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Abstract: Marine plants have become an inexhaustible reservoir of new phytopharmaceuticals for
cancer treatment. We demonstrate in vitro/in vivo antitumor efficacy of a standardized polyphenol
extract from the marine angiosperm Thalassia testudinum (TTE) in colon tumor cell lines (RKO, SW480,
and CT26) and a syngeneic allograft murine colorectal cancer model. MTT assays revealed a dose-
dependent decrease of cell viability of RKO, CT26, and SW480 cells upon TTE treatment with IC50

values of, respectively, 175, 115, and 60 µg/mL. Furthermore, TTE significantly prevented basal and
bFGF-induced angiogenesis in the chicken chorioallantoic membrane angiogenesis assay. In addition,
TTE suppressed bFGF-induced migration of endothelial cells in a wound closure assay. Finally, TTE
treatment abrogated CT26 colorectal cancer growth and increased overall organism survival in a
syngeneic murine allograft model. Corresponding transcriptome profiling and pathway analysis
allowed for the identification of the mechanism of action for the antitumor effects of TTE. In line with
our in vitro/in vivo results, TTE treatment triggers ATF4-P53-NFκB specific gene expression and
autophagy stress pathways. This results in suppression of colon cancer cell growth, cell motility, and
angiogenesis pathways in vitro and in addition promotes antitumor immunogenic cell death in vivo.
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1. Introduction

Colorectal cancer (CRC) is considered one of the most commonly diagnosed malig-
nancies and a leading cause of cancer death worldwide [1]. The last Cuban Health Report
indicated that CRC is the third cause of mortality and its incidence ranked fifth, among all
cancers [2]. A high number of patients are detected at middle- or late-stage CRC, which
results in difficult clinical management and less favorable prognoses. In addition, the
treatments fail due to drug resistance, tumor relapse, and/or high adverse toxicity. Thus, it
is an urgent need for the development of new anticancer drugs.

There is a renewed interest in plant phytochemicals for cancer treatment [3]. The
public World Health Organization (WHO) global report on traditional and complemen-
tary medicine indicates that in developing countries, 80% of people rely on plant-derived
medicines for health care [4]. Interestingly, besides traditional medicinal plants, marine flo-
ras have also become a source of bioactive phytochemicals with antioxidant, immunomod-
ulatory, and antitumor activities [5,6].

Seagrasses are marine angiosperms rich in secondary metabolites, particularly, pheno-
lic compounds [7]. They cover about 50% of the Cuban coasts, with six species reported
and Thalassia testudinum K.D. Koenig being the most dominant [8]. One aqueous-ethanolic
extract has been obtained from the T. testudinum (TTE) leaves harvested at Havana coasts.
Regalado et al. identified that polyphenols (29.5± 1.2%) are the major compound present in
this extract [9]. Its major constituents are known [9,10] and standardized to chrysoeriol-7-O-
β-D-glucopyranosyl-2”-sulfhate (thalassiolin B) content; the main compound is responsible
for the antioxidant effects of TTE [9,11]. Apigenin, apigenin 7-O-β-D-glucopyranosyl-
2”-sulfhate (thalassiolin C), apigenin 7-O-β-D-glucopyranoside, chrysoeriol, chrysoeriol
7-O-β-D-glucopyranoside, dihydroxy-3′,4′-dimethoxyflavone 7-O-β-D-glucopyranoside,
and luteolin-3′-sulphate, were present in the extract. Proanthocyanidins were also detected
in relevant concentrations (21.0 ± 2.3%) in TTE [9]. A broad spectrum of bioactivities
has been reported for the proanthocyanidins glucopyranosyl derivates and their aglycon
structures (chrysoeriol, luteolin, and apigenin), including antitumor properties [12–14].
Recently, our group showed that TTE inhibits the cell viability of different tumor cells, but
not of normal (non-tumor) cells [15]. Taken together, our results show the cytotoxic activity
of the polyphenolic fraction of TTE and the thalassiolin B, which it is associated with
reactive oxygen species (ROS) generation and pro-apoptotic effects in HCT15, a human
colorectal cancer cell line. Furthermore, the antitumor activity of the polyphenolic fraction
was demonstrated in a xenograft mice model [16], suggesting that this marine plant holds
promise as a rich natural resource of antitumor phytochemicals.

Pharmacological studies already confirmed the strong antioxidant and anti-inflamm-
atory properties of TTE [11,17–19]. Since chronic inflammation and oxidative stress con-
ditions promote aggressive CRC progression and therapy resistance [20], clinical studies
recommend the therapeutic use of anti-inflammatory and antioxidant compounds for
long-term use in patients diagnosed with different tumor types [21]. In this study, anti-
cancer properties of standardized TTE were further characterized in cell viability assays
in colon cancer (RKO, SW480, and CT26) cells. In addition, the suppressive, antitumor
effects of TTE on cancer cell migration and angiogenesis were evaluated. Furthermore,
in vitro/in vivo transcriptome studies were performed of human colon cancer cells (SW480)
and syngeneic CT26 allograft tumors treated with TTE to identify key target genes and
pathways responsible for its potent anticancer effects.

2. Results
2.1. TTE Treatment Elicits Dose-Dependent Cytotoxicity against Colon Cancer Cells

Tumor cell cytotoxic effects of TTE were assessed by MTT viability assays in hu-
man RKO, SW480, and mouse CT26 colon cancer cells, in a concentration range of 1 to
1000 µg/mL. Cell viability after exposure to TTE or medium for 24, 48, or 72 h was de-
termined using MTT assay. Treatments with the extract resulted in a significant time-
and concentration-dependent decrease of the cell viability in the different type evaluated
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(Figure 1A–C). The colon cancer cell line SW480 showed the highest sensitivity to the
TTE treatment, with IC50 values of 174.9, 58.9, and 115.3 µg/mL for RKO, SW480, and
CT26 cells, respectively, after 72 of exposure (Figure 1D and Supplementary Figure S1). In
contrast, similar doses of TTE did not promote any cytotoxicity in non-tumor cell types
(i.e., primary hepatocytes, CHO, VERO, 3T3, MDCK, and BHK-21) [15].

Figure 1. Thalassia testudinum extract (TTE) treatment decreased colon cancer cell survival. RKO (A), SW480 (B), and CT26 (C)
colon cancer cells were treated for 24, 48, or 72 h with increasing concentrations of TTE (1–1000 µg/mL). Corresponding cell
viability was evaluated by MTT assays. Each line plot represents the mean ± SD of three assays * p < 0.05, ** p < 0.01, and
*** p < 0.001 compared with vehicle control value. IC50 values for the cells are summarized in panel (D).

2.2. TTE Suppresses Angiogenesis In Ovo in the Chorioallantoic Membrane (CAM) Assay

Angiogenesis plays a pivotal role in progression of malignant tumors and is an
attractive target in cancer therapy to block the supply of oxygen and nutrients necessary
for the survival of tumor cells or to prevent a route for metastatic spread of these cancer
cells. To investigate possible mechanisms of TTE against neovascularization in vivo, we
evaluated potential anti-angiogenic effect of TTE in the CAM assay during development
of the chicken embryo. No vascular sprouting could be observed in the CAM assay in
control conditions with serum-free medium (Figure 2A). Pro-angiogenic endothelial cell
proliferation, migration, and tube formation were significantly stimulated by 50% upon
bFGF treatment (40 ng/disc), as measured by the angiogenic index [22]. It should be noted
that TTE alone significantly reduced the angiogenesis index (%) as compared to control
at non-toxic concentrations or exposure times [15,23]. Therefore, data suggest that basal
angiogenesis was indeed inhibited by the extract. Furthermore, TTE (50 µg/disc) treatment
was able to completely reverse bFGF-induced blood vessel formation to levels 20% below
that of basal growth conditions (Figure 2A,B).
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Figure 2. Thalassia testudinum extract (TTE) inhibits bFGF-induced neovascularization in the chorioallantoic membrane
(CAM) assay. Anti-angiogenic effects of TTE were evaluated in ovo in a chicken CAM assay. (A) Representative photographs
of blood vessel growth in disks: vehicle control (serum-free medium), bFGF (40 ng/disc), TTE (50 µg/disc) or a combination
thereof. (B) The Angiogenic index = (t − c)/c was calculated as described in Section 4. The bar plot graph (mean ± SD)
indicates angiogenic index (%) of CAMs. Seven eggs were tested per each condition. Mann–Whitney U-test, ** p < 0.01 and
*** p < 0.001 statistically different from vehicle control, ### p < 0.001 different from bFGF exposure.

2.3. TTE Inhibits Migration of Human EA.hy926 Endothelial Cells

During cancer progression, epithelial-mesenchymal transition of cancer cells fre-
quently promotes migration and invasion, eventually leading to cancer cell metastasis [24].
We examined the ability of TTE to directly affect cellular migration of human EA.hy926
endothelial cells using a classic in vitro wound healing model. Confluent monolayers of
EA.hy926 cells were scratched with a 200 µL yellow tip. Then, cell migration into the
wound from adjacent areas of the monolayer was evaluated at nontoxic concentrations
(100 and 200 µg/mL) (Supplementary Figure S2). After 24 h the extent of cellular migration
and wound closure of the EA.hy926 cells was measured by crystal violet staining and
quantified. As can be observed from Figure 3A,B, both concentrations of TTE significantly
suppressed bFGF-induced cell migration and wound healing of EA.hy926 cells.

2.4. In Vitro Treatment of SW480 Cells with TTE Promotes Autophagic Gene Expression Changes
Involved in Cancer Cell Death, Cell Cycle Arrest and Inhibition of Cell Motility and Invasion

To further characterize possible anticancer mechanisms of TTE treatment at the molec-
ular level, we next measured genome-wide transcriptome changes in the most sensitive
colon cancer cell line, SW480, following a 6 h treatment with 100 or 200 µg/mL TTE. Using
a cutoff expression fold change of ≥1.25 of treated vs. control cells, the R-package “imam”
identified 290 up- vs. 254 downregulated or 510 up- vs. 457 downregulated genes follow-
ing, respectively, 100 or 200 µg/mL TTE treatment of the SW480 cells, of which 142 genes
were up- and downregulated by both treatments in a similar, dose-dependent manner
(Figure 4A, Supplementary Table S1). Bioinformatic analysis of differentially expressed
genes by Ingenuity Pathway Analysis (IPA) revealed that most of the significant gene
expression changes in biological pathways related to cell death (apoptosis and necrosis),
metastasis (invasion, motility, cell adhesion, and cell movement), and cell proliferation
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(cell cycle) (Figure 4B and Supplementary Figure S3), in line with our results showing
reduced survival, decreased cell proliferation, and suppressed cellular migration-invasion
properties in vitro (Figures 1–3). More particularly, TTE treatment strongly promoted
unfolded protein stress, nitrosative stress (NO), and endoplasmic reticulum stress, which
all trigger autophagy gene expression (Figure 4A–C). Finally, analysis of TTE respon-
sive genes identified master regulators of autophagy, including multiple transcription
factors P53, ATF4, NFκB, heat shock factor (HSF)1, Nuclear protein (NUPR)-1, (the stress
(pseudo)kinase tribble (TRIB), NUPR1, and various hormone receptors (NR3C1, ESR1, and
PGR) (Figure 4D–E).

Figure 3. Thalassia testudinum extract (TTE) treatment inhibits bFGF-dependent cell migration in the wound healing assay.
EA.hy926 cells were treated with vehicle or TTE (0–200 µg/mL) in the presence or absence of bFGF (10 ng/mL). (A) The
migratory cells were stained with crystal violet and photographed at 0 and 24 h, as indicated. (B) The bar plot graph
indicates % wound closure of the treatments. Data represent mean ± SD (n = 6), Mann–Whitney U-test *** p < 0.001
statistically different from bFGF setup, ## p < 0.01 different from vehicle control.

2.5. TTE Reduces Tumor Growth and Increases Overall Organism Survival of the Syngeneic
Allograft Murine CT26 Colorectal Cancer Model

To evaluate whether TTE has comparable antitumor effects in vivo, CT26 cells were
inoculated subcutaneously into the flanks of Balb/c mice. When tumor volume was higher
than 30 mm3, the animals were treated daily with the TTE (10, 50, and 100 mg/kg) by
oral gavage for two weeks. The group treated with cisplatin received an intraperitoneal
dose (5 mg/kg) every five days (positive control group) (Figure 5A). No signs of toxicity
were observed during the experience for treated groups with TTE. In contrast, piloerection,
decrease in the motor activity, and loss of body weight were observed in mice exposed
to cisplatin (Figure 5B). A normal tendency to increase body weight was observed in the
negative control and the groups treated with TTE in contrast to that of cisplatin-treated
mice (Table 1).
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Figure 4. Ingenuity pathway enrichment analysis of differentially expressed genes of SW480 cells treated for 6 h with TTE.
(A) Gene expression plot of Top 50 up/downregulated genes by SW480 treatment (100–200 µg/mL). (B) IPA enrichment
analysis of disease functions. (C) IPA enrichment analysis of canonical signaling pathways. (D) IPA enrichment analysis of
transcription factor motifs. (E) IPA enrichment analysis of upstream regulators.
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Figure 5. Thalassia testudinum extract (TTE) inhibits tumor growth in an ectopic model of syngeneic subcutaneous trans-
plantation of murine colon carcinoma CT26 cells. (A) The cells (1 × 105) were injected subcutaneously into 6–8 weeks-old
Balb/c mice. After 12 days, animals were orally treated for 14 days with TTE (10, 50, or 100 mg/kg) or intraperitoneally
with cisplatin (5 mg/kg) as schematically summarized. (B) Body weight changes by treatments. (C,D) Mean ± SEM of
tumor volume and weight. (E) Immunohistochemical staining of tumors to CDC47 monoclonal antibody. (F) Survival rate.
Statistically significant differences were determined by two-way ANOVA * p < 0.05; ** p < 0.01; *** p < 0.001.

Table 1. The T. testudinum extract effects on corporal weight gain and tumor growth in mice inoculated
with CT26 cells.

Groups Body Weight
Gain (g)

Tumoral
Volume (mm3)

Tumor Growth
Rate (mm3/day)

Inhibition (%)
(1 − T/C) × 100

Control 0.37 ± 0.2 1557.0 ± 206.9 129.40 ± 10.7 -
TTE: 10 mg/kg 1.26 ± 0.3 795.1 ± 162.9 ** 65.55 ± 8.4 *** 48.94 ± 10.5
TTE: 50 mg/kg 1.19 ± 0.4 602.7 ± 79.9 *** 47.03 ± 5.1 *** 61.30 ± 5.1
TTE: 100 mg/kg 2.01 ± 0.3 ** 476.7 ± 103.7 *** 33.46 ± 3.9 *** 69.39 ± 6.7

CIS: 5 mg/kg −6.25 ± 0.4 *** 346.0 ± 96.1 *** 24.98 ± 4.2 *** 77.78 ± 6.2
Values represent mean ± SEM, 10 animals per group. Tumor volumes that were measured until the 26th day of
injection were regressed, and the slope was taken as the tumor growth rate. Inhibition (%): (1 − T/C) × 100,
where the T/C ratio is the tumor volume of treatment group/tumor volume of control group × % at the end
time point. ** p < 0.01, *** p < 0.001 statistically different with respect to control animals (ANOVA, Dunnet’s
a posteriori).

We observed a dose-dependent reduction of tumor growth with TTE treatments, as
demonstrated in the significant decrease of tumor volume and weight (Figure 5C,D). TTE
treatments showed an antitumor effect with a maximal reduction in tumor size of 70%
at 100 mg/kg TTE. Overall, the reference cisplatin cancer treatment (5 mg/kg) revealed
the strongest antitumor effect (approximately 78% tumor size reduction) (Table 1). Im-
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munohistochemical staining intensity of the cell proliferation marker CDC47 showed that
TTE- and cisplatin-dependent reduction of tumor volume corresponded with decreased
immunohistochemical staining intensity of CDC47 (Figure 5E). Moreover, TTE treatment
significantly increased organism survival (Figure 5F).

In addition, lipid peroxidation and protein damage, measured by different oxidative
stress biomarkers, were significantly lower in TTE groups when compared with that of the
negative control. Levels of glutathione and the enzymatic activity of SOD and CAT were
higher (p < 0.05) in mice receiving doses of 50 and 100 mg/kg of TTE with respect to that
of controls (Table 2). As was expected, cisplatin treatment increased lipid peroxidation and
decreased the antioxidant enzyme activities.

Table 2. The effects of T. testudinum extract on systemic oxidative stress in mice inoculated with CT26 cells.

Groups
Biomarkers

MDA (µmol/L) AOPP
(µmol chloramines/L) GSH (µmol/L) SOD

(U/L)
CAT
(U/L)

Control 6.84 ± 0.2 47.40 ± 1.4 36.30 ± 2.7 28.74 ± 1.7 331.6 ± 5.8
TTE-10 mg/kg 6.41 ± 0.3 43.47 ± 2.2 58.52 ± 7.2 34.91 ± 1.2 351.5 ± 7.1
TTE-50 mg/kg 6.18 ± 0.3 22.16 ± 2.0 *** 154.80 ± 7.1 *** 53.99 ± 1.5 *** 476.0 ± 4.6 ***

TTE-100 mg/kg 4.89 ± 0.2 *** 9.93 ± 1.5 *** 171.10 ± 7.9 *** 62.41 ± 1.9 *** 518.2 ± 6.6 ***
CIS-5 mg/kg 7.98 ± 0.4 * 47.49 ± 3.2 31.85 ± 7.4 20.61 ± 3.5 * 289.0 ± 9.9 **

Values represent mean ± SEM of serum biomarkers of oxidative stress. MDA, malondialdehyde; AOPP, advanced oxidation protein
products; GSH, reduced glutathione. SOD, superoxide dismutase; CAT, catalase. Serum samples were analyzed by triplicate on two
different days. * p < 0.05, ** p <0.01, *** p < 0.001 statistically different with respect to control animals (ANOVA, Dunnet’s a posteriori).

2.6. In Vivo Treatment of the Syngeneic Allograft Model of Murine CT26 Colon Cancer with TTE
Triggers a ATF4-P53-NFκB-Specific Gene Response Towards Antitumor Immunogenic Cell Death

To confirm the in vitro mechanism of action of TTE in vivo in tumor samples (Figure 5D)
after 14 days of TTE treatment, we measured again the corresponding gene expression
changes. Corresponding volcano plots revealed multiple significant gene expression
changes (fold change cut-off of 1.25) of both TTE treatments (Supplementary Figure S4),
which were finally crossc-ompared with in vitro gene expression profiles by Metascape
systems biology freeware (https://metascape.org/) [25] (Supplementary Tables S2 and
S3). As can be observed in the circos plot (Figure 6A), we observed limited gene overlap
between setups, as is common in meta-analysis due to the variations in the experimental
approaches. However, in the heatmap representations (Figure 6B), we see a lot more
functional overlap, as these studies probably captured different parts of the same biological
processes in vitro/in vivo, related to cell death, angiogenesis, cell growth, and cell adhesion,
in addition to oxidative stress, receptor tyrosine kinase, and hormone-signaling pathways
(Supplementary Table S4 and Supplementary Figure S5). Interestingly, in the syngeneic
CT26 colon cancer allograft mouse model we observed additional involvement of IFNγ sig-
naling and leukocyte activation-migration in the tumor immune micro-environment, which
could not be addressed in the in vitro treatment setup (Figure 6B). Furthermore, similar to
our in vitro experiment, we also identified significant enrichment of p53, ATF4, and NFκB
transcription factor motifs in TTE-responsive genes in vivo, whereas the involvement of
NFκB target genes seemed to be increased in vivo (Figure 6C). Finally, protein–protein
interaction analysis of all TTE-responsive target genes by Metascape analysis identified six
protein interaction subnetworks (Figure 6D) involved in RNA splicing (MCODE1), TCR-
ZAP70-PD-1 immune signaling (MCODE2), RNA-metabolism (MCODE3), mitochondrial
respiration-biogenesis (MCODE4-5), and innate immunity complement complex regulation
(MCODE6), which all contribute to myeloid leukocyte activation and immunogenic cell
death pathways (Figure 6E and Supplementary Table S5).

https://metascape.org/
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Figure 6. Systems level metascape analysis of transcriptome profiles of Thalassia testudinum extract (TTE) treatment
in vitro/in vivo. (A) The Circos plot shows how genes from the different input gene lists of in vitro/in vivo setups overlap.
On the outside, the arc represents the identity of each gene list. On the inside, the orange color represents the genes that
appear in multiple lists, and the light orange color represents genes that are unique to that gene list. Purple lines link the
same genes shared by multiple gene lists. Blue lines link the genes that fall into the same ontology term (the term has to be
statistically significantly enriched). The greater the number of purple links and the longer the dark orange arcs, the greater
is the overlap among the input gene lists. Blue links indicate the amount of functional overlap among the input gene lists.
(B) Metascape enrichment analysis of statistically enriched ontology terms (GO/KEGG terms, canonical pathways, and
hall mark gene sets). (C) Metascape enrichment analysis of all statistically enriched TF-target interaction networks. (D) All
protein–protein interactions (PPI) among all input gene lists were extracted from the PPI data source and formed a PPI
network. (E) GO enrichment analysis was applied to the network to assign biological “meanings” of sub-protein networks.
GO enrichment analysis was applied to each MCODE network to assign “meanings” to the network component, where the
top three best p-value terms were retained. MCODE components were identified from the merged network. Each MCODE
network is assigned a unique color.

3. Discussion

The marine environment represents a huge reservoir of novel bioactive metabolites
with diverse groups of chemical structures with therapeutic and biotechnological poten-
tial [26,27]. The discovery and development of marine drugs against cancer has been
extremely rewarding with significant scientific gains, such as the discovery of new anti-
cancer mechanisms of action as well as novel molecular targets [28,29].

In the present study, we applied transcriptome profiling and systems biology ap-
proaches to further characterize in vitro/in vivo antitumor activities of a standardized
hydroethanolic extract from leaves of the marine angiosperm Thalassia testudinum growing
on the coasts of Cuba [9,10]. In line with our previous results, time- and dose-dependent
loss of cell viability was observed in the colon cancer cell lines (RKO, SW480, and CT26),
whereas non-tumor cells remained unaffected [15,16]. Among all tested colon cancer cell
types, SW480 was identified as the most sensitive to TTE treatment with IC50 values of
60 µg/mL. In line with our results, RKO cells were found to be more aggressive colorectal
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cancer cells than were SW480 cells in migration-motility assays due to their stronger mes-
enchymal stem cell and less epithelial phenotype, which may make them less vulnerable
(or more resistant) to TTE treatment [30,31].

To date, various anticancer flavonoids have been identified in TTE, such as apigenin,
luteolin, chrysoeriol-7-O-β-D-glucopyranoside, and thalassiolin B [9,12,13,16,32–34]. Simi-
lar to TTE, apigenin treatment of SW480 cells shows comparable cell cytotoxicity (IC50 value
40 µM) [35,36]. In addition, chrysoeriol-7-O-β-D-glucopyranoside and luteolin were found
to be effective antitumor bioactive molecules against colon cancer cells [37]. Recently, we
showed that thalassiolin B and the polyphenolic fraction isolated from TTE both mimicked
induced ROS production and tumor regression in a xenograft colorectal cancer model [16].
Accordingly, antitumor efficacy of TTE could be attributed to the presence of thalassiolin B,
apigenin, chrysoeriol-7-O-β-D-glucopyranoside, and luteolin in this mixture [16,35–38].

Upon transcriptome profiling of TTE-treated SW480 cells, we found that TTE triggers
multiple stress pathways (unfolded protein stress, endoplasmic reticulum stress, nitrosative
stress, and DNA damage) that exceed the stress tolerance of colon cancer cells. Accordingly,
cell cycle arrest and autophagy rescue gene responses by ATF4-P53-NFkB transcription
factors fail to restore homeostasis upon too many stress insults. Additional gene expression
and pathway enrichment analysis also revealed inhibition of cell proliferation-motility-
invasion-angiogenesis programs, which together with loss of autophagy damage control
will progress towards colon cancer cell death. Today, several studies show that various
phytochemicals, including TTE constituents such as luteolin, apigenin, and chrysoeriol
can efficiently modulate autophagy-dependent cancer cell death [12,13,32,38–42]. Similarly,
emodin (present in Chinese medicinal herbs Rheum and Polygonum) and capsaicin (present
in chili peppers) were shown to trigger NFkB/TRIB3-dependent autophagic cell death in
different cancer cell types [43–45].

Moreover, our in vitro cell viability, wound healing, and CAM assay results (Figures 1–3)
further support our gene expression pathway analysis, showing decreased cell viability,
tumor cell migration, and angiogenesis in the presence of TTE. Apigenin and luteolin could
be responsible for these TTE treatment effects, since both compounds have been reported
to inhibit vasculogenesis in the CAM assay and to decrease cell migration (Supplemen-
tary Table S6) [33,35,46–48]. However, despite the enriched presence of these bioactive
phytochemical constituents in the extract, other components cannot be excluded. Finally,
TTE treatment also reduced tumor growth in vivo and increased overall organism sur-
vival of a syngeneic allograft murine CT26 colon tumor model. At the transcriptome
level, we observed nice overlap of TTE-responsive antitumor stress response and cell
growth pathways in vitro/in vivo modulated by ATF4-P53-NFκB gene expression pro-
grams. Of particular interest, in vivo, we observed an additional role for immune signaling
pathways (IFNγ, PD-1, and ZAP70) and myeloid leukocyte activation-migration into the
tumor microenvironment (TME) to promote immunogenic cell death [43]. Tumor cells
frequently produce soluble factors that favor myelopoiesis and recruitment of myeloid
cells to the TME. Consequently, the TME of many cancer types is characterized by high
infiltration of monocytes, macrophages, dendritic cells, and granulocytes [49]. Experimen-
tal and clinical studies show that most myeloid cells are kept in an immature state in the
TME by tumor secreted factors that support cancer initiation and progression, amongst
other activities, by enabling immune evasion, tumor cell survival, proliferation, migration,
and metastasis. For example myeloid cells support immune evasion in cancer through
EGFR/MAPK-dependent regulation of PD-L1 expression in tumor cells [50]. Interestingly,
PD-1, a T cell checkpoint receptor and target of cancer immunotherapy, is also expressed
on myeloid cells, which orchestrate immune checkpoint blockades [51]. As such, strategies
to deplete myeloid cells or redirect their function in the TME hold promise to overcome
resistance to current cancer therapies. For example, targeted deletion of PD-1 in myeloid
cells was already shown to induce antitumor immunity [52]. Similar to our results, thera-
peutic modulation of myeloid polarization through the IFN-γR/STAT1 signaling axis was
found to enhance antitumor immune function by activating tumor infiltrating myeloid cells,
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regulating PD-L1 expression, and promoting immunogenic cell death [53–58]. New studies
indicate that autophagy in addition to its cell-autonomous antitumorigenic functions in-
hibits cancer development by orchestrating inflammation and immunity. While attenuating
tumor-promoting inflammation, autophagy enhances the processing and presentation
of tumor antigens and thereby stimulates antitumor immunity. Although cancer cells
can escape immune-surveillance by tuning down autophagy, phytochemical agents with
immunogenic and autophagy-promoting properties may enhance antitumor immunity
by inducing autophagic cell death [54]. For apigenin, luteolin, and chrysoeriol, immuno-
genic and autophagy-promoting properties have already been reported (Supplementary
Table S6) [32,33,38,39,59]. In addition, we previously found that treatment with another
purified TTE constituent (Thalassiolin B) fully mimicked ROS production and tumor regres-
sion by polyphenolic fraction treatment in a xenograft colorectal cancer model [16]. Thus,
the antitumor efficacy of TTE could be attributed to the presence of multiple bioactive
compounds, which exhibit a broad spectrum of therapeutic properties in vitro/in vivo.

4. Materials and Methods
4.1. Plant Material

Thalassia testudinum Banks & Sol. ex K. D. Koenig (Hydrocharitaceae) leaves were
collected in March 2016 from “Guanabo” beach (22◦05′45” N, 82◦27′15” W). The plant
was authenticated by Dr. Beatriz Martínez Daranas (Center of Marine Research, Havana
University, Cuba) with a standard sample deposited in the herbarium of the Cuban National
Aquarium (No. IdO40).

The extract was prepared as described previously [10]. Briefly, whole dry and ground
Thalassia testudinum leaves were continuously extracted (three times) with EtOH-H2O
(50:50, v:v) for 24 h at room temperature. The sample was filtered and concentrated under
reduced pressure and temperature (40 ◦C) to yield the extract (TTE). TTE composition was
standardized according to the percentage of thalassiolin B (within the range 5.8 ± 0.3%),
and contained phenolic components (29.5 ± 1.2%), flavonoids (4.6 ± 0.2%), and proantho-
cyanidins (21.0 ± 2.3%) [9,10]. For in vitro assays, stock solutions of the extract (1 mg/mL)
were freshly prepared in culture medium and diluted to achieve the final concentrations
tested in each experimental series. Control cells (only medium-treated cells) were included
in all experiments. For in vivo studies, the extract was prepared in distilled water.

4.2. Cell Lines and Cell Culture

Human colon cancer cell lines (RKO and SW480), the murine adenocarcinoma of
colon cell line (CT26), and the human endothelial cell type (EA.hy926, a hybrid of HUVEC
with human adenocarcinoma cells) were purchased from the American Type Culture
Collection (ATCC, Manassas, VA USA). Cells were grown in Dulbecco’s Modified Eagle
Medium (DMEM) and the culture mediums were supplemented with 10% Fetal Bovine
Serum, 2 mM L-glutamine, 50 IU/mL penicillin, and 50 µg/mL streptomycin. Cells were
incubated at 37 ◦C in humidified atmosphere containing 5% CO2. All cell culture reagents
were purchased from Life Technologies (Praisley, UK).

For the syngeneic CT26 allograft model [60], cells were harvested from subconfluent
cultures (70–85%) by trypsinization (0.05% trypsin, 0.02% EDTA) at the day of implantation
and they were resuspended in buffer phosphate solution (PBS).

4.3. MTT Assay

Cell viability was assessed by using 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) (Sigma Aldrich, St. Louis, MO, USA) as previously described [61]. Cells
were exposed to TTE (1–1000 µg/mL) for 24, 48, and 72 h. After treatments, MTT was
added to wells and the plates were incubated at 37 ◦C for 4 h and the formazan crystals
that formed were extracted with DMSO. The absorbance was read on a microplate reader
(Bio Rad Model 3550-UV, Tokyo, Japan) at 595 nm. Experiments were performed at least
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three times. The concentration of extract required for 50% inhibition of the cell viability
(IC50) was determined by plotting the percentage of cell viability versus log concentration.

4.4. Chorioallantoic Membrane (CAM) Angiogenesis Assay

This assay was performed as described [62]. Briefly, fertilized eggs were incubated
for 3 days at 37 ◦C and humidity of 48%. The eggs were incubated until day 10, prior
to application of the extract. TTE-50 µg/disc, bFGF-40 ng/disc, TTE-50 µg/disc plus
bFGF-40 ng/disc, and control (medium culture) were poured onto separate discs (12 mm
diameter), under sterile conditions for 72 h. Test discs probed with recombinant human
bFGF (Peprotech) served as a control for angiogenesis stimulation. At the end of the assay,
the CAM, the area of the discs included, was placed in a petri dish with 10% buffered
formalin. The plastic discs were removed and phase-contrast pictures of the area were taken.
The vascular index was measured as described previously [22,62]. Vascular intersections
on a grid containing three concentric circles (6, 8, and 10 mm diameter) were counted. The
Angiogenic index = (t− c)/c, where t is the number of intersections in the area covered
by the test disc and c is the number of intersections in the area covered by the control disc
in the same egg.

4.5. Wound Healing Migration Assay

A wound healing assay was carried out to determine the migration ability of EAhy926
cells as previously described [63]. A sterilized 200 µL pipette tip was used to generate a
scratch “wound” across the cell monolayer and the wound was washed with PBS. The
cells were cultured containing concentrations of TTE (100 and 200 µg/mL) for 24 h at
37 ◦C. Control cells were cultured in medium alone. All cells were stimulated with bFGF
(10 ng/mL) to evaluate the effects on migration induction. At the end, cells were washed,
fixed with absolute methanol, and stained with crystal violet (2%) [64]. Images from the
region adjacent to the wound into which cells migrated were taken with a camera attached
to bright-field microscope (Olympus, Tokyo, Japan). Three randomly selected views along
the scraped line were photographed on wells at 100×. A reduction in the wounded area
indicates a sign of migration. Wound closure was quantitated using the ImageJ software
for stained cells and defined as % of area covered after 24 h and compared to time zero [65].
The experiments were performed in triplicate.

4.6. RNA Extraction and Illumina Microarray Processing

Total RNA of untreated control or exposure to TTE-treated (100 and 200 µg/mL)
SW480 cells was isolated by using an RNeasy Mini Kit (Qiagen, Venlo, Netherlands)
according to the manufacturer’s protocol. Following RNA extraction and concentration
measurement (NanoDrop 1000, Thermo Scientific, Waltham, MA, USA), quality control was
measured on a Bio-Rad experion (Bio-Rad, Hercules, CA, USA). First, 500 ng of total RNA
was amplified using the Illumina Total Prep RNA Amplification kit (Life Technologies,
Carlsbad, CA, USA). Briefly, RNA was reverse transcribed using T7 oligo(dT) primers, after
which biotinylated cRNA was synthesized through an in vitro transcription reaction. Then,
750 ng of amplified cRNA was hybridized to a corresponding array of a HumanHT12
beadchip (Illumina, San Diego, CA, USA). The beadchip was incubated for 18 h at 58 ◦C in
a hybridization oven under continuous rocking. After several consecutive washing steps
(see manufacturer’s protocol), bead intensities were read on an Illumina Iscan.

4.7. Ectopic Subcutaneous Syngeneic CT26 Colon Cancer Allograft Mouse Model

The studies were carried out in accordance with European regulations on animal
protection (Directive 86/609) and the Guide for the Care and Use of Laboratory Animals, US
National Institute of Health (NIH Publication № 85–23, 1996). The protocol was approved
by the Institutional Animal Care and Ethical Committee, Institute of Marine Sciences
(ICIMAR), Havana, Cuba (Protocol number 1501, approved: 12 January 2015). Male Balb/c
mice (6–8 weeks of age, 18–22 g) were purchased at the National Laboratory Animal
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Production Center, Havana, Cuba. They were supplied with water and food ad libitum,
under an environment controlled for temperature (22 ± 2 ◦C), humidity (77 ± 3%), and
cycles of 12 h light/dark. The animals were inoculated subcutaneously on the right dorsal
side with 1 × 105 CT26 cells/mouse in 100 µL of PBS. Once tumors grew up to 30 mm3,
mice were randomly divided into five groups (10 animals/group) as follows: distilled water
(negative control), TTE 10, 50, and 100 mg/kg, cisplatin 5 mg/kg (positive control). TTE was
administered daily intragastrically for 14 days and cisplatin every 5 days by intraperitoneal
injections. The tumor growth and size were measured by length and width with calipers
every 2 days. The tumor volume was calculated (V, mm3 = length × width2 × 0.5).
At the end, all mice were sacrificed; samples of blood and tumors were taken for the
analysis. Percentages of inhibition in growth of the tumor were calculated using the
following equation: Inhibition (%) = 1− T/C ∗ 100, where T and C are the tumor volumes
at the end point for each group.

Survival Rate

Another experiment with the same setting was performed to determinate the survival
time of the animals. The dates of death of the animals were recorded daily to establish the
survival curve. Based on the standard animal protocol, the mice with tumors exceeding
2000 mm3 and exhibiting signs of serious illness (i.e., tumor ulceration) were sacrificed.

4.8. Statistical Analysis

Statistical analyses were performed with GraphPad Prism 5.0 (GraphPad, La Jolla, CA,
USA). Significant differences were identified using the nonparametric Kruskal–Wallis test
followed by post-hoc Dunn’s multiple comparison tests for the MTT data. The results of
CAM and migration assays were examined using the Mann–Whitney U-test. Body weight,
tumor weight and size, and immunohistochemical and oxidative stress biomarkers were
identified using an ANOVA test followed by post-hoc Dunnet’s multiple comparison tests.
The level of statistical significance was set to * p < 0.05, ** p < 0.01, and *** p < 0.001 for
all analyses.

For the microarray, raw data intensities generated were read in R and quantile nor-
malized using the “limma” package [66]. Pathway analysis of SW480 cells was performed
using the Ingenuity Pathway Knowledge Base (Ingenuity® Systems, www.ingenuity.com,
Redwood City, CA, USA). A fold change cut-off of 1.25 was set to identify genes whose
expression was differentially regulated. Fischer’s exact test was used to calculate a p-value
determining the probability that each biological function and/or disease assigned to that
data set was due to chance alone. Metascape systems biology freeware (https://metascape.
org/) was used for correlating the transcriptomic profiles of the in vitro/in vivo data [25].
The Circos plot visualization shows how genes from different input gene lists overlap.
Heatmaps show Metascape enrichment analysis of all statistically enriched ontology terms
(GO/KEGG terms, canonical pathways, and hall mark gene sets). Accumulative hypergeo-
metric p-values and enrichment factors were calculated and used for filtering. Remaining
significant terms were then hierarchically clustered into a tree dendrogram based on Kappa-
statistical similarities among their gene memberships. The term with the best p-value is
selected within each cluster as a representative term to be displayed in a hierarchical tree
dendrogram. The heatmap cells are colored by their p-values (see color legend). Along the
same line, Metascape enrichment analysis of all statistically enriched TF-target interaction
networks was determined by the TRRUST database [67]. Protein–protein interactions (PPI)
among all input gene lists were extracted from the PPI data source to form a PPI network.
GO enrichment analysis was applied to the network to assign biological “meanings” of
sub-protein networks. GO enrichment analysis was applied to each MCODE network to
assign “meanings” to the network component, where the top three best p-value terms were
retained. MCODE components were identified from the merged network. Each MCODE
network was assigned a unique color.

www.ingenuity.com
https://metascape.org/
https://metascape.org/
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5. Conclusions

In summary, the results show the potent antitumor effects of T. testudinum extract
in colorectal cancer cells and in a syngeneic murine colorectal cancer model. In addition,
by applying systems biology approaches, a novel mechanism of action is proposed that
involves ATF4-P53-NFκB specific gene expression and autophagy stress pathways, which
suppress colon cancer cell growth, cell motility, and angiogenesis in vitro and promotes
antitumor immunogenic cell death in vivo. The data support the potential use of the T.
testudinum marine plant as a novel nutraceutical adjuvant in colon cancer (immune) therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-339
7/19/2/52/s1, Figure S1: Concentration–response curves of the effect of TTE on the viability of colon
cancer cells: (A) RKO, (B) SW480, and (C) CT26. Cell viability was evaluated by MTT assay and
IC50 values (mean ± SEM) were calculated after 48 h and 72 h of exposure to TTE (1–1000 µg/mL).
Figure S2: TTE effects on the viability of endothelial cells. EAhy926 cells were treated with TTE
(1–1000 µg/mL) for 24 h. Cell viability was evaluated by MTT assay. Each line plot represents the
mean ± SD of three assays. * p < 0.05 and ** p < 0.01 compared with vehicle control value. Figure S3:
Gene expression changes of TTE treatment (i.e., 100 or 200 µg/mL as indicated) involved in apoptosis
cell death, vascular tumor growth, and metastasis-proliferation pathways. Figure S4. Volcanoplot of
gene expression changes of CT26 tumor samples after 14 days of treatment (TTE, 50 and 100 mg/kg).
Figure S5: Heatmap representation of top 20 gene expression changes following 14 days of TTE
treatment (50 and 100 mg/kg) and related to cell death, angiogenesis, and cell adhesion-metastasis.
Table S1: Differentially expressed genes by TTE in SW480 cells in vitro for IPA analysis. Table S2:
Differentially expressed genes by TTE in vivo, input gene lists for Metascape analysis. Table S3:
Metascape gene annotation and enrichment analysis of DEG by TTE in vitro/in vivo. Table S4:
Metascape GO/KEGG enrichment analysis (Top20–Top100). Table S5: Metascape PPI enrichment
analysis: total network versus 6 sub-networks. Table S6: A brief summary of bioactive compounds in
a TTE mixture; in vitro and in vivo effects on cancer models.
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