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Fucoxanthin Suppresses Osteoclastogenesis via Modulation of
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Abstract: Fucoxanthin (FX), a natural carotenoid present in edible brown seaweed, is known for its
therapeutic potential in various diseases, including bone disease. However, its underlying regulatory
mechanisms in osteoclastogenesis remain unclear. In this study, we investigated the effect of FX on
osteoclast differentiation and its regulatory signaling pathway. In vitro studies were performed using
osteoclast-like RAW264.7 cells stimulated with the soluble receptor activator of nuclear factor-κB
ligand or tumor necrosis factor-alpha/interleukin-6. FX treatment significantly inhibited osteoclast
differentiation and bone resorption ability, and downregulated the expression of osteoclast-specific
markers such as nuclear factor of activated T cells 1, dendritic cell-specific seven transmembrane
protein, and matrix metallopeptidase 9. Intracellular signaling pathway analysis revealed that FX
specifically decreased the activation of the extracellular signal-regulated kinase and p38 kinase,
and increased the nuclear translocation of phosphonuclear factor erythroid 2-related factor 2 (Nrf2).
Our results suggest that FX regulates the expression of mitogen-activated protein kinases and Nrf2.
Therefore, FX is a potential therapeutic agent for osteoclast-related skeletal disorders including
osteoporosis and rheumatoid arthritis.
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1. Introduction

Bones are a dynamic tissue that undergoes constant renewal and repair through bone
remodeling. This process is characterized by the spatiotemporal coupling of osteoclast-
induced bone resorption and osteoblast-induced bone formation. An imbalance between
bone resorption and bone formation, especially excessive osteoclastic activity, is involved in
the pathogenesis of osteoporosis, rheumatoid arthritis, multiple myeloma, and metastatic
cancers [1,2]. Osteoclasts are multinucleated cells that are differentiated from hematopoi-
etic precursor cells of monocyte or macrophage lineage by canonical stimulation with
macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB
(NF-κB) ligand (RANKL) [3,4]. RANKL binds to its receptor on osteoclast precursors to
activate the mitogen-activated protein kinase (MAPK) signaling pathway, and downstream
transcription factors and osteoclast differentiation markers, including AP-1, NF-κB, and nu-
clear factor of activated T cells 1 (NFATc1) [2,5,6]. Some cytokines, such as tumor necrosis
factor (TNF)-α and interleukin (IL)-6, can serve as noncanonical osteoclastogenic effectors
in a RANKL-independent mechanism [7,8].
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Fucoxanthin (FX) is an oxygenated carotenoid present in edible brown sea algae
such as kombu (Laminaria japonica), wakame (Undaria pinnatifida), and arame (Eisenia
bicyclis) [9]. Previous studies demonstrated that FX possesses antiobesity, antidiabetic,
anti-inflammatory, anticancer, and hepatoprotective activities, in addition to its cerebrovas-
cular protective effects [10–18]. Fruit carotenoids such as lycopene and cryptoxanthin
were reported to inhibit osteoclastogenesis [19,20]. However, the effect and underlying
mechanism of FX on osteoclastogenesis remain poorly understood.

There is interest in the effect of FX on osteoclast differentiation. Although FX exhib-
ited a limited antiosteoresorptive effect in a ligature-induced periodontitis mouse model,
FX administration significantly reduced the number of RANKL-positive osteoclasts [21].
Das et al. [22] showed that the treatment of osteoclast-like RAW264.7 cells with 2.5 µM FX in-
hibits RANKL-induced osteoclast differentiation through an induction of apoptosis. Despite
this, an extremely high dose of FX did not produce significant side effects in animal models.
Moreover, several studies demonstrated that FX inhibits apoptosis or promotes the survival
of various nonmalignant cells at concentrations of up to 50 µM [23–26]. Taira et al. [27]
reported FX-induced cytotoxicity in RAW264.7 cells at 20 µM. Therefore, the underlying
mechanisms of FX effects on the canonical and noncanonical osteoclastogenic signaling
pathways could not depend on cellular apoptosis and are yet to be elucidated. In the present
study, we investigated the effects of FX on RANKL-dependent and -independent osteoclast
differentiation, and identified its molecular regulatory mechanisms.

2. Results
2.1. FX Effect on RAW264.7 Cell Viability

The cytotoxic effect of FX on RAW264.7 cells was determined using the 3-(4,5-dimethy-
lthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay (Figure 1A). FX did not affect
cell viability at a concentration of ≤5 µM. However, the number of viable cells after
treatment with 10 µM of FX was significantly lower than the number of untreated cells was.
Additionally, in contrast to the results of Das et al. [22], no cleavage of procaspase-3 and
poly ADP ribose polymerase (PARP; Figure 1B) was detected in cells treated with ≤10 µM
FX. Therefore, FX was used at a concentration of ≤5 µM in all subsequent experiments.
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Figure 1. Effect of fucoxanthin (FX) on viability of RAW264.7 cells. (A) Cells treated with differ-
ent concentrations of FX, and cell viability was determined using 3-(4,5-dimethylthiazol-2-yl) -2,5-
diphenyltetrazolium bromide (MTT) assay. Data are representative of six independent experiments
and are expressed as mean± standard error of mean (SEM); * p < 0.05 versus FX-untreated cells (0 µM).
(B) Procaspase-3 and poly ADP ribose polymerase (PARP) expression remained uncleaved upon
treatment with ≤10 µM FX, unlike in pemetrexed-treated cells of lung-cancer cell line NCI-H3122.

2.2. FX Inhibits Osteoclastogenesis

Tartrate-resistant acid phosphatase (TRAP) is highly expressed in differentiated osteo-
clasts, and is therefore used as a primary marker of osteoclastogenesis [28]. The treatment
of soluble RANKL (sRANKL, 50 ng/mL) or costimulation with TNF-α (50 ng/mL) and
IL-6 (50 ng/mL) in RAW264.7 cells increased the number of TRAP-positive and multi-
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nucleated cells compared with that of untreated control cells (Figure 2A). Under these
conditions, FX treatment decreased the number of TRAP-positive multinucleated cells in a
dose-dependent manner (Figure 2B). In experiments using human CD14+ monocytes, 0 to
5 µM of FX dose-dependently suppressed RANKL- and TNF-α/IL-6-induced osteoclast
differentiation from osteoclast precursors (Figure 2C). These results suggest that FX inhibits
the differentiation of RAW264.7 cells and human CD14+ monocytes to osteoclast-like cells.
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Figure 2. Soluble receptor activator of nuclear factor-κB (NF-κB) ligand (sRANKL)- or tumor necrosis
factor (TNF)-α/interleukin (IL)-6-induced differentiation into osteoclast-like cells. (A) Representative
microscopic images of tartrate-resistant acid phosphatase (TRAP) stained RAW264.7 cells (red arrows;
original magnification, 100×). Blue box in bottom corner is a magnified photograph of the smaller
boxed area (original magnification, 400×). (B,C) Number of TRAP-positive multinucleated cells
differentiated from (B) RAW264.7 cells and (C) human CD14+ monocytes decreased upon treatment
with FX in a dose-dependent manner. Data are representative of three independent experiments and
are expressed as mean ± SEM; * p < 0.05 versus FX-untreated osteoclast-differentiated cells; † p < 0.05
by Jonckheere–Terpstra test. FX, fucoxanthin.

The resorption pit assay was performed to examine osteoclast activity. As shown in
Figure 3, the resorption pit area was significantly decreased upon treatment with FX in a
dose-dependent manner. These results collectively suggest that FX exerts an inhibitory
effect on both sRANKL-dependent and -independent bone-resorbing osteoclast activity.
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2.3. FX Downregulates Osteoclast-Specific Markers and Transcriptional Factors in RAW264.7 Cells

NFATc1 is a master transcription factor for osteoclastogenesis [29]. The expression of
NFATc1 in sRANKL- or TNF/IL-6-stimulated RAW264.7 cells decreased upon treatment
with FX in a dose-dependent manner (Figure 4A). Dendritic-cell-specific transmembrane
protein (DC-STAMP), another essential mediator for osteoclastogenesis, is upregulated
upon osteoclastogenic stimulation. Increased DC-STAMP expression, in turn, upregulates
the expression of osteoclast-specific markers such as TRAP [30]. As shown in Figure 4B,
DC-STAMP mRNA expression was significantly decreased upon treatment with FX in a
dose-dependent manner.
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Figure 4. Effect of FX treatment on expression of osteoclast-specific markers. (A) Nuclear factor of
activated T cell 1 (NFATc1) protein expression and (B) dendritic-cell-specific transmembrane protein
(DC-STAMP) mRNA expression in sRANKL- and TNF/IL-6-stimulated RAW264.7 cells decreased
upon treatment with FX in a dose-dependent manner. Data are representative of three independent
experiments and expressed as mean ± SEM; * p < 0.05 versus FX untreated cells; † p < 0.05 by
Jonckheere–Terpstra test.

Matrix metallopeptidase (MMP)-9 is a well-established proteolytic effector of osteoclast-
mediated bone resorption. To examine whether FX affects MMP-9 production in differ-
entiated osteoclast-like cells, MMP-9 levels in culture supernatant were measured by
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ELISA. As shown in Figure 5, cells treated with 5 µM FX showed a significant decrease
in MMP-9 levels. Moreover, MMP-9 production decreased following FX treatment in a
dose-dependent manner.
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Figure 5. Effect of FX treatment on MMP-9 levels in culture supernatant of osteoclast differentiated
RAW264.7 cells. MMP-9 concentration significantly decreased upon treatment with 5 µM FX. Data are
representative of three independent experiments and expressed as mean ± SEM; * p < 0.05 versus FX
untreated cells; † p < 0.05 by Jonckheere–Terpstra test.

To better understand the mechanism of the FX-induced inhibition of osteoclast differ-
entiation, we performed immunoblot analysis of RAW264.7 cells to measure the expression
of molecules known to be critically involved in the osteoclast signaling pathway, includ-
ing MAPKs (extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK),
and p38), NF-κB, and phosphoinositide 3-kinase (PI3K) [31]. The treatment of RAW264.7
cells with FX significantly reduced the phosphorylation of ERK and p38 in a concentration-
dependent manner. However, JNK, NF-κB, and PI3K phosphorylation was not altered
following FX treatment (Figure 6).
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Figure 6. Effect of FX treatment on signaling pathways during osteoclastogenesis. FX inhibited extra-
cellular signal-regulated kinase (ERK) and p38 activation in both RANKL- and TNF-α/IL-6- stimulated
conditions. However, c-Jun N-terminal kinase (JNK), phosphoinositide 3-kinase (PI3K), and NF-κB
levels were not significantly altered. Data are representative of five independent experiments and
expressed as mean ± SEM; * p < 0.05 versus FX untreated cells; † p < 0.05 by Jonckheere–Terpstra test.
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Previous studies demonstrated that nuclear factor erythroid 2-related factor 2 (Nrf2) is
a negative regulator of osteoclastogenesis [32–34]. Nrf2 deficiency augments the RANKL-
induced activation of ERK and p38 MAP kinases in mouse bone-marrow-derived osteoclast
precursor cells [32]. Moreover, FX activates Nrf2 in nonbone and RAW264.7 cells [27,35–37].
We assessed the levels of phosphorylated Nrf2 and Nrf2 proteins in total cell extracts,
and the nuclear and cytosolic fractions of cell lysates by Western blotting (Figure 7A).
Nrf2 levels in total cell lysates were not affected by FX treatment. Expression of nuclear
Nrf2 significantly increased, while cytosolic Nrf2 expression dose-dependently decreased.
The proportions of phospho-Nrf2 expression in the nucleus compared to in the cytoplasm
were significantly augmented by FX. This effect increased with concentration (Figure 7B).
These results suggest that FX induces the dose-dependent phosphorylation and nuclear
translocation of Nrf2 in RAW264.7 cells.
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Figure 7. Effect of FX treatment on phosphorylated nuclear factor erythroid 2-related factor 2 (p-Nrf2)
expression and nuclear localization of Nrf2 during osteoclast differentiation. Total cellular proteins
were extracted from RAW264.7 cells and p-Nrf2 and Nrf2 expression were assessed by Western blotting.
Cell lysates were fractionated into nuclear and cytosolic extracts, and identical experiments were
performed. (A) Representative immunoblots and graphs for Nrf2 in total cell lysate, nucleus, and cytosol,
and (B) nuclear/cytoplasmic p-Nrf2 from three independent experiments are shown. Data expressed
as mean ± SEM; * p < 0.05 versus FX untreated cells; † p < 0.05 by Jonckheere–Terpstra test.

3. Discussion

Several pharmacotherapeutic drugs such as bisphosphonate, estrogen, and anti-
RANKL antibodies are used to treat osteoporosis. However, these drugs are commonly
associated with side effects such as medication-related osteonecrosis of the jaw, atrial fibril-
lation, and esophageal cancer [38–40]. Moreover, osteoporosis is poorly treated globally
despite therapeutic advancements [41]. The proportion of patients with a hip fracture
who were prescribed bone-protective medication decreased from 40% to 21% between
2001 and 2011 [42]. This undertreatment and poor adherence to drugs may be due to
fear of adverse effects [41]. Therefore, therapeutic agents with no or minimal side effects
are required. The protective role of carotenoids on bone resorption has been recently
gaining attention. Carotenoids present in fruits and vegetables, such as lycopene and
β-cryptoxanthin, and marine carotenoid astaxanthin show inhibitory effects on osteoclasto-
genesis [19,20,43–45].
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Prior studies investigated the therapeutic effect of FX—a marine carotenoid—on
osteoclastogenesis. Kose et al. [21] investigated the therapeutic effect of FX on alveolar
bone resorption in a ligature-induced periodontitis mouse model. FX treatment significantly
reduced the number of RANKL-positive osteoclasts located in the resorption lacunae and
increased serum bone-specific alkaline phosphatase levels. Das et al. [22] demonstrated
that the treatment of osteoclasts differentiated from RAW264.7 cells with 2.5–5 µM FX
inhibited RANKL-induced osteoclast differentiation by inducing apoptosis. However,
FX did not exert cytotoxic effects in osteoblast-like cells at 2.5 µM. Although not the pure
FX compound, extracts containing FX from Sargassum fusiforme suppressed osteoclast
differentiation, promoted osteoblast formation [46], and exhibited antiresorptive effects in
an ovariectomized mice model. These studies suggest that FX functions as a bone-protective
agent in osteoclast-mediated skeletal disorders. Here, we showed that FX inhibits both
the canonical RANKL-induced osteoclastogenesis and the RANKL-independent TNFα/IL-
6-induced differentiation of osteoclasts (Figure 2). Moreover, FX significantly attenuated
osteoclastic bone resorption pit in a dose-dependent manner (Figure 3). Unlike the results
of Das et al., our results demonstrated that the inhibitory effect of FX at ≤5 µM is not
mediated by the apoptosis of osteoclast precursor cells (Figure 1B).

To our knowledge, there is no study focusing on the signaling pathway underlying
the bone-protective activity of FX. Osteoclast differentiation is a multistep process that
involves cell proliferation, commitment, fusion, and activation [2]. During this process,
RANKL interacts with RANK to recruit TNF receptor-associated factor (TRAF) adaptor
protein and induce downstream targets such as NF-κB, MAPK (JNK, ERK, and p38), PI3K,
and Akt [47,48]. Previous studies also reported that TNF-α and IL-6 can independently pro-
mote osteoclastogenesis in vitro of RANKL [7,8,49]. Moreover, TNF-α can activate various
signaling pathways, including p38 MAPK, ERK, and NF-κB [48,50]. Our study confirmed
that FX downregulates ERK and p38 in both RANKL-dependent and -independent path-
ways, but not JNK or PI3K (Figure 6). The pharmacological action of nitrogen-containing
bisphosphonates is also mediated by the inhibition of the MEK/ERK pathway [51].

NFATc1 is characterized as a master molecule of RANKL-induced osteoclast differen-
tiation and can autoamplify its own expression [52]. Previous studies demonstrated that
NFATc1 binds to the promoter region of MMP-9 and DC-STAMP in osteoclasts, and in-
creases mRNA expression [53,54]. In line with these findings, our study demonstrated a
significant decrease in DC-STAMP mRNA expression (Figure 4B) and production of MMP-9
(Figure 5) upon FX treatment, in addition to NFATc1 downregulation.

Nrf-2 is a transcription factor expressed in various cell types, and is known as a regu-
lator of cytoprotective genes against oxidative and chemical injuries [55]. Under normal
quiescent conditions, Nrf2 is tethered to cytoplasmic protein Keap1. However, in cells
exposed to stressful stimuli, Nrf2 is released from Keap1 and activated via phosphory-
lation. Nrf2 phosphorylation is important for its stabilization, and phospho-Nrf2 prefer-
entially translocates to the nucleus [55,56]. Nrf-2 can also regulate osteoclast formation
and activity. The overexpression of Nrf2 suppressed RANKL-induced osteoclast differ-
entiation by increasing the level of antioxidant enzymes and locally inducing nuclear
Nrf2-attenuated osteoclastogenesis [33,34,55]. In the present study, FX treatment promoted
the nuclear translocation and phosphorylation of Nrf2 in both RANKL-dependent and
-independent pathways (Figure 7). Consistent with this finding, nuclear translocation
and phosphorylation of Nrf2 by FX was reported in studies of human keratinocytes and
ischemia/reperfusion-induced neuron cells [35,36]. As Park et al. reported, the induction
of Nrf2 dramatically suppresses the transcriptional activity of NFATc1 [57], the activa-
tion of Nrf2 by FX in our findings suggests the decreased expression of NFATc1 by FX
(Figure 4A). Conversely, previous studies using HepG2 cells under oxidative-stress condi-
tions demonstrated that ERK or p38 kinase activation is required for drug-mediated Nrf2
translocation [58,59]. However, this study and a previous study with NRK-52E cells [60]
showed that the treatment of cells with FX reduced phosphor-ERK/p38 levels and induced
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the nuclear translocation of phospho-Nrf2. The interaction between MAPK and Nrf2
pathways may vary depending on cell type, drug, or cell environment.

Limitations exist in this study. Although murine RAW264.7 cells are frequently used
as in vitro models of osteoclast differentiation, it is necessary to confirm the beneficial effect
of FX in human osteoclast precursors. Furthermore, in vivo studies are required to examine
the therapeutic potential of FX in disease models. Nonetheless, to our knowledge, this is the
first study to clarify the molecular regulatory mechanisms of FX in osteoclast differentiation.

We demonstrated that FX attenuates both RANKL-dependent and -independent os-
teoclastogenesis by downregulating ERK and p38 expression, and promoting the nuclear
translocation of phospho-Nrf2 in RAW264.7 cells, as summarized in Figure 8. FX is con-
firmed to have no side effects and can be easily extracted from marine macro/microalgae.
Therefore, FX represents a safe and inexpensive candidate drug for the treatment of various
diseases accompanying the imbalance between osteoclasts and osteoblasts.
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4. Materials and Methods
4.1. Cell Lines and Reagents

RAW264.7, a murine macrophage cell line, was purchased from the American Type
Culture Collection (ATCC; Rockville, MD, USA). Human lung adenocarcinoma cell line
NCI-H3122 was a kind gift from Professor Jong-Seok Lee (Seoul National University Col-
lege of Medicine, Seoul, South Korea). Human peripheral blood mononuclear cells (PMBCs)
were obtained from 4 anonymous donors (Koma Biotech, Seoul, Korea). Dulbecco’s Modi-
fied Eagle’s Medium (DMEM) and Minimum Essential Medium Eagle-Alpha Modification
(α-MEM) were purchased from Welgene (Daegu, Korea). Fetal bovine serum (FBS) was
obtained from Atlas Biologicals (Fort Collins, CO, USA) and penicillin–streptomycin from
Gibco (Carlsbad, CA, USA). Recombinant mouse TNF-α, mouse IL-6, and human sRANKL
were purchased from PeproTech (Rocky Hill, NJ, USA). CD14 MACS® MicroBeads were
purchased from Miltenyi Biotec Inc. (Auburn, CA, USA).

Antibodies against procaspase-3, caspase-3, PARP, cleaved-PARP, ERK, phospho-ERK,
p38, phospho-p38, JNK, phospho-JNK, PCNA, PI3K, and phospho-PI3K were purchased
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from Cell Signaling Technology (Danvers, MA, USA). Anti-β-actin antibody was purchased
from Enogene Biotech (New York, NY, USA), and anti-NFATc1, anti-phospho-p65, anti-Nrf2,
and phospho-Nrf2 antibodies were from ABcam (Cambridge, UK).

ELISA kits for MMP-9 were obtained from R&D Systems (Minneapolis, MN, USA).
The TRAP staining kit was acquired from Takara (Shiga, Japan), and the bone resorption
assay kit from Cosmo Bio (Tokyo, Japan). The MTT assay kit was purchased from Sigma–
Aldrich (St. Louis, MO, USA).

4.2. Cell Viability Test Using MTT Assay

Cell viability was determined using the MTT assay kit as per the manufacturer’s
protocol. Cells were seeded into 48 well tissue culture plates at a density of 2 × 103 per
well in growth medium. After 24 h, logarithmic phase cells were incubated with different
concentrations of FX for 5 days. Thereafter, MTT (5 mg/mL in PBS) was added to each
cell. After 4 h, the medium was removed, and dimethylsulfoxide was added to solubilize
MTT for an additional 4 h. After extraction with dimethylsulfoxide, optical density (OD)
was measured at 495 nm. Percentage viability was calculated as (OD of drug-treated
sample/OD of control) × 100.

4.3. Culture and Differentiation of Cell Lines

RAW264.7 cells were seeded in 48 well plates (2 × 103 per well), and cultured in
α-MEM containing 10% FBS and 1% penicillin/streptomycin at 37 ◦C in 5% CO2/95%
O2 in a humidified cell incubator. The culture medium was replenished every 3 days.
Osteoclast differentiation was induced either by stimulation with sRANKL (50 ng/mL) for
5 days or costimulation with TNF-α (50 ng/mL) and IL-6 (50 ng/mL).

Cryopreserved human PMBCs were thawed and washed, and CD14-positive cells
were isolated using anti-CD14 antibody-coated microbeads. CD14+ monocytes were seeded
at 1.5 × 105 cells/well in a α-MEM medium containing 10% FBS and M-CSF (50 ng/mL).
After confirming that the cells remained attached the following day, they were treated with
sRANKL (50 ng/mL) or TNF-α (50 ng/mL)/IL-6 (50 ng/mL) under conditions of 0, 1,
2.5, and 5 µM FX. The culture medium was replaced every 4 days, and multinucleated
TRAP-positive cells were counted after 17 days.

4.4. Osteoclast Differentiation from RAW264.7 Cells and Osteoclast Activity Assays

To evaluate the direct effects of FX on osteoclast differentiation, RAW264.7 cells were
treated with 0, 1, 2.5, and 5 µM FX under sRANKL or TNF/IL-6 stimulation. Cells were
stained with TRAP after 4 days of stimulation, and TRAP-positive multinucleated cells
were enumerated under a light microscope.

Osteoclast activity was determined by measuring the area of resorption pits using
calcium phosphate-coated 48 well plates according to the manufacturer’s recommendation.
RAW264.7 cells were washed once with α-MEM containing 10% FBS and seeded onto 48 well
plates (2 × 103 per well). The following day, cells were treated with FX under sRANKL
or TNF/IL-6 stimulation. On Day 5, the pit area was measured after adding 5% sodium
hydrochlorite along the plate wall to remove RAW264.7 cells, and after washing with water.
After air drying, microscopic images of all fields were acquired, and the resorbed pit area
per well was measured using ImageJ software (NIH, Bethesda, MD, USA).

4.5. Immunoblotting

To determine the expression of intracellular proteins, immunoblotting was performed
with the aforementioned antibodies. For NFATc1 and Nrf2 expression, RAW264.7 cells
were seeded onto a 6 well plate (2.0 × 104 per well) in α-MEM containing 10% FBS. On the
following day, 0, 1, 2.5, and 5 µM FX were added to the culture medium, and cells were
grown under sRANKL or TNF-α/IL-6 stimulation for 4 days. For MAPK, p65, and PI3K
expression, RAW264.7 cells were cultured in α-MEM containing 10% FBS with 0, 1, 2.5,
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and 5 µM FX for 4 days. Thereafter, cells were incubated with sRANKL or TNF-α/IL-6 in
serum-free media for 30 min.

Total cell lysates were obtained using cold radioimmunoprecipitation assay (RIPA)
buffer (25 mM Tris-HCl, pH 7.6; 150 mM NaCl; 1% NP-40; 1% sodium deoxycholate; 0.1%
SDS). The crude extract was separated on 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride membranes.
Protein bands were detected using an enhanced chemiluminescence system (Amersham
Biosciences, Little Chalfont, UK). Nuclear extracts were prepared with the NE-PER Nu-
clear Cytoplasmic Extraction Reagent kit (Pierce, Rockford, IL, USA) according to the
manufacturer’s instructions. The relative expression of each protein was determined by
densitometric analysis using ImageJ software.

4.6. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Real-Time PCR

The expression levels of osteoclast-related genes were measured using RT-PCR with
specific primers. cDNA and target-specific primers were added to the power SYBR green
PCR master mix (Applied Biosystems, Foster City, CA, USA). PCR cycling parameters were
as follows: amplification (1 cycle at 50 ◦C for 2 min, 1 cycle at 95 ◦C for 10 min, and 40 cycles
at 95 ◦C for 15 s and 60 ◦C for 1 min). Fold changes of gene expression were calculated
with the ∆∆Ct method using ribosomal protein S18 as the reference gene. Specific murine
primers are summarized in Table 1.

Table 1. Oligonucleotide primers used for RT-PCR.

Target Gene GenBank Accession Number Primer Sequence

18S ribosomal RNA
NR_003278 Forward 5′-GCAATTATTCCCCATGAA CG-3′

Reverse 5′-GGCCTCACTAAACCATCCAA-3′

DC-STAMP
NM_029422 Forward 5′-TGCCAGGGCTGGAAGTTCAC-3′

Reverse 5′-AAGGAGCTTCGCATGCAGGT-3′

4.7. ELISA

RAW264.7 cells were seeded onto a 6 well plate (2.0 × 104 per well) in α-MEM
containing 10% FBS. On the following day, 0, 1, 2.5, and 5 µM FX were added to the culture
medium and incubated with sRANKL or TNF/IL-6 for 4 days. MMP-9 detection was
performed using commercial ELISA kits according to the manufacturer’s instructions.

4.8. Statistical Analysis

All experiments were performed at least three times, and data are presented as
mean ± SEM. Continuous variables were compared using Mann–Whitney U test. For dose-
response analyses, the nonparametric Jonckheere–Terpstra trend test was performed.
All data were analyzed using STATA® SE, version 15.0 (StataCorp LLC, College Station,
TX, USA). A p value < 0.05 was considered statistically significant.

5. Conclusions

FX inhibits osteoclast differentiation and bone-resorption activity through downregu-
lating p38 and ERK, and promoting the nuclear translocation of phospho-Nrf2. The results
of this study provide useful insight into the molecular mechanisms of FX action. Hence,
FX could be used to treat bone diseases caused by excessive osteoclastic activity.
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