lactones named
aplyolides A–E (478–482) were found in the skin of the marine mollusk Aplysia depilans,
and were ichthyotoxic to the mosquito fish Gambusia affinis [290]. The stereochemistry of
(-)-aplyolide A was confirmed by synthesis [291] and the absolute stereochemistries of
aplyolides B–E were confirmed by total synthesis [292,293]. Pectenotoxins 4 (483) and 7
(484) were isolated from Patinopecten yessoensis scallops [294]. LC–MS analysis of shellfish
extracts identified PTX-12 (485) as a pectenotoxin accumulating in Norwegian blue mussels
(Mytilus edulis) and cockles (Cerastoderma edule) [295]. Dolastatin 19 (486), containing a
14-membered macrocyclic lactone linked to a 2,4-di-O-methyl-L-R-rhamnopyranoside, was
found in the Gulf of California in the shell-less mollusk Dolabella auricularia [296]. The
stereochemistry of (+)-dolastatin 19 was confirmed by total synthesis [297].
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2.1.7. Tunicates

Two 24-membered macrolide sulfates showing antineoplastic activity, iejimalides C
(487) and D (488), were isolated from the Okinawan tunicate Eudistoma cf. rigida [298].
Two cytotoxic macrolides, lobatamides A (489) and B (490), were reported in the tunicate
Aplidium lobatum [299]. A. lobatum from shallow waters in Australia, A. sp. from deep
water, and an unidentified Philippine ascidian have been reported as sources of a series
of macrolides, lobatamides C–F (491–494), demonstrating cytotoxicity towards human
tumor cell lines [300]. The absolute stereochemistry of lobatamide C was determined
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by stereospecific synthesis [301]. The chlorinated macrolide haterumalide B (495) was
obtained from an Okinawan ascidian L. sp. by bioassay-guided isolation and was shown to
inhibit the first cleavage of fertilized sea urchin eggs at 0.01 µg/mL [302]. The Okinawan
ascidian Didemnidae sp. was the source of the macrolides biselides A (496) and B (497) [303].
Further investigation of the D. sp. led to the isolation of biselides C (498), D (499) and E
(500) which exhibited cytotoxicity against human cancer cells NCI-H460 and MDA-MB-
231 [304]. Cytotoxic palmerolide A (501) was obtained from the Antarctic tunicate Synoicum
adareanum [305] and its stereochemistry was revised and confirmed by synthesis [306,307].
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Glycosylated macrolides mandelalides A−D (502–505) were isolated from Lissoclinum
ascidian collected in Algoa Bay near Port Elizabeth and the surrounding Nelson Mandela
Metropole in South Africa [308].

2.2. Bioactivities of Marine-Derived Macrolides

The biological activities of marine-derived macrolides have been studied extensively.
As listed in Table 1, marine macrolides harbor a broad range of bioactive properties
including cytotoxicity, antibacteria, antifungi, antimitotic, antiviral, and other activities,
with cytotoxicity being their most significant bioactivity.
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Table 1. Biological activities of marine-derived macrolides.

Drug Class Compounds Pharmacology Activities Ref.

Cytotoxic a swinholides A–C (1–3) KB cells IC50: 0.041, 0,052, 1.1 µg/mL [16]
miyakolide (13) P388 cells IC50: 17.5 µg/mL [21]

spongiastatin 1 (18) HL-60, NCI-116, DMS 114
et al. GI50: 2.5–3.5 × 10−11 M [26]

dictyostatin 1 (33) P388 cells undetermined [32]

superstolide B (37) KB, P388,
NSCLC-N6-L16 cells IC50: 0.005, 0.003, 0.039 µg/mL [38]

lasonolide A (38) A-549, P388 cells IC50: 40, 2 ng/mL [40]
latrunculin S (44),
neolaulimalide (45)

P388, A549, HT29, MEL28
cells

IC50: 0.5–1.2 µg/mL,
IC50: 0.01–0.05 µg/mL [46]

leucascandrolide A (48) KB, P388 cells undetermined [48]
altohyrtins B–C (51–52)
5-desacetylaltohytrin A (53) KB cell;L1210 cells IC50: 0.02, 0.4; 0.3 ng/mL;

IC50: 0.03, 1.3, 2.3 ng/mL [53]

swinholide H (54) P388 cells undetermined [13]
neonorhalichondrin B (55),
neohomohalichondrin B (56), 55-
methoxyisohomohalichon-drin
(57), 53-
methoxyneoisohomohalichondrin
B (58a)

P388 cells IC50: 0.4, 0.8, 10, 0.1 ng/mL [55]

salicylihalamides A (59), B (60) NCI 60 cells GI50: 7 ± 2 nM; 60 ± 25 nM [56]
callipeltoside B (61), C (62) NSCLC-N6 cells IC50: 15.1, 30.0 µg/mL [60]

arenolide (67) HCT-116,
A2780 cells IC50: 21, 9.8 mM [62]

30-hydroxymycalolide A (68),
32-hydroxymycalolide A (69),
38-hydroxymycalolide B (70)

L1210 cells IC50: 0.019, 0.013, 0.015 µg/mL [63]

NA (76), NB (77), NC (78), ND
(79) and NE (80)

P388, P388dox, KB tumor
cells undetermined [66]

spongidepsin (87) J774.A1, HEK-392,
WEHI-164 cells IC50: 0.56, 0.66, 0.42 µg/mL [71]

dactylolide (88) L1210,SK-OV-3 cells IC50: 3.2 µg/mL [72]
neohalichondramide (101),
(19Z)-halichondramide (102) K562 cells LC50: 4.9 µg/mL [81]

lasonolides C–E (106–108) A-549,PANE-1 cells IC50: 0.13, 4.5, 0.31 µM; 0.38.
4.89, 0.57, 15.6 µM [83]

leiodolides A (112) and B (113) HCT-116 cells IC50: 1.4, 3.8 µg/mL [86,87]
tedanolide C (114) HCT-116 cells IC50: 0.057 µg/mL [88]
kabiramide F–I (115–118) NCI cells undetermined [89]
swinholide I (120),
hurghadolide A (121) HCT-116 cells IC50: 5.6, 365 nM [91]

oxalatrunculin B (122) HepG2, HCT-116,1301 cells undetermined [92]

neopeltolide (123) A-549, NCI-ADR-RES,
P388 cell lines IC50: 1.2, 5.1, 0.56 µg/mL [93]

phorbaside C (134) HCT-116 cells IC50: 2 µM [97]
tausalarin C (147) K562 cells IC50: 1 µg/mL [102]
enigmazole A (153) IC-2 IC50: 0.37 µg/mL [105]

callyspongiolide (168) Jurkat J16 T, Ramos B
lymphocytes IC50: 70, 60 nM [111]

phormidolides B (169), C (170) A-549, HT-29,
MDA-MB-231 cells undetermined [112]

poecillastrins E (171), F (172), G
(173) 3Y1 cells IC50: 6.7, 1.2, 5.0 ng/mL [113]

macrosphelide M (180) HL-60 cell IC50: 33.2 µM [120]
12,13-deoxyroridin E (191) HL-60, L1210 cells IC50: 25, 15 µg/mL [126]
myrothecines H, I (270–271) HepG-2 cells IC50: 8, 0.4 µM [156]
marinomycins A–D (283–286) 60 cell line panel LC50: 0.005–50 µM [165]
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Table 1. Cont.

Drug Class Compounds Pharmacology Activities Ref.

arenicolide A (287) KB cells IC50: 30 µg/mL [166]
halichoblelide B (293) P388 cell line ED50 0.63 [169]
juvenimicin C (303) Hepa 1c1c7 cells undetermined [173]

astolides A (311), B (312) K-562, Pgp-positive MDR
subline K-562/4 IC50: 1.2–1.4 µM [179]

biselyngbyolide A (330),
HeLa S3, HL60 cells

IC50: 0.22, 0.027 µM [190]
biselyngbyolide B (331) IC50: 3.5, 0.82 µM [191]
amphidinolide E (339) L1210, L5178Y cells undetermined [194]

amphidinolide G,H (341–342) L1210, KB cells IC50: 0.0054, 0.00048 µg/mL;
0.0059, 0.00052 µg/mL [197]

amphidinolides O (351),
P (352) L1210, KB cells IC50: 1.7, 1.6 µg/mL;

IC50: 3.6, 5.8 µg/mL. [208]

amphidinolide Q (353) L1210 cells IC50: 6.4 µg/mL [210]
amphidinolides R (354),
S (355) L1210, KB cells IC50: 1.4, 4.0 µg/mL;

IC50: 0.67, 6.5 µg/mL [213]

amphidinolide C3 (357) P388, L1210, KB cells undetermined [215]
amphidinolide X (371) L1210, KB cells IC50: 0.6, 7.5 µg/mL [226]
amphidinolides B6 (374),
B7 (375) DG-75 cells IC50: 0.02, 0.4 µg/mL [227]

amphidinolide C2 (376) L1210, KB cells IC50: 0.8, 3 µg/mL [228]

caribenolide I (377) HCT-116, HCT 116/VM
46,P388

IC50: 1.6 nM, 1.6 nM, 0.03
mg/kg [229]

iriomoteolide-2a (387) DG-75, cells IC50: 0.006, 0.03 µg/mL [238]
iriomoteolide-3a (388) DG-75 cells IC50: 0.08 µg/mL [239]
iriomoteolide-4a (389), -5a (390) DG-75 cells IC50: 0.8, 1.0 µg/mL [240]
iriomoteolide-9a (391), -11a (392) HeLa cells IC50: 15, 2 µM [241]
iriomoteolide-10a (393) HeLa, DG-75, MH134 cells IC50: 1.5, 1.2, 3.3 µM [242]
iriomoteolide-12a (394) DG-75 cells IC50: 50 µM [242]
bromophycolide A (411) A2780 cells IC50: 6.7 µM [258]
bromophycolide H (419) DU4475 cell line IC50: 3.88 µM [259]

bromophycolides J–Q (421–428) BT-549, DU4475,
MDA-MD-468 et al. IC50: 2.1–7.2 µM [260]

bromophycolide K (425) DU4475 cell line IC50: 1.5 µM [260]
bryostatin 10 (458) P388 cell line ED50: 0.33 µg/mL [277]
bryostatins 16 (459),
17 (460), 18 (461) P388 cell line ED50: 0.0093, 0.019, 0.033

µg/mL [282]

aplyronines D–H (469–473) HeLa S3 cells IC50: 0.075, 0.18, 0.19, 0.12, 9.8
nM [286]

dolabelide A (474), dolabelide B
(475) HeLa S3 cells IC50: 6.3, 1.3 µg/mL [287]

dolabelides C (476), D (477) HeLa S3 cells IC50: 1.9, 1.5 µg/mL [288,289]

iejimalides C (487) and D (488) KB, L1210 cells IC50: 4.7, 0.2 µg/mL; 10, 0.58
µg/mL [298]

lobatamides A–F (489–494) NCT’S 60 cells mean panel GI50’s 1.6 nM [301,302]

biselides A (496), C (497) NCI-H460, MDA-MB-231
cells

IC50: 3.53, 3.72 µM;
IC50: 18.0, 25.5 µM [303]

palmerolide A (501) HCC-2998, RXF 393 LC50: 18, 6.5, 6.5 µM [305]

Antibacteria a curvulone A (221)

B. subtilis,
Microbotryum, violaceum,
Septoria tritici,
Chlorella fusca

undetermined [139]

thiocladospolides F–J (264–268) Edwardsiella tarda MIC: 4 µg/mL [154]
marinomycins A–D (283–286) MRSA, VREF MIC: 0.1–0.6 µM [165]

11′,12′-dehydroelaiophylin (305)
MRSA,
vancomycin-resistant
Enterococci pathogens

MIC: 1–4 µg/mL [175]
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Table 1. Cont.

Drug Class Compounds Pharmacology Activities Ref.

anthracimycin (308) Bacillus anthracis (strain
UM23C1–1) MIC: 0.031 µg/mL [177]

bromophycolides A (411), B
(412) MRSA and VREF MIC: 5.9, 5.9 µM;

5.9, 3.0 µM [258]

bromophycolides P–Q (427–428) MRSA and VREF MIC: 1.4, 13 µM;
1.8, 5.8 µM [260]

Antifugal a leucascandrolide A (48) C. albicans undetermined [48]
neohalichondramide (101),
(19Z)-halichondramide (102) C. albicans 12.5 mm at 25 µg/disk [81]

neopeltolide (123) C. albicans MIC: 0.62 µg/mL [93]

BK223-A (181) BK223-B (182),
BK223-C (183)

Botrytis cinerea,
Phoma lingam,
Phoma bataem,
Pyrenophora teres,
Sclerotinia sclerotiorum,
Moilinia fructigena,
Ascochyta pisi and Alternaria
alternata

undetermined [121]

15G256ğ(197),15G256w; (198) Neuropora crassa OS-1 undetermined [128]

Astolides A (311), B (312) C. albicans, A. niger 219, C.
tropicales MIC: 4, 8 µg/mL [179]

bromophycolides A (411), B
(412) C. albicans MIC: 6.7, 27.7 µM [258]

bromophycolides F, I (417, 420) amphotericin B-resistant C.
albicans undetermined [259]

Antimitotic halistatin 1, 2 (15–16) Inhibition of tubulin
polymerization undetermined [23,24]

spirastrellolide A (94) accelerating the entry of
cells into mitosis IC50: 100 ng/mL [79]

Antiviral bromophycolides A (411) HIV strains 96USHIPS7
and UG/92/029 inhibition IC50: 9.1,9.8 µg/mL [258]

Antiplasmodial kabiramide L (119) Against P. flaciparum K1 IC50: 2.6 µM [90]
Antiparasite bromophycolides R–U (429–432) Against Pla. falciparum. IC50: 0.9–8.4 µM [261]
VCAM b

inhibition
halichlorine (47) Inhibition to VCAM-1 IC50: 7 µg/mL [47]

Prevent
fertilization exiguolide (111) Inhibited fertilization of

sea urchin gametes IC50: 21 µM [84]

NFκB inhibition fijiolides A (309) Reducing TNF-α-inducing
NFκB activation IC50: 0.57 µM [178]

Prevent
fertilization oscillariolide (321) Inhibited fertilization of

echinoderm eggs IC50: 0.5 µg/mL [182]

Molluscicidal
activity cyanolide A (329) Against the snail vector B.

glabrata LC50: 1.2 µM [189]

Vasoconstrict-
ors

zooxanthellatoxins A (380), B
(381) undetermined [232,233]

Fast-acting
toxin prorocentrolide B (382) Rapid toxic response in the

mouse bioassay undetermined [234]

symbiodinolide (395)
Voltage-dependent N-type
Ca2+ channel-opening
activity

IC50: 7 nM [14]

acuminolide A (396) IC50: 10−6 M [246]
Prevent
fertilizatoin haterumalide B (495) Inhibited fertilization of

sea urchin eggs IC50: 0.01 µg/mL [302]

a In the pharmacology column, cytotoxic, antibacteria and antifungal parts present species to which the compounds show inhibition
bioactivities. b Vascular cell adhesion molecule.
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3. Conclusions and Outlook

This review presents a summary of 505 marine-derived macrolides reported from
1990 to 2020 and highlights their chemical and biological diversity. As shown in Figure 1,
sponges are the dominant producer of marine macrolides, yielding 173 of these 505 com-
pounds (34.3%). Fungi and dinoflagellates are also important sources, producing 19.4% and
12.1%, respectively, of the macrolides reviewed. Marine animals (cnidarians, bryozoans,
tunicates, and mollusks) produced significantly fewer macrolides with a combined percent-
age of 11.6%, while marine plants (red algae) yielded 9.5%. Marine microbes (including
fungi, bacteria, cyanobacteria) produced 32.7% of 505 macrolides. Notably, macrolides
obtained from sponges have fallen since 2010, while microbes, especially fungi, have grown
to be important producers (Figure 2). This phenomenon suggests that biochemists are
acknowledging that sampling slow-growing sessile organisms to identify natural products
is not an eco-friendly practice. More attention is now being given to microbes due to their
capacity for unlimited reproduction and the ease with which their genome can be mined
for targeted metabolites. Marine macrolides have a broad range of properties, including
cytotoxic, antifungal, antimitotic, and some other activities (Table 1). Cytotoxicity is their
most significant bioactivity, highlighting that marine macrolides include many potential
antitumor drug leads.

For macrolides with larger macrocyclic rings, such as reidispongiolides A and B [34],
symbiodinolide [14] and zooxanthellatoxins A and B [232,233], the flexible ring structures
make stereochemistry identification more difficult. Novel configuration determination
technologies, such as sponge crystals [309], are needed to solve this problem. Although they
possess diverse bioactivities, few marine macrolides have been developed into approved
antitumor drugs or even for clinical trials during the last thirty years. Limited production
from natural biomaterials and difficulties in synthesis may be hindering new drug dis-
covery. High throughput screening and investigation of target prediction and additional
bioactivity mechanisms must be employed to increase the successful discovery of lead
compounds from marine macrolides. This should include mining for more structurally
unusual macrolides with broader bioactivities.
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