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Abstract: Inflammation is a double-edged sword, as it can have both protective effects and harmful
consequences, which, combined with oxidative stress (OS), can lead to the development of deathly
chronic inflammatory conditions. Over the years, research has evidenced the potential of marine
sponges as a source of effective anti-inflammatory therapeutic agents. Within this framework, the
purpose of this study was to evaluate the antioxidant and the anti-inflammatory potential of the
marine sponge Cliona celata. For this purpose, their organic extracts (C1–C5) and fractions were
evaluated concerning their radical scavenging activity through 2,2-diphenyl-1-picrylhydrazyl radical
(DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC),
and anti-inflammatory activity through a (lipopolysaccharides (LPS)-induced inflammation on
RAW 264.7 cells) model. Compounds present in the two most active fractions (F5 and F13) of C4
were tentatively identified by gas chromatography coupled to mass spectrometry (GC-MS). Even
though samples displayed low antioxidant activity, they presented a high anti-inflammatory capacity
in the studied cellular inflammatory model when compared to the anti-inflammatory standard,
dexamethasone. GC-MS analysis led to the identification of n-hexadecanoic acid, cis-9-hexadecenal,
and 13-octadecenal in fraction F5, while two major compounds, octadecanoic acid and cholesterol,
were identified in fraction F13. The developed studies demonstrated the high anti-inflammatory
activity of the marine sponge C. celata extracts and fractions, highlighting its potential for further
therapeutic applications.

Keywords: marine natural products; chronic diseases; marine sponges; oxidative stress; inflamma-
tion; RAW 264.7.6

1. Introduction

Inflammation is a driving factor in many chronic diseases (CD), such as cancer, stroke,
chronic respiratory diseases, cardiovascular disorders, diabetes, autoimmune diseases,
and age-related conditions [1]. The organism’ protective response upon tissue damage
leads to the activation of neutrophils and macrophages, producing an oxidative burst at
the inflammation site as a form of protection against injury, infection, and stress. It is
a crucial process for survival, where the body eliminates noxious factors, constructs a
memory of the damaging agent, and promotes tissue repair and wound healing. Typically,
inflammation-inflicted stress triggers a fast and short-term immune response, restoring the

Mar. Drugs 2021, 19, 632. https://doi.org/10.3390/md19110632 https://www.mdpi.com/journal/marinedrugs

https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0003-0524-9270
https://orcid.org/0000-0002-1613-7023
https://orcid.org/0000-0003-1224-1699
https://orcid.org/0000-0003-1581-2127
https://orcid.org/0000-0001-5384-1469
https://orcid.org/0000-0002-3290-3111
https://doi.org/10.3390/md19110632
https://doi.org/10.3390/md19110632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/md19110632
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md19110632?type=check_update&version=2


Mar. Drugs 2021, 19, 632 2 of 17

organism’s homeostasis (acute inflammation). However, when this response is excessive
and prolonged (chronic inflammation), it leads to cellular death and tissue destruction [2,3].

Macrophages play a major role in the host immune defense system during infection
and disease development, being responsible for the release of inflammation mediators via
a series of exquisitely orchestrated pathways that are spatiotemporally regulated [4]. The
most common types of mediators are vasoactive amines, nitric oxide (NO), prostaglandins,
leukotrienes, cytokines, and chemokines.

Cytokines are secreted by a large variety of cell types, such as lymphocytes, macrophages,
dendritic cells, and endothelial, epithelial, and connective tissue cells, playing a crucial
role in the mediation and regulation of immune and inflammatory reactions [5]. Ideally,
there is a homeostatic control, created through a balance between inflammatory and anti-
inflammatory cytokines [6]. The most studied cytokines are TNF-α, IL-1β, IL-6, IL-8, IL-10,
and IL-12, among others.

Nitric oxide (NO) is a key signaling proinflammatory mediator produced by nitric
oxide synthases (NOS), which plays a vital role in the pathogenesis of inflammation [7].
Under various inflammatory stimuli, the inducible isoform (iNOS), expressed primarily
by macrophages, leads to a high production of NO [8]. This enzyme is highly expressed
upon activation of NF-κB as a response to various stimuli, such as TNF-α, IL-6, IL-1β, and
lipopolysaccharides (LPS). Although the downregulation of these molecules contributes to
homeostasis, several other mechanisms inhibit inflammation in an interplay manner, such
as anti-inflammatory cytokines (e.g., IL-10). Since persistent inflammatory conditions seem
to be involved in the etiology of many CD, targeting inflammation has proven to be an
effective therapeutic approach for many pathologies, and thus, allowing the development
of a new generation of drugs suitable for the treatment of unhealthy conditions, such as
cancer, autoimmune disorders, and infectious diseases [9,10].

Inflammatory conditions are known to be strongly correlated with oxidative stress
(OS). This condition is induced by free radicals, such as reactive oxygen species (ROS)
and reactive nitrogen species (RNS), when there is an imbalance between the production
and removal of these molecules, due to an overproduction and/or reduced ability to
neutralize them or repair the resulting damage [11,12]. Oxidative stress and chronic
inflammation, both strongly linked to several CDs, are closely interrelated, bearing a mutual
causality relation. The perpetual existence of inflammatory mediators along with ROS in
the organism’s system contributes to maintaining an environment where inflammatory
diseases arise, and tumor cells can proliferate [13]. As a result, targeting inflammation and
oxidative stress has proven to be an effective therapeutic approach in many CDs. Hence,
antioxidant and anti-inflammatory drugs may have a broader role than what was thought
initially, with new possibilities arising for the treatment and therapy of CDs, by blocking
the inflammatory processes and targeting specific mediators [9,10,14,15].

Even though the administration of analgesics and nonsteroidal anti-inflammatory
drugs (NSAIDs) plays an important role in the suppression of the inflammatory response,
its prolonged use can bear serious complications. Therefore, a large focus has been placed
on the potential of biologically active compounds as new natural analgesic and anti-
inflammatory compounds, as these possess minimal collateral effects and significant health
benefits [16].

Nature has revealed to be a promising source of new bioactive products, with fewer
side effects, safer use, and environmental friendliness. Sessile organisms, such as ma-
rine sponges, have been targeted as vigorous sources of unparalleled structurally active
secondary metabolites (SM) with multiple health benefits, revealing a broad spectrum
of biological activities with therapeutical relevance [17,18]. To date, a wide range of ma-
rine natural product classes with bioactive properties have been isolated from sponges,
including alcohols, alkaloids, amino acid derivatives, aromatic compounds, fatty acids, lac-
tones, peptides, polyacetylenes, polyketides, quinones, quinolones, sphingolipids, sterols,
terpenes, and terpenoids. Several marine sponge compounds are known to possess a
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remarkable anti-inflammatory capacity, with their specific mechanism of action being
disclosed, in the majority of cases [19].

The marine sponge Cliona celata (Grant 1826) is commonly found throughout the
Portuguese coast; however, the biotechnological potential of this species is yet to be
thoroughly studied, as only few papers have reported the biological potential of C. celata,
namely its anti-inflammatory and autophagy-modulating activity [20,21]. The goal of
this work was to assess the in vitro antioxidant and anti-inflammatory potential of crude
extracts and fractions from C. celata, to understand possible mechanisms of action, and
determine the chemical profile by GC-MS analysis of the most promising samples.

2. Results
2.1. Evaluation of Biological Activities of Cliona celata Crude Extracts

Aiming a bioguided assay, the biological activities of C. celata crude extracts (antioxi-
dant, cytotoxic, and anti-inflammatory activity) were primarily evaluated to select the most
promising extract for fractionation.

2.1.1. Antioxidant Activity

The antioxidant capacity of C. celata crude extracts was assessed through different
assays: the free radical 2,2-diphenyl-1-picrylhydrazil (DDPH), the ability to reduce ferric
iron (FRAP), and the oxygen radical absorbance capacity (ORAC). BHT (3,5-di-tert-4-
butylhydroxytoluene) was used as standard. The results are displayed on Table 1.

Table 1. Antioxidant capacity of Cliona celata crude extracts (C1–C5).

Extract DPPH 1 FRAP 2 ORAC 3

C1 96.56 ± 0.85 24.32 ± 2.24 173.63 ± 7.07

C2 95.56 ± 1.63 31.93 ± 5.45 120.22 ± 5.24

C3 94.35 ± 1.02 35.41 ± 3.62 248.91 ± 6.74

C4 89.98 ± 1.18 77.63 ± 4.10 239.37 ± 7.50

C5 98.04 ± 0.71 38.54 ± 3.38 171.67 ± 6.17

BHT 39.10 ± 2.97 2821.50 ± 63.04 136.38 ± 9.09
1 Radical scavenging activity (% of DPPH); 2 FeSO4 equivalents per g of extract (µM FeSO4 eq·g−1); 3 Trolox
equivalents per g of extract (µmol T eq·g−1).

As shown in Table 1, crude extracts exhibited a high percentage of DPPH values,
displaying no significant differences when compared to the vehicle, and therefore, low
radical scavenging ability, while BHT, the antioxidant standard, presented reduced per-
centage of DPPH values (39.09 ± 2.97%). On the FRAP assay, C4 displayed the highest
capacity among extracts (77.63 ± 4.10 µM FeSO4 eq·g−1); however, the obtained values
were approximately 36 times lower than the ones presented by BHT (2821.50 ± 63.04 µM
FeSO4 eq·g−1). Contrarily to the previous methods, in the ORAC assay, except for C2,
all crude extracts presented higher antioxidant capacity than BHT (136.38 ± 9.09 µmol T
eq·g−1), with the highest capacity being displayed by C3 (248.91 ± 6.74 µmol T eq·g−1),
followed by C4 (239.37 ± 7.50 µmol T eq·g−1). Overall, crude extracts presented a low
antioxidant capacity (Table 1).

2.1.2. Cytotoxic Activity in RAW 264.7 Macrophages

The cytotoxic activity of C. celata crude extracts was evaluated on RAW 264.7 macrophages,
beingthe obtained results depicted in Figure 1.
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Figure 2. Evaluation of the inflammatory and anti-inflammatory potential of Cliona celata crude extracts (C1–C5) and DEX 

(dexamethasone) on RAW 264.7 macrophages. (a) NO production by RAW 264.7 macrophages when exposed to C. celata 

crude extracts (24 h) at 200 μg·mL−1; (b) NO production by LPS-induced RAW 264.7 macrophages in the presence of C. 

celata crude extracts (24 h) at 200 μg·mL−1. Bars correspond to mean ± SEM of at least three independent experiments 

carried out in triplicate. Symbols represent significant differences (one-way ANOVA, Dunnett’s test; p < 0.05) when com-

pared to: # vehicle and * LPS. 

Figure 1. Cytotoxicity of Cliona celata crude extracts on RAW 264.7 macrophages. Cell viability
was evaluated after 24 h of exposure to extracts (200 µg·mL−1) and the results are expressed as a
percentage of the control. Bars correspond to mean ± SEM of at least three independent experiments
carried out in triplicate. No significant differences (one-way ANOVA, Dunnett’s test; p < 0.05) were
found when comparing the extracts to the vehicle.

Data gathered from Figure 1 sustain that the viability of RAW 264.7 macrophages was
not affected by C. celata crude extracts at a concentration of 200 µg·mL−1, thus revealing no
cytotoxicity.

2.1.3. Quantification of Nitric Oxide (NO) in RAW 267.4 Cells

RAW 264.7 macrophages were used as a model to assess the effect of C. celata crude
extracts on the NO production in the presence and absence of inflammation induced with
lipopolysaccharides (LPS). This approach allowed us to understand if the extracts were
capable of inducing spontaneous inflammation on RAW 264.7 macrophages, or if they
could reduce NO levels when exposed to an inflammatory condition. Dexamethasone
(DEX) was used as an anti-inflammatory standard. The obtained results are shown in
Figure 2.
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Figure 2. Evaluation of the inflammatory and anti-inflammatory potential of Cliona celata crude extracts (C1–C5) and DEX
(dexamethasone) on RAW 264.7 macrophages. (a) NO production by RAW 264.7 macrophages when exposed to C. celata
crude extracts (24 h) at 200 µg·mL−1; (b) NO production by LPS-induced RAW 264.7 macrophages in the presence of C. celata
crude extracts (24 h) at 200 µg·mL−1. Bars correspond to mean ± SEM of at least three independent experiments carried
out in triplicate. Symbols represent significant differences (one-way ANOVA, Dunnett’s test; p < 0.05) when compared to:
# vehicle and * LPS.
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Data gathered in Figure 2a suggest that C. celata crude extracts did not promote the
production of NO in RAW 264.7 macrophages. No significant differences were encountered
when comparing any of the extracts with the vehicle, thus confirming the existence of basal
NO levels in cells, and the lack of inflammatory capacity of samples.

LPS-exposed RAW 264.7 macrophages exhibited high levels of NO (570.50 ± 26.97%),
characteristic of an inflammatory condition; however, upon treatment with the crude ex-
tracts, NO levels were significantly reduced when compared with the LPS group, as seen in
Figure 2b. Extract C4 exhibited the highest anti-inflammatory potential (110.90 ± 12.08%),
followed by C2 (145.40 ± 5.53%), both of which presented basal NO levels, as no signif-
icant differences were found when comparing C4 and C2 with the control group. DEX
(30 µg·mL−1) also reduced NO production (123.20 ± 2.32%) to basal levels. Based on
these findings, a concentration-dependent analysis was performed to assess the anti-
inflammatory potential of the most promising extract (C4), and the results are displayed in
Figure 3.
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Figure 3. Evaluation of the concentration-dependent effect of C4 (24 h) in the NO production by LPS-
induced RAW 264.7 macrophages, at concentrations ranging from 0 to 200 µg·mL−1. Bars correspond
to mean ± SEM of at least three independent experiments carried out in triplicate. Symbols represent
significant differences (one-way ANOVA, Dunnett’s test; p < 0.05) when compared to: # vehicle and
* LPS.

Extract C4 displayed concentration-dependent effects verified by the production of
NO on LPS-induced RAW 264.7 macrophages. The highest inhibitory effect was obtained at
the maximum tested concentration of 200 µg·mL−1, this being the only concentration which
did not show significant differences when compared to the control group. However, even
at a concentration of 30 µg·mL−1, the anti-inflammatory potential of C4 (451.77 ± 21.37%)
was still evident, displaying significant differences in relation to the LPS group.

2.2. Evaluation of Biological Activities of Cliona celata Fractions

Based on the previous results, extract C4 was selected for further fractionation through
preparative column chromatography, due to its high anti-inflammatory capacity. Due to
the lack of antioxidant activity exhibited by the crude extracts, fractions were not tested for
their antioxidant potential.
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2.2.1. Cytotoxic Activity of C4 Fractions in RAW 264.7 Macrophages

From the 16 fractions obtained through the chromatographic separation of C4, only
samples with a weight superior to 11 mg were tested for their cytotoxic effect on RAW
264.7 macrophages. The yields of C. celata fractions (F1–F14.2) and their cytotoxic capacity
on RAW 264.7 macrophages at concentrations of 200, 160, and 100 µg·mL−1 are presented
in Table 2.

Table 2. Extraction yields (%) and effect on cell viability of Cliona celata fractions on RAW 264.7
macrophages.

Fraction Yield (%)
Cells Viability (% of Control)

200 µg·mL−1 160 µg·mL−1 100 µg·mL−1

F1 0.08 - - -

F2 0.05 - - -

F3 0.11 - - -

F4 0.63 - - -

F5 7.29 64.41 ± 7.23 * 118.35 ± 2.83 101.00 ± 7.16

F6 4.90 7.31 ± 2.89 * 19.13 ± 2.84 * 46.83 ± 2.09 *

F7 2.32 0.00 ± 0.00 * 15.18 ± 3.96 * 36.76 ± 3.46 *

F8.1 1.47 0.00 ± 0.00 * 4.71 ± 1.36 * 15.69 ± 1.88 *

F8.2 5.60 0.00 ± 0.00 * 22.99 ± 3.81 * 29.84 ± 3.76 *

F9 3.58 0.08 ± 0.09 * 8.80 ± 1.72 * 50.19 ± 11.71 *

F10 0.87 - - -

F11 7.75 24.33 ± 7.65 * 32.97 ± 5.84 * 63.64 ± 3.79 *

F12 7.95 4.81 ± 2.07 * 18.08 ± 4.06 * 50.59 ± 3.51 *

F13 6.21 8.45 ± 1.71 * 68.62 ± 2.98 * 82.61 ± 4.46

F14.1 30.25 82.50 ± 4.03 * 79.91 ± 4.09 * 68.39 ± 8.09 *

F14.2 14.25 82.30 ± 3.13 * 71.40 ± 1.83 * 61.43 ± 3.95 *
* Significant differences (one-way ANOVA, Dunnett’s test; p < 0.05) when compared to the vehicle.

As shown in Table 2, due to the low yields of F1-F4 and F10 (<1%), these fractions
were not considered for the outlined in vitro bioassays. Data gathered in Table 2 suggest
that RAW 264.7 macrophages’ viability was significantly affected by C. celata fractions. At
the maximum concentration of 200 µg·mL−1, all fractions presented significant differences
when compared with the control. However, at 160 µg·mL−1, fraction F5 (118.35 ± 2.83) did
not induce a cytotoxic effect on RAW 264.7 macrophages. Similarly, at 100 µg·mL−1, no
significant differences were encountered in relation to the control for F5 (101.00 ± 7.16) and
F13 (82.61 ± 4.46).

2.2.2. Effect of C4 Fractions (F5 and F13) on Nitric Oxide (NO) Levels in Normal and
LPS-Induced RAW 267.4 Cells

The effect of F5 and F13 fractions, at non-cytotoxic concentrations, on NO production
levels was evaluated on RAW 264.7 macrophages, in the presence and absence of LPS. The
results are expressed on Figure 4.

Data gathered in Figure 4a suggest that fractions F5 and F13 were not capable of induc-
ing the production of NO on untreated RAW 264.7 macrophages. No significant differences
were found when comparing the vehicle with any of the fractions, thus confirming the
existence of basal NO levels in RAW 264.7 macrophages, and the lack of inflammatory
capacity of fractions.
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Similarly to the behavior exhibited by C. celata crude extracts, treatment with the selected
fractions led to a significant reduction of NO levels in relation to the LPS group, as seen in
Figure 4b. Fraction F5 exhibited the highest anti-inflammatory capacity (157.32 ± 9.63%) at
a concentration of 160 µg·mL−1, followed by F13 (332.45 ± 20.72%) at a concentration
of 100 µg·mL−1. Fractions F5 and F13 and the standard drug DEX showed significant
differences in relation to the LPS group; however, only DEX did not present significant
differences when compared to the control group.
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2.2.3. Effect of C4 Fractions (F5 and F13) on the Levels of TNF-α, IL-6 and IL-10 on
LPS-Induced Inflammation on RAW 264.7 Macrophages

The effect of fractions F5 and F13 on the levels of inflammatory mediators IL-6, IL-10,
and TNF-α on LPS-induced inflammation on RAW 264.7 macrophages were assessed, and
the results are shown in Figure 5.

Data gathered on Figure 5a show that LPS induction of inflammation leads to an
increase in the levels of proinflammatory mediator IL-6 (329.18± 52.47%). Fractions F5 and
F13 reduced the concentration levels of IL-6 (111.34 ± 4.95% and 145.01 ± 30.91%, respec-
tively). No significant differences were encountered in relation to the vehicle with any of
the fractions, thus confirming the existence of basal IL-6 levels on RAW 264.7 macrophages
and the anti-inflammatory potential of fractions. As for Figure 5b, the expression of the
anti-inflammatory mediator IL-10 is minimal in unstimulated tissues as seen for the basal
levels in the vehicle group. However, LPS induction of inflammation leads to an increase
in IL-10 levels (202.59 ± 12.75%) in the LPS group. Fraction F5 did not display signif-
icant differences when compared to the vehicle group (105.66 ± 4.32%); however, F13
presented higher levels of IL-10 (147.03 ± 14.85%), displaying significant differences with
both the vehicle and LPS group. In Figure 5c, LPS induction of inflammation in the LPS
group led to a marked increase in the concentration of pro-inflammatory mediator TNF-α
(336.61 ± 47.48%). Treatment with F13 led to a reduction on the concentration of TNF-α
(215.69 ± 36.62%), displaying significant differences with both the vehicle and LPS group.
The highest anti-inflammatory potential was obtained by F5, which significantly reduced
TNF-α concentration to basal levels (157.12 ± 20.60%) while not presenting significant
differences with the vehicle group.
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2.3. Chemical Characterization by GC-MS Analysis

The chemical profiles of the most bioactive fractions (F5 and F13) from C. celata
were evaluated through GC-MS. Volatilized compounds were tentatively identified by
matching their mass fragmentation patterns with those available in the GC-MS mass
spectral databases (Wiley 229 and NIST-National Institute of Standards and Technology
libraries). Compounds n-hexadecanoic acid, cis-9-hexadecenal, and 13-octadecenal were
identified in fraction F5, while octadecanoic acid and cholesterol were detected in fraction
F13 (Figure S1).

3. Discussion

Marine natural products isolated from sponges have shown potential to be applied in
novel therapeutic approaches for CD [22] in great part due to their broad degree of chemical
diversity and novel molecular structures with potential to counteract oxidative stress and
inflammation [23]. In this study, the antioxidant activity of C. celata samples was evaluated
by the means of three complementary assays, namely the scavenging capacity of the free
radical DPPH, the ability to reduce ferric iron (FRAP), and the oxygen radical absorbance
capacity (ORAC) displaying weak antioxidant capacity. Even though the antioxidant
activity of marine sponge components is well-reported in the literature [24,25], there are
currently no studies regarding the antioxidant potential of Cliona celata. A preliminary
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work conducted by Bary et al. (2016) on Cliona viridis also showed low scavenging potential
by the DPPH method, which can suggest that the Cliona species do not produce metabolites
with relevant antioxidant properties [26].

To evaluate the anti-inflammatory potential of C. celata, the first approach of this
work aimed to understand if the extracts promoted inflammation by increasing the levels
of NO. As none of the extracts induced NO production, the anti-inflammatory potential
of C. celata crude extracts was evaluated in LPS-induced RAW 264.7 macrophages. At a
concentration of 200 µg·mL−1, crude extracts displayed a marked effect on the reduction
of NO levels, with extracts C4 and C2 exhibiting the higher anti-inflammatory capacity.
A concentration-dependent assay was conducted for extract C4. Even though the anti-
inflammatory potential of C4 ceased at a concentration of 10 µg·mL−1, there was still
a significant effect on NO levels at 30 µg·mL−1. Under inflammatory stimuli, iNOS is
highly expressed, leading to high levels of NO, which activate the inflammatory cytokines
cascade. The expression of this enzyme is typically associated with the activation of NF-
κB, which seems to be highly activated by other mediators, such as TNF-α and IL-6 [7].
Various marine sponge-derived components demonstrated unique and substantial anti-
inflammatory potential by effectively reducing the levels of inflammatory mediators, such
as NO, TNF-α, IL-6, and IL-1β, by downregulating inflammatory enzymes, namely iNOS
and COX-2, and by modulating the signaling pathways that lead to the activation of NF-κB
factor [27–29]. In agreement with the present results, a previous work conducted with C.
celata ethyl acetate extracts also presented anti-inflammatory potential via iNOS regulation,
even though the specimens were collected at very distinct locations [20].

The aforementioned results highlight the potential of C. celata crude extracts as promis-
ing sources of anti-inflammatory substances that can act in the mechanisms linked to NO
production.

Due to its high anti-inflammatory activity, extract C4 was fractionated through a
preparative column chromatography, producing 16 fractions, from which only 11 were
tested for their cytotoxic effect in RAW 264.7 macrophages at concentrations of 200, 160,
and 100 µg·mL−1. At a lower concentration, fractions F5 and F13 did not affect the viability
of RAW 264.7 macrophages, thus being the only fractions tested for their anti-inflammatory
activity. The enhanced cytotoxicity of fractions may be due to the higher concentration of
cytotoxic compounds.

In a preliminary assessment, F5 and F13 fractions did not exhibit inflammatory ac-
tivity, and thus, they were evaluated for their anti-inflammatory potential. Both fractions
exhibited a high capacity of reducing NO levels in LPS-induced RAW 264.7 macrophages,
showing higher anti-inflammatory potential than the crude extract C4, suggesting that the
bioactive compounds were concentrated on these fractions.

Cytokines are powerful soluble immune mediators that can be used as target biomark-
ers to assess the role of inflammation in CD development [30]. TNF-α is a proinflammatory
mediator responsible for mediating the expression of genes for growth factors, cytokines,
transcription factors, and receptors, being involved in the pathophysiology of numerous
diseases. Drug therapies that modulate TNF-α are widely used to treat inflammatory
conditions [31,32]. IL-6 is a soluble mediator with a pleiotropic proinflammatory effect,
which plays a role in the transition from acute to chronic inflammation. The dysregulated
continual synthesis of IL-6 has shown to play a pathological effect on chronic inflammation
and autoimmunity. IL-6 production is also enhanced in TNF-α and IL-1β activation of
transcription factors. Strategies that target IL-6 and its signaling lead to effective prevention
and treatment of chronic inflammatory diseases, such as rheumatoid arthritis [33,34]. IL-10
is a potent anti-inflammatory cytokine, which has been shown to inhibit the synthesis
of many inflammatory proteins. Dysregulation of IL-10 is associated with enhanced im-
munopathology in response to infection as well as increased risk on the development of
many autoimmune diseases. Recombinant human IL-10 proved to be effective in the control
of inflammatory bowel disease (IBD) and psoriasis [35,36]. To get an insight on the mecha-
nisms of action underlying the anti-inflammatory activities of C. celata fractions, the levels
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of TNF-α, IL-6 and IL-10 were quantified. The induction of the inflammatory condition with
LPS treatment led to a marked increase on the concentration levels of pro-inflammatory
mediator IL-6. Yet, treatment with F5 and F13 significantly decreased IL-6 concentration to
basal levels, thus sustaining the anti-inflammatory capacity of these fractions. Similarly,
in the TNF-α assay, LPS treatment led to high levels of this pro-inflammatory mediator.
Treatment with F5 and F13 led to a reduction of the concentration levels of TNF-α, with
the highest potential being exhibited by F5, which reduced the TNF-α concentration to
basal levels. As a result, the anti-inflammatory potential of both fractions appears to be
implicated in several regulatory pathways.

IL-10 is an anti-inflammatory mediator present in minimal concentrations in unstimu-
lated tissues. As part of the organism’s innate regulatory mechanisms, the induction of
inflammation leads to a natural increase in the production of anti-inflammatory media-
tors, which is supported by the increase in IL-10 levels in the LPS group. Cells exposed
to LPS treated with F5 and F13 fractions displayed low levels of IL-10, especially in the
case of F5, which did not display significant differences when compared to the control
group. Since IL-10 is an enzyme that is activated later in the cytokine cascades [36], the
anti-inflammatory effects of both fractions could be sufficient to inhibit the activation of
the following mediators. These results strongly suggest that C. celata produces compounds
with high anti-inflammatory potential, thus being extremely relevant to proceed with the
bioactive compounds identification. Due to biomass constrictions, it was only possible
to analyze the most promising fractions by GC-MS. Although this technique is directed
to volatilized compounds, it can give valuable clues on the chemical composition of the
extracts.

The anti-inflammatory activity of some marine sponges and their effect on TNF-α,
IL-6, and IL-10 pathways has been previously reported [37,38]; however, it is important
to highlight that this is the first report exhibiting the ability of C. celata to modulate anti-
inflammatory mechanisms in the protein levels of TNF-α, IL-6, and IL-10.

The GC-MS analysis led to a tentative identification of some of the volatilized com-
pounds present in fractions F5 and F13, as seen in the supporting information. Three
compounds were matched in F5 fraction, namely n-hexadecanoic acid, cis-9-hexadecenal,
and 13-octadecenal, and two in fraction F13, namely octadecanoic acid and cholesterol.

All of these compounds are quite common in nature, and although some have been
pointed out as having anti-inflammatory potential, such as cis-9-hexadecenal due to being
present in active extracts [39], no works were found specifically testing this compound’s
anti-inflammatory potential. This evidence reinforces the relevance of further studies on C.
celata to identify and test the isolated compounds. A future approach for further chemical
investigation should be conducted by LC-HRMS/MS and NMR. Throughout the years,
several compounds have been isolated from C. celata, namely clionamide A-D, celenamide
A-D, and acetyl homoagmatine, but currently, no reported studies have investigated the
antioxidant or anti-inflammatory activities of these compounds [21,40–45].

Through the present work, C. celata specimens collected from the Portuguese coast dis-
played compelling anti-inflammatory activity. Emphasis should be given to crude extract
C4 and fractions F5 and F13, as these displayed the most promising anti-inflammatory ac-
tivity. Data suggest that the specimen collected from the Arrábida site (C4) seems to reunite
a unique set of chemical characteristics responsible for the enhanced anti-inflammatory ca-
pacity, with possible therapeutic application against chronic inflammatory diseases. Taking
into account these new findings, it would be extremely relevant to retrieve more biomass
from the Arrábida collection site for compounds isolation and structural characterization,
as well as a deeper elucidation of their anti-inflammatory potential and mechanisms of
action. It would also be of crucial significance to assess the effect of compounds in the
mRNA and protein expression levels of more mediators, such as IL-1β, IFN-γ, PGE2, and
COX-2, as well as the nuclear translocation and gene transcription activation of NF-κB. The
present work presents the first assessment of anti-inflammatory activity of C celata collected
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on the Portuguese coast. Additionally, it is the first study assessing the mechanisms of
action of C. celata, particularly on TNF-α, IL-6, and IL-10 pathways.

4. Materials and Methods
4.1. Chemicals and Reagents

Solvents of analytical and HPLC grades were purchased from VWR-BDH Chemi-
cals (Fontenay-sous-Bois, France), Fisher Scientific (Loughborough, UK), and Honeywell
Riedel-de-Haën (Illkirch, France), while ultrapure water was obtained from an Advantage
A10 Milli-Q lab equipment (Merck, Darmstadt, Germany). Analytical grade chemicals
and reagents from different suppliers were used to perform the in vitro bioassays, e.g.,
antioxidant capacity: Merck (Darmstadt, Germany), Sigma-Aldrich (Steinheim, Germany),
and AlfaAesar (Karlsruhe, Germany); anti-inflammatory potential: Merck (Darmstadt,
Germany), Sigma-Aldrich (St. Louis, MO, USA), Lonza (Basel, Switzerland), and Biowest
(Riverside, CA, USA). Reagents and culture media for in vitro cellular assays were sup-
plied by Merck (Darmstadt, Germany), Gibco (Grand Island, NY, USA), Invitrogen (Life
Technologies, Warrington, UK), and Sigma (Seelze, Germany).

4.2. Marine Sponge Collection

The lyophilized samples (C1, C2, C3, C4, and C5) of the marine sponge Cliona celata
(Grant, 1826) were previously obtained by MARE-FCUL team, within the scope of project
LUSOEXTRAT. Samples were collected from five different sites alongside the Portuguese
coast, in Arrábida and Arflor, Setúbal, and Berlengas and Farilhões islands, Peniche (Portu-
gal) (Figure 6).
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4.3. Marine Sponge Extraction

Each lyophilized sample (1 g) was extracted with a mixture (200 mL) of methanol
(MeOH):dichloromethane (CH2Cl2) (v/v) (1:1) followed by an ultrasound-assisted extrac-
tion for 20 min, and 20 min of continuous stirring. The resulting solution was filtered
with qualitative filter paper No.1 (VWR International, Alfragide, Portugal). The extraction
process was repeated twice with the leftover biomass. Solution samples were concentrated
until dryness, under vacuum at low temperature (40 ◦C), in a rotary evaporator (IKA HB10,



Mar. Drugs 2021, 19, 632 12 of 17

VWR International, Alfragide, Portugal) and in a speed-vacuum equipment (Eppendorf
Concentrator Plus, Leicestershire, UK). The obtained crude extracts (C1, C2, C3, C4, and
C5) were used in the preliminary in vitro biological assays.

4.4. Sponge Extracts Fractionation

Extract C4 was selected for fractionation through a preparative column chromatogra-
phy due to its high anti-inflammatory capacity. The initial mass of the extract was 3.57 g.
Extract C4 and silica gel 60–200 µm (VWR, Fontenay-sous-Bois, France) were added to a
MeOH: CH2Cl2 (v/v) (1:1) solution, concentrated until dryness, and fractionated using
a glass column packed with silica gel 60. The elution system consisted of a n-hexane:
ethyl acetate (NH:EA) gradient step until 100% ethyl acetate was reached, followed by a
MeOH:CH2Cl2 (v/v) mixture (1:1) and 100% MeOH. The fractionation of C4 afforded a
total of 16 fractions, according to the employed mobile phase (F1—100% NH, F2—95:5
NH:EA, F3—90:10 NH:EA, F4—85:15 NH:EA, F5—82.5:17.5 NH:EA, F6—80:20 NH:EA,
F7—77.5:22.5 NH:EA, F8.1 and F8.2 75:25 NH:EA, F9—70:30 NH:EA, F10—60:40 NH:EA,
F11—50:50 NH:EA, F12—100% EA, F13 50:50 MeOH:CH2Cl2, F14.1 and F14.2—100%
MeOH).

4.5. Evaluation of Biological Activities of Cliona celata Crude Extracts and Fractions

For in vitro bioassays, crude extracts and fractions were dissolved in dimethyl sulfox-
ide (DMSO) at a concentration of 20 mg·mL−1. The controls were always treated with the
highest tested concentration of DMSO as vehicle.

4.5.1. Antioxidant Activity

The antioxidant activity of C. celata crude extracts was evaluated using several in vitro
chemical assays, including DPPH radical scavenging activity, FRAP, and ORAC. BHT was
used as an antioxidant standard.

2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity

The DPPH radical scavenging activity was performed according to Brand-Williams
and co-workers [46], adapted to microplate with slight modifications [47]. Crude extracts
were tested at a final concentration of 200 µg·mL−1. Briefly, samples (2 µL) were mixed
with DPPH reagent (198 µL) (0.1 mM in ethanol) and incubated in the dark for 30 min, at
room temperature. The absorbance was then measured at 517 nm (Epoch 2 microplate spec-
trophotometer, BioTek, Winooski, VT, USA). Results were expressed as DPPH percentage
of control (DPPH % of control).

Ferric Reducing Antioxidant Power (FRAP)

The FRAP method was performed according to Benzie and Strain [48], adapted
to microplate with slight adjustments [49]. Briefly, FRAP reagent (0.3 M acetate buffer
(pH = 3.6), 10 mM 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ) in 40 mM HCl and 20 mM FeCl3 at
a ratio of 10:1:1) was prepared and incubated at 37 ◦C for approximately 15 min. Afterward,
a standard curve of FeSO4 (0–10 µM) was prepared. Crude extracts and standard curve
concentrations (2 µL) were mixed with FRAP reagent (198 µL) and incubated in the dark
for 30 min at 37 ◦C. Blanks for each sample and standard curve concentration were also
prepared by replacing the FRAP reagent with acetate buffer. The absorbance was then
measured at 593 nm. Results were expressed as micromolar of FeSO4 equivalents per gram
of sample (µM of FeSO4 eq·g−1 of sample).

Oxygen Radical Absorbance Capacity (ORAC)

The ORAC assay was performed as described by Dávalos and co-workers [50]. Crude
extracts were prepared in phosphate buffer (75 mM, pH 7.4) and pre-incubated (20 µL)
with fluorescein (120 µL; 70 nM) for 15 min at 37 ◦C. A standard Trolox curve (0–80 µM)
was prepared, by adding 20 µL of the standard solution instead of samples. Then, a 2,2′-
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Azobis(2-amidinopropane) dihydrochloride solution (60 µL; 12 mM) was added and the
fluorescence (λexcitation = 458 nm; λemission = 520 nm) was recorded in a microplate reader
(Synergy H1 Hybrid Reader, BioTek, Winooski, VT, USA) every min for 4 h, and automatic
shaking was performed prior to each reading. The results were expressed as micromol of
Trolox equivalents per gram of sample (µmol of Trolox eq·g−1 of sample).

4.5.2. Evaluation of Biological Activities of Cliona celata Crude Extracts and Fractions on In
Vitro Cellular Models

C. celata crude extracts and selected fractions were evaluated for their cytotoxic
and anti-inflammatory activities. The effect of the two fractions with the highest anti-
inflammatory capacity (F5 and F13) on the levels of inflammatory mediators (TNF-α,
IL-6 and IL-10) on RAW 264.7 macrophages was also carried out. Lipopolysaccharides
(LPS) (1 µg·mL−1) were used as inflammation inducers, while dexamethasone (DEX)
(30 µg·mL−1) was used as an anti-inflammatory standard. The details of each methodology
are described below.

Cell Culture Maintenance

Experiments were performed on an in vitro model of Abelson murine leukemia virus-
induced tumor RAW 264.7 macrophages (ATCC TIB-71), acquired from the American
Type Culture Collection (ATCC) biobank. RAW 264.7 macrophages were culture in Dul-
becco’s Modified Eagle’s Medium/Nutrient Mixture F-12 (DMEM/F-12) supplemented
with 10% (v/v) fetal bovine serum (FBS), 1% antibiotic/antimycotic commercial solution
(100 IU·mL−1 penicillin, 100 µg·mL−1 streptomycin), and 1% sodium pyruvate solution
(100 mM). Cells were kept in a 95% moisture and 5% CO2 atmosphere at 37 ◦C. Subcul-
ture was performed according to ATCC instructions whenever cultures reached 80–85%
confluence.

Cytotoxic Activity in RAW 264.7 Macrophages

The cytotoxic activity of C. celata crude extracts and fractions was evaluated on RAW
264.7 macrophages (5 × 104 cells per well), after a seeding period of 16 h in 96-well plates.
Only fractions with a weight superior to 11 mg were tested for their cytotoxic effect. Cells
were then treated with the crude extracts (200 µg·mL−1) and selected fractions (100, 160,
and 200 µg·mL−1) for 24 h. Untreated cells were used as control, and saponin was used as
a cellular death positive control, representing 100% of cell death. Following the incubation
period, the cytotoxic effect of samples was estimated using the 3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyltetrazolium bromide (MTT) colorimetric assay, as described by Mosmann [51].
The intracellular formazan crystals were then extracted and solubilized with DMSO (100 µL)
and the absorbance was measured at 570 nm. The results were expressed as the cell viability
percentage of the control of untreated cells. The maximum non-cytotoxic concentration
of each fraction was selected for the quantification of NO on RAW 264.7 macrophages.
Fractions that still displayed a cytotoxic behavior at the minimum tested concentration
(100 µg·mL−1) were discarded.

Quantification of Nitric Oxide (NO) on RAW 267.4 Cells

The inflammatory and anti-inflammatory effects of C. celata crude extracts and selected
fractions were evaluated through the NO production assay according to Yang and co-
workers [52], with slight modifications [53], on RAW 264.7 macrophages (5 × 104 cells per
well), after a seeding period of 16 h in 96-well plates. Cells were pre-incubated for 1 h
with samples at their respective maximum non-cytotoxic concentration. Then, LPS (10 µL;
1 µg·mL−1) was added and the cells were incubated for 24 h to assess the anti-inflammatory
effect of samples in LPS-induced RAW 264.7 macrophages. Untreated cells were used as
control. Simultaneously, a situation where ultrapure water (10 µL) was added to samples
instead of LPS was evaluated, to assess the ability of samples to increase NO levels in the
absence of induction of inflammation on RAW 264.7 cells. A concentration-dependent
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analysis (0–200 µg·mL−1) was conducted on the extract with the highest anti-inflammatory
activity.

Following the incubation period, Griess reagent was freshly prepared 30 min before
use by mixing 0.1% naphthylethylene diamine dihydrochloride with 1% sulphanilamide
in 2.5% phosphoric acid. Culture medium (100 µL) from each well was transferred to a
new plate, and Griess reagent (100 µL) was added. The plate was then incubated in the
dark at room temperature for 30 min, and the absorbance was measured at 546 nm. The
percentage of nitric oxide production was calculated using the following formula:

Nitric Oxide Production (% of control) =
AbsTEST

AbsCONTROL
× 100 (1)

where AbsTEST = absorbance values in the presence of samples in an inflammatory condi-
tion and AbsCONTROL = absorbance values of the control situation, where inflammation
was not induced.

Results were expressed as nitric oxide production percentage of control [Nitric Oxide
Production (% of Control)].

Quantification of the Levels of TNF-α, IL-6, and IL-10 on LPS-Induced
RAW 264.7 Macrophages

The two fractions with the highest anti-inflammatory activity (F5 and F13) were
selected to assess their effects on the levels of TNF-α, IL-6, and IL-10 on LPS-induced
RAW 264.7 macrophages, through an enzyme-linked immunosorbent assay (ELISA). RAW
264.7 macrophages were cultured in 24-well plates (5 × 105 cells per well), for a seeding
period of 16 h. Cells were pre-incubated for 1 h with samples (990 µL) at their respective
maximum non-cytotoxic concentration. Then, LPS (10 µL; 1 µg·mL−1) was added and the
cells were incubated for 18 h for the quantification of the cytokine release of TNF-α, IL-6,
and IL-10, respectively. Following each incubation period, 500 µL of cell supernatant was
collected and stored at −80 ◦C (Thermo Electron Corporation, Waltham, MA, USA) until
the quantification of the cytokines release was conducted.

Mouse TNF-α Uncoated ELISA, mouse IL-6 Uncoated ELISA, and mouse IL-10 Un-
coated ELISA (887324-22, 88-7064-22 and 88-7105-22, respectively, Thermo Fisher Scientific,
Vilnius, Lithuania) kits were purchased for the immunoassays. ELISA was performed
according to the manufacturers’ instructions with slight adjustments. Values were read at
570 and 450 nm to allow wavelength subtraction. Results were expressed as TNF-α, IL-6,
and IL-10 concentrations (pg·mL−1).

4.6. Chemical Characterization by GC-MS Analysis

The most bioactive samples, F5 and F13, were analyzed by GC-MS using a Shimadzu
QP2010-Plus GC/MS system according to the previously reported procedure [54]. A
tentative identification of the major volatilized compounds of F5 and F13 fractions was
performed by matching the mass fragmentation patterns with those in the GC-MS mass
spectral databases (Wiley 229 and NIST-National Institute of Standards and Technology
libraries).

4.7. Data and Statistical Analysis

One-way analysis of variance (ANOVA) with Dunnett’s multiple comparison of group
means to determine significant differences with the control treatment was applied. When
required, Tukey’s test was performed to assess the statistical differences between the mean
of samples in study. All data were checked for normality and homoscedasticity. The
results are presented as mean ± standard error of the mean (SEM). Statistical differences
were considered at the significance level of 0.05 (p < 0.05). At least three independent
experiments were carried out in triplicate. Calculations were performed using IBM SPSS
Statistics 24 (IBM Corporation, Armonk, NY, USA) and GraphPad v5.1 (GraphPad Software,
La Jolla, CA, USA) software.
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