Planococcus maritimus ML1206 Isolated from Wild Oysters Enhances the Survival of *Caenorhabditis elegans* **against** *Vibrio anguillarum*

Ying-Xiu Li¹, Nan-Nan Wang¹, Yan-Xia Zhou¹, Chun-Guo Lin¹, Jing-Shan Wu¹, Xin-Qi Chen¹, Guan-Jun Chen^{1,2,*} and Zong-Jun Du^{1,2,*}

- ¹ Marine College, Shandong University, Weihai 264209, China; yingxiuli@sdu.edu.cn (Y.L.); wangnan2016@mail.sdu.edu.cn (N.W.); zhouyx@sdu.edu.cn (Y.Z.); linchunguo@mail.sdu.edu.cn (C.L.); wujingshan@mail.sdu.edu.cn (J.W.); chenxinqi@mail.sdu.edu.cn (X.C.)
- ² State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
- * Correspondence: guanjun@sdu.edu.cn (G.C.); duzongjun@sdu.edu.cn (Z.D.)

Method

1. C. elegans Length Determination

Ten synchronized *C. elegans* N2 in L1 stage were transferred to NGM medium coated with OP50 and ML1206, respectively. *C. elegans* were cultured at 20 °C to the 2-days adult stage. *C. elegans* were picked to slides covered with agarose, anesthetized with levamisole hydrochloride, and placed under a stereomicroscope to measure body length with a micrometer. The head (oral position) of the *C. elegans* was taken as the starting point, and following the middle part of the body to the tail part of the *C. elegans* was taken as the measurement endpoint. NIS elements software was used to calculate the body of the *C. elegans* body ^[1]. The test was performed three times.

2. C. elegans Motility Determination

Referring to the methods of Tsalik and Hobert^[2], the effect of ML1206 on *C. elegans* motility was tested. Ten synchronized *C. elegans* N2 in L1 stage were transferred to NGM medium coated with OP50

and ML1206, respectively. C. elegans were cultured at 20 °C to the 2-days adult stage. Then

the *C. elegans* were transferred to new NGM plates. After the free movement of *C. elegans* in the first minute, the bending times of the *C. elegans* within 30 s were observed and recorded under a stereoscopic microscope as the indicator of bending frequency. One bending of the body is defined as a change in the movement of the body along the corresponding X-axis during *C. elegans* crawling, assuming that the direction along the pharyngeal pump is the Y-axis^[3]. The test was performed three times.

3. C. elegans Pharyngeal Pumping Experiment

Ten synchronized *C. elegans* N2 in L1 stage were transferred to NGM medium coated with OP50 and ML1206, respectively. *C. elegans* were cultured at 20 °C to the 2-days adult stage. Then the *C. elegans* were transferred to new NGM plates, the pump activity of *C. elegans* pharyngeal terminal bulb was observed through stereomicroscope (×400), and the number of pharyngeal pump activities within 1 min was recorded, the swallowing rate of *C. elegans* ^[1]. The test was performed three times.

4. C. elegans Reproductive Capacity Determination

Ten synchronized L1 N2 were selected to NGM medium coated with OP50 and ML1206, respectively. One plate was for one worm and kept *C. elegans* lay eggs at 20 °C. The parent *C. elegans* were transferred to a new NGM medium coated with OP50 and ML1206 every 12 h, and the number of eggs in each old culture dish was recorded until the *C. elegans* stopped laying eggs. The sum of eggs in plates of each group was the total number of eggs laid by 10 *C. elegans*, and the averages of offspring produced by each *C. elegans* were calculated to characterize the reproductive capacity of the parent *C. elegans*^[1]. The test was performed three times.

Results

Table Sl. Stains from the intestine of oyster and perch

number	Stain number	Putative identity
1	M0101	Pseudoalteromonas haloplanktis 98.2%

2	M0102	Marinobacter hydrocarbonoclasticus 98.8%
3	M0103	Psychrobacter celer 98.8%
4 5	M0104 M0106	Pseudoalteromonas nigrifaciens 98.1% Lacinutrix undariae 98.0%
6	M0107	Pseudoalteromonas translucida 98.2%
7	M1201	Bacillus siamensis 98.0%
8	ML1202	Bacillus tequilensis 98.9%
9	ML1206	Planococcus maritimus 99.2%
10	ML1209	Pseudoalteromonas fuliginea 99.2%
11	ML1210	Sulfitobacter pontiacus 98.3%
12	ML1211	Olleya algicola 99.9%
13	ML1212	Bacillus flexus 98.8%
14	ML1216	Bacillus firmus 97.5%
15	ML1224	Pseudoalteromonas neustonica 97.3%
16	ML1226	Pseudovibrio japonicus 99.0%
17	ML1227	Bacillus altitudinis 98.4%
18	ML1229	Ruegeria atlantica 99.3%
19	YLY02	Vibrio alfacsensis 99.5%
20	YLY03	Sunxiuqinia elliptica 99.1%
21	YLY04	Maribius pontilimi 95.33%
22	YLY05	Idiomarina sediminum 98.9%
23	YLY06	Vibrio orientalis 100%
24	YLY07	Brumimicrobium mesophilum 95.2%
25	YLY08	Oceaniglobus indicus 93.4%
26	YLY09	Nitratireductor aquimarinus 98.1%
27	YLY10	Microbacterium esteraromaticum 98.1%
28	YLY13	Bacillus halosaccharovorans 98.8%
29	YLY14	Roseovarius pacificus 99.6%
30	YLY17	Shewanella indica 98.6%
31	YLY18	Vibrio atypicus 99.9%
32	YLY20	Ornithinimicrobium kibberense 95.7%
33	YLY21	Litoreibacter arenae 99.8%
34	YLY22	Halobacillus alkaliphilus 97.8%
35	YLY23	Jeotgalibacillus campisalis 99.0%
36	YLY25	Marinobacter pelagius 98.9%
37	YLY26	Stappia stellulata 99.1%
38	YLY27	Idiomarina aestuarii 99.4%
39	YLY28	Roseovarius halotolerans 98.9%
40	YLY29	Shimia biformata 97.8%
41	YLY32	Halomonas aestuarii 96.8%

Strain number	Hemolysis	Strain number	Hemolysis
M0101	+	YLY06	-
M0102	-	YLY07	-
M0103	+	YLY08	-
M0104	+	YLY09	-
M0106	+	YLY10	-
M0107	+	YLY13	+
ML1201	+	YLY14	+
ML1202	+	YLY17	+
ML1206	-	YLY18	+
ML1209	+	YLY20	-
ML1210	-	YLY21	-
ML1211	+	YLY22	+
ML1212	+	YLY23	+
ML1216	+	YLY25	-
ML1224	+	YLY26	-
ML1226	+	YLY27	-
ML1227	+	YLY28	-
ML1229	-	YLY29	+
YLY02	-	YLY32	-
YLY03	-	SDUM002245	+
YLY04	-	LGG	-
YLY05	-		

Table S2. Hemolysis of strains

Note: "+" means positive; "-"stands means negative

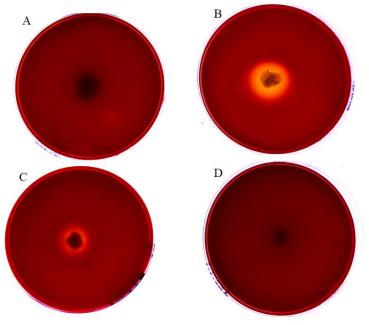


Figure S1. Hemolysis of some strains on 5% sheep blood agar (partial)

Note: A, strain ML1206; B, strain YLY14; C, control (V. anguillarum); D, negative control (strain LGG)

Table S3 Low pH tolerance ability of twenty intestinal bacteria (Mean±SD)

Strain num-	OD ₆₀₀ value		Acid-resistant	
ber	pH 7.4 (pH5.6 for LGG)	pH3.0	survival rate (%)	

M0102	0.49 ± 0.03 cd,A	0.05 ± 0.05 gh,B	10.30 ± 0.02 gf
ML1206	0.47 ± 0.03 cde,A	0.37±0.02 ^{c,A}	79.51±0.03 ^b
ML1210	$0.41\pm0.02^{\text{defg},A}$	0.07 ± 0.05 gh,A	16.33±0.02 ^{gf}
ML1229	0.68±0.02 ^{b,A}	0.08 ± 0.01 gh,A	11.80 ± 0.02 gf
YLY02	$0.44{\pm}0.04^{\mathrm{deg,A}}$	0.06 ± 0.00 gh,A	13.73±0.01 ^{gf}
YLY03	$0.81 \pm 0.02^{a,A}$	0.09 ± 0.02 g,A	11.12 ± 0.02 gf
YLY04	0.38 ± 0.03 fg.A	0.07 ± 0.01 gh,A	$18.45 \pm 0.04^{\text{gf}}$
YLY05	$0.45 \pm 0.02^{\text{de,A}}$	0.28±0.03 ^{e,A}	61.14 ± 0.05^{e}
YLY06	0.68±0.01 ^{b,A}	0.13±0.01 ^{f,A}	$18.69 \pm 0.02^{\text{gf}}$
YLY07	$0.39 \pm 0.06^{\mathrm{efg,A}}$	0.06 ± 0.01 gh,B	16.67 ± 0.03 ^{gf}
YLY08	0.20±0.01 ^{j,A}	$0.05 \pm 0.01^{i,A}$	23.89 ± 0.04^{f}
YLY09	0.38±0.03 ^{gh,A}	0.21±0.03 ^{e,A}	54.62 ± 0.04^{d}
YLY10	0.32 ± 0.02 hi	0.17±0.01 ^e	53.77±0.05 ^d
YLY20	0.43 ± 0.02^{defg}	0.07 ± 0.01 ^{gh}	16.91 ± 0.01^{gf}
YLY21	0.45 ± 0.01^{def}	0.05 ± 0.01 gh	11.77 ± 0.01 gf
YLY25	$0.31 \pm 0.03^{i,A}$	$0.26 \pm 0.02^{d,A}$	85.24±0.04b
YLY26	$0.29 \pm 0.01^{i,A}$	0.07 ± 0.01 gh,A	25.02 ± 0.02^{f}
YLY27	$0.30 \pm 0.02^{i,A}$	0.07 ± 0.00 gh,B	23.74 ± 0.02^{f}
YLY28	$0.44 \pm 0.02^{\text{de,A}}$	0.06 ± 0.00 gh,B	$13.57 \pm 0.01^{\text{gf}}$
YLY32	$0.76 \pm 0.06^{a,A}$	$0.49 \pm 0.04^{b,A}$	65.56±0.10°
LGG	0.52±0.03 ^{c,A}	$0.62 \pm 0.02^{a,A}$	118.71 ± 0.02^{a}

Note: different lowercase letters on superscript represent significant differences between different strains (p< 0.05); Different capital letters represent significant differences under different pH (p<0.05).

	5		
Strain	D600 value		Bile salt tolerance
number	Bile salt 0.0%	Bile salt 0.3%	survival rate (%)
M0102	$0.41{\pm}0.08^{\rm ghij,A}$	$0.07\pm0.01^{\text{ghi},\text{B}}$	17.75 ± 0.03^{efg}
ML1206	0.70±0.02 ^{c,A}	0.57±0.03 ^{a,A}	81.84 ± 0.04^{ab}
ML1210	$0.46{\pm}0.04^{\mathrm{fgh,A}}$	0.07 ± 0.01 ghi,B	15.96 ± 0.01^{efgh}
ML1229	$0.46{\pm}0.02^{\mathrm{fgh,A}}$	$0.06 \pm 0.01^{hi,B}$	$12.46 \pm 0.01^{\text{fgh}}$
YLY02	$0.34\pm0.02^{jkl,A}$	$0.20\pm0.02^{e,A}$	57.06±0.06 ^c
YLY03	$0.42\pm0.02^{ghi,A}$	$0.10 \pm 0.01^{g,A}$	24.91 ± 0.03^{e}
YLY04	$0.57 \pm 0.02^{\text{de,B}}$	0.05 ± 0.01 ^{hi,B}	9.29±0.01 ^h
YLY05	$0.51 \pm 0.01^{\text{ef,A}}$	0.38±0.03 ^{b,A}	74.45±0.04 ^b
YLY06	0.70±0.02 ^{c,A}	0.56±0.03 ^{a,A}	79.60±0.03 ^{ab}
YLY07	0.32±0.02 ^{1,B}	$0.04{\pm}0.01^{\text{hi},\text{B}}$	$13.46 \pm 0.02^{\text{fgh}}$
YLY08	0.32±0.02 ^{1,B}	$0.04 \pm 0.00^{hi,B}$	$12.56 \pm 0.01^{\text{fgh}}$
YLY09	$0.43\pm0.02^{\text{gh,A}}$	0.27±0.03 ^{c,A}	63.90±0.07°
YLY10	0.33 ± 0.04 kl,A	$0.04 \pm 0.01^{i,B}$	11.32±0.03 ^{fgh}
YLY20	$0.39\pm0.03^{hijkl,A}$	$0.05 \pm 0.01^{hi,B}$	$13.01 \pm 0.03^{\text{fgh}}$
YLY21	0.40 ± 0.02 ghijk,A	$0.08{\pm}0.01^{\text{gh,B}}$	20.16 ± 0.03^{ef}
YLY25	$0.45\pm0.05^{\mathrm{fgh,A}}$	$0.15 \pm 0.02^{f,A}$	35.12±0.07 ^d
YLY26	0.80±0.01 ^{b,A}	0.06 ± 0.00 ^{hi,B}	7.50±0.01 ^h
YLY27	$0.60\pm0.01^{d,A}$	$0.04 \pm 0.00^{hi,B}$	6.67±0.00 ^h
YLY28	0.47 ± 0.03 fg,A	$0.05{\pm}0.01^{\rm hi,B}$	$11.45 \pm 0.01^{\text{fgh}}$
YLY32	0.97±0.03 ^{a,A}	$0.23 \pm 0.04^{d,A}$	24.10 ± 0.04^{e}
LGG	$0.35 \pm 0.02^{ijkl,A}$	0.30±0.02 ^{c,A}	87.42±0.05 ^a

Table S4. Bile salt tolerance ability of twenty intestinal bacteria (Mean±SD)

Note: different lowercase letters on superscript represent significant differences between different strains (p < 0.05);

Different capital letters represent significant differences under different bile salt concentration values (p<0.05).

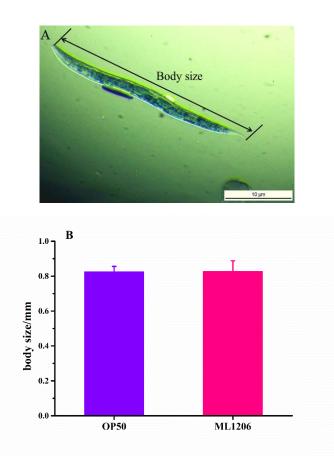


Figure S2. Effect of ML1206 strain on *C. elegans* growth: (a) Schematic diagram of *C. elegans* body length calculated with NIS elements software (b) Worms were grown in the presence of OP50 or ML1206 to the 2-day adult stage *C. elegans*. After anesthesia with levamisole hydrochloride, their body length was measured under a stereoscopic microscope (\times 400) with a micrometer. Data are representative of three independent experiments and presented as means ± SD.

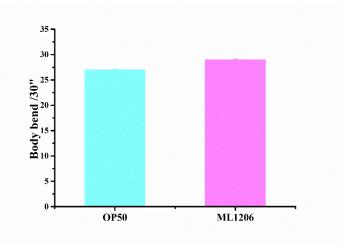


Figure S3. Effect of ML1206 strain on *C. elegans* body bending frequency: Worms were grown in the presence of OP50 or ML1206 to the 2-day adult stage *C. elegans*, and the body bending times of *C. elegans* within 30 S were recorded under a stereoscopic microscope (×400). Data are representative of three independent experiments and presented as means ± SD.

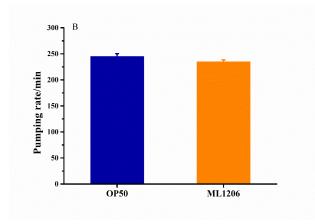


Figure S4. Effect of ML1206 strain on *C. elegans* pharyngeal pumping rate: Worms were grown in the presence of OP50 or ML1206 to the 2-day adult stage *C. elegans*. The worm was recorded within 1 min. Data are representative of three independent experiments and presented as means ± SD.

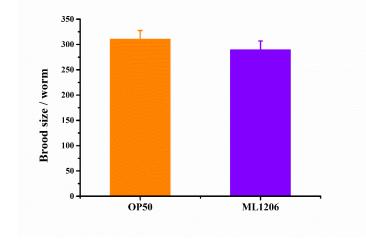


Figure S5. Effect of ML1206 strain on *C. elegans* reproduction ability: Average egg production per worm fed with OP50 or ML1206. Data are representative of three independent experiments and presented as means ± SD.

- [1] Zanni E,; Laudenzi C,; Schifano E,; Palleschi C,; Perozzi G,; Uccelletti D,; Devirgiliis C. Impact of a Complex Food Microbiota on Energy Metabolism in the Model Organism *Caenorhabditis elegans*. *Biomed Res Int.* **2015**, 2015, 621709.
- [2] Tsalik E.L,; Hobert O. Functional mapping of neurons that control locomotory behavior in *Caenorhabditis elegans*. *Journal of neurobiology*. **2003**, 56, 178-197.
- [3] Wu C,; Wang H,; Zhang X.W,; Qin X.W,; Zhou X.H,; et al. L-arabinose promotes the growth and development of *Caenorhabditis elegans* and reduces fat synthesis. *Mod Food Sci Technol.* **2018**, 34, 1–6.