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Abstract: Potassium channel Kv1.5 has been considered a key target for new treatments of atrial
tachyarrhythmias, with few side effects. Four new debromoaplysiatoxin analogues with a 6/6/12
fused ring system were isolated from marine cyanobacterium Lyngbya sp. Their planar structures
were elucidated by HRESIMS, 1D and 2D NMR. The absolute configuration of oscillatoxin J (1) was
determined by single-crystal X-ray diffraction, and the absolute configurations of oscillatoxin K (2),
oscillatoxin L (3) and oscillatoxin M (4) were confirmed on the basis of GIAO NMR shift calculation
followed by DP4 analysis. The current study confirmed the absolute configuration of the pivotal
chiral positions (7S, 9S, 10S, 11R, 12S, 15S, 29R and 30R) at traditional ATXs with 6/12/6 tricyclic
ring system. Compound 1, 2 and 4 exhibited blocking activities against Kv1.5 with IC50 values of
2.61 ± 0.91 µM, 3.86 ± 1.03 µM and 3.79 ± 1.01 µM, respectively. However, compound 3 exhibited
a minimum effect on Kv1.5 at 10 µM. Furthermore, all of these new debromoaplysiatoxin analogs
displayed no apparent activity in a brine shrimp toxicity assay.

Keywords: marine cyanobacterium; debromoaplysiatoxin analogues; absolute configuration; Kv1.5
inhibitory activity; brine shrimp toxicity

1. Introduction

Many marine creatures have developed various ways to mark themselves as predators
or preys over the course of evolution, and marine toxins have often played an important
role in these relationships [1]. A variety of marine toxins block or activate ion channels [2–6].
For instance, conotoxins were discovered as mammalian voltage-gated potassium channel
(Kv) 1 blockers [7], shellfish toxin saxitoxin (STXs) exhibited tetrodotoxin-sensitive voltage-
gated sodium channels (Navs) blocking activity [8] and ciguatoxins, a kind of polyether
toxins, acted as sodium channel activators [9]. Moreover, many cyanotoxins were identified
as modulators of the sodium/ potassium channels [10–14].

Voltage-gated K+ channels (Kv) are membrane-inserted K+ selective protein com-
plexes [15]. Kv channels are important for various physiological and pathophysiological
processes [16,17]. The Shaker-related Kv1 family consisting of subtypes (Kv1.1–Kv1.8)
present in most mammalian peripheral tissues such as cardiovascular, nervous and the
immune system, and many of them have been identified as potential targets for a variety
of marine toxins [18–20]. Dalazatide (ShK-186), targeting the Kv1.3 ion channel [21], has
completed phase 1 clinical trials for the treatment of autoimmune diseases [22]. Gambierol,
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a marine polycyclic ether toxin produced by the dinoflagellate Gambierdiscus toxicus with
IC50 of 34.5 ± 1.5 nM aganist Kv1.2 channel, might be deemed as a lead compound in
further studies of the treatment of pathogenic conditions [23]. Two toxins identified from
the venom of Bunodosoma caissarum, BcsTx1 and BcsTx2, displayed the highest affinity for
Kv1.6 with IC50 of 1.31 ± 0.20 nM and 7.76 ± 1.90 nM, respectively [24].

The aplysiatoxins (ATXs) and their related analogues (oscillatoxins and nhatrangins)
are distinct polyketide classes of marine toxins isolated from several cyanobacterial species,
including Oscillatoria nigro-viridis, Schizothrix calcicola and Lyngbya majuscula [25–28]. In our
previous studies, we have pre-screened many ATXs and debromoaplysiatoxin analogues
(DATs) for inhibitory activity on the shaker-related subfamily of voltage-gated channels
(Kv1.1–Kv1.5), and the results indicated that some analogues presented selective and
strong blocking effects on potassium channel Kv1.5 [29]. The ultrarapid activating delayed
rectifier K+ current (IKur) carried by the Kv1.5 channel is the main repolarization current
in human atria but has no effect in the ventricle [30,31]. Therefore, Kv1.5 has become a
significant molecular target for the treatment of atrial tachyarrhythmias with minimum side
effects. In order to find additional novel Kv1.5 inhibitors, our team has isolated four new
debromoaplysiatoxin analogues (Figure 1), oscillatoxin J–M (1–4) from the cyanobacterium
Lyngbya sp. The planar structures of these compounds were elucidated by analysis of MS
and NMR data, and the absolute configurations were determined by single-crystal X-ray
diffraction combined with gauge invariant atomic orbital (GIAO) NMR shift calculation
followed by DP4 analysis. DP4 is a probability analysis method based on the errors in each
13C or 1H chemical shift in the GIAO NMR calculation. The bioactivity results implicated
that these four new DAT analogues and DAT exhibited differential Kv1.5 blocking activities
and brine shrimp toxicities in correlation with the existence of structural functionality
change.
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2. Results and Discussion
2.1. Structure Elucidation

Oscillatoxin J (1), obtained as white solid ([α]25
D + 1.0 (c = 0.3, MeCN); UV (MeOH)

λmax (log ε) 194 (3.91), 268 (2.47) nm (Figure S2.1.9)), was assigned to a molecular formula
of C32H44O9 with 11 degrees of unsaturation, as established by HRESIMS at m/z 595.2886
[M + Na]+ (calcd for C32H44O9Na, 595.2883). Its 13C and DEPT NMR spectra exhibited
32 carbon signals, attributed to one methoxy, six methyls, four methylenes, thirteen me-
thines and eight quaternary carbons (Table 1). The 1H NMR spectrum and the 13C NMR
spectrum of 1 bore a close resemblance to that of oscillatoxin B1 [32], except a double bond
between C-4 and C-5 instead of a hydroxyl group on C-4. The HMBC correlations of H-5 to
C-3, C-4, C-6 and C-7 and H3-26 to C-3, C-4 and C-5 strongly supported this assignment.
Hence, the planar structure of 1 was established. Furthermore, the structure of 1 was
proved by X-ray analysis (Figure 2).
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Figure 2. Key 2D correlations and X-ray structure of 1.

X-ray diffraction analysis of 1 with Cu Kα radiation established the absolute con-
figuration of 1 to be 7S, 9S, 10S, 11R, 12S, 15S, 29R and 30R with an absolute structure
parameter of 0.06(18), consistent with the sequential correlations of H-9/H-10, H-10/H3-22
and H-11/H3-23 in the ROESY spectrum (Supplementary Information Figure S2.1.7).

Previously, only 19,21-dibromoaplysiatoxin [33] and neo-debromoaplysiatoxin A [34]
were reported with the successful obtainment of crystal structures. In this study, the
determination of absolute structure of oscillatoxin J by using X-ray diffraction analysis
further confirmed the pivotal chiral positions (C-7, C-9/C-10/C-11/C-12, C-15 and C-
29/C-30) of DATs with a 6/12/6 tricyclic ring system, which provided a reference for the
determination of stereochemistry of the series of compounds.

Oscillatoxin K (2) was isolated as a white solid ([α]25
D + 64.4 (c = 0.36, MeCN);

UV (MeOH) λmax (log ε) 198 (2.71), 275 (0.55) nm (Supplementary Information Figure
S2.2.9)) with a molecular formula C32H46O10, as determined from the HRESIMS at m/z
613.2980 [M + Na]+ (calcd for C32H46O10Na, 613.2989). Thirty-two carbon resonances
can be observed in 13C and DEPT spectra, including eight quaternary carbons, twelve
methines, five methylenes and seven methyls (Figure 3). Its NMR data were similar to
2-hydorxyanhydroaplysiatoxin, except for the absence of a bromine atom on C-17 [28].
The detailed 1H and 13C NMR signal assignments and connectivity were determined
from a combination of 1H-1H COSY, HSQC and HMBC data (Supplementary Information
Figures S2.2.1–S2.2.6).
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Table 1. 1H (600 MHz) and 13C (150 MHz) NMR data for compounds 1–4 in CDCl3 (δ in ppm; J in Hz).

Pos.
1 2 3 4

δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC

1 169.0 171.1 174.2 166.2

2 5.04, s 95.0 5.04, s 70.2
a 3.00, d (11.7)

40.0
3.36, d (13.3)

46.3b 2.45, d (11.7) 3.68, d (13.3)

3 159.3 140.2 101.1 86.3

4 124.3 110.3 72.6 203.2

5 5.67, s 140.8
a 2.25, m

39.9
a 3.00, d (11.7)

43.4
a 1.43, m

44.9b 1.33, d (16.9) b 2.45, d (11.7) b 2.65, d (12.7)

6 39.8 35.7 37.7 47.1

7 102.5 99.9 102.0 108.7

8
a 2.56, d (14.9)

30.7
a 1.64, m

30.4
a 2.13, dd (15.0, 2.8)

32.8
a 2.34, dd (14.6, 3.3)

31.6b 1.65, m b 2.27, m (2.8) b 1.53, dd (14.9, 3.6) b 1.41(m)

9 4.8, m 73.6 4.84, q (2.9) 74.3 4.82, q (3.1) 73.3 4.75, q (2.8) 74.2

10 1.67, m 34.4 1.60, ddd (10.1, 6.8, 2.8) 34.1 1.14, m 33.9 1.56, m 34.1

11 3.80, d (10.5) 71.7 3.54, dd (10.6, 1.8) 72.0 3.65, dd (10.8, 1.9) 72.6 3.63, dd (10.6, 1.9) 73.7

12 1.47, m 33.1 1.25, m 33.5 1.59, dt (6.9, 3.3) 33.5 1.32, m 33.8

13
a 1.36, d (6.6)

30.5
a 1.36, m

30.3
a 1.39, td (13.7, 12.1,

6.6) 30.0
a 1.25, m

30.0
b 1.33, d (6.6) b 1.28, m b 1.27, d (14.6) b 1.19, m

14
a 1.68, m

35.9
a 1.83, m 36.0 a 1.95, m

36.1
a 1.89, m 36.2

b 1.53, m b 1.62, m b 1.5, m b 1.52, m

15 3.93, dd (8.4, 4.8) 84.9 4.01, t (6.8) 85.0 4.06, t (6.9) 84.8 4.07, dd (7.7, 5.6) 84.8

16 144.1 144.4 144.1 144.1

17 6.8, m 117.8 6.85, dt (7.6, 1.2) 118.5 6.87, m 118.2 6.90, dt (7.6, 1.2) 118.3

18 7.20, d (7.7) 129.7 7.18, t (7.8) 129.6 7.22, t (7.8) 129.9 7.20, t (7.8) 129.8

19 6.71, dt (7.9, 1,1) 115.2 6.72, ddd (8.1, 2.6, 1.0) 114.5 6.88, m 114.7 6.84, t (1.9) 114.9

20 156.8 156.2 155.9 155.9

21 6.8, m 114.0 6.89, t (2.0) 114.4 6.76, ddd (8.0, 2.5, 1.0) 114.8 6.75, m 114.6

22 0.77, overlap 12.8 0.75, d (6.5) 12.0 0.63, d (6.9) 13.8 0.71, d (6.7) 11.3

23 0.78, overlap 13.4 0.73, d (6.9) 13.4 0.73, d (6.9) 12.2 0.78, d (6.8) 13.8

24 0.99, s 23.6 0.8, s 22.8 0.86, s 27.1 0.97, s 23.6

25 1.05, s 23.5 0.9, s 24.4 1.12, s 26.5 1.00, s 25.6

26 1.68, m 17.6 1.66, s 16.9 1.20, s 18.1 1.47, s 27.2

27 170.7 169.8 169.9 170.1

28
a 2.88, dd (14.9, 5.6)

36.6
a 2.96, dd (17.9, 11.9)

36.9
a 2.80, m

35.4
a 2.96, dd (18.7, 11.2)

35.6b 2.63, dd (14.9, 4.9) b 2.70, dd (17.9, 2.1) b 2.79, m b 2.70, dd (18.7, 1.3)

29 5.14, d (5.2) 75.0 5.42, ddd (11.9, 5.0, 2.1) 74.0 5.3, dt (9.8, 5.0) 74.6 5.35, dd (11.4, 4.6) 74.0

30 4.27, p (6.3) 68.6 3.82, m 68.9 4.02, m 67.9 3.81, m 68.7

31 1.27, q (6.7) 18.9 1.23, d (6.4) 19.9 1.21, d (5.1) 26.4 1.15, d (6.4) 19.1

15-
OCH3

3.2, s 56.9 3.23, s 56.7 3.24, s 56.9 3.26, s 56.8

NMR data of debromoaplysiatoxin (DAT) in Table S3 of Supplementary Materials.
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The relative configuration of compound 2 was ascertained by detailed Nuclear analysis
Overhauser Effect Spectroscopy (NOESY) spectrum, the coupling constants, NMR analysis
and biogenetically related configuration inference of compound 2. The NOE correlations
between H-9 and H-8a and small couplings of H-9 to H-8b (J8b,9 =2.8 Hz) proved that
H-9 showed an equatorial position on ring B. H-10 and H-11 were determined as axial
orientation by the large coupling constant (J = 10.1 Hz) of H-10/H-11. On the basis
of NOE correlation of H-11/H-12, Newman’s projection analysis of energy equivalent
isomers using nuclear coupling constant information and steric hindrance (Figure 4) was
performed. The analysis suggested a gauche conformer of H-11/H-12, which is possessed
by oscillatoxin J–M (1-4). For compound 2, the three large groups (–OR1, –CH2R3 and
–CH(CH3) R2) in model A2 were extremely close in space, causing a large steric hindrance;
hence, model A2 was also eliminated. The 1H-1H coupling constant (1.8Hz) between
H-11 and H-12 indicated that there was a gauche relationship between these two protons;
thus, model A1 was excluded. H-11 and H-12 were oriented in the same plane, which
was confirmed by remaining model A3. The NOESY spectrum correlations between H-
9/H-10, H3-23/H-11/H-12 and H-10/H3-22 proved that these protons were had the same
orientations. In addition, taking notice of the structural similarities of oscillatoxin J–M
(1–4), these four compounds are likely to have a common biosynthetic origin [26]. The
coupling constants (J = 11.9 Hz) of H-29/H-28a and (J = 2.1Hz) of H-29/H-28b, in keeping
with those of aplysiatoxins, indicated the syn relationship between H-29 and H-30. The
chemical shifts of H-15 and its coupling constants (J = 6.4 Hz) were similar to those of
aplysiatoxins [33]. Simulated and experimental 13C NMR chemical shifts of 2a and 2b
were used for DP4 probability analysis. The calculations were performed by using the
density functional theory (DFT) as carried out in the Gaussian 09 [35]. The statistical
results indicated the structural equivalence of 2 to 2a (98.61% probability). In summary, the
absolute configuration of 2 was established as 2R, 7S, 9S, 10S, 11R, 12S, 15S, 29R and 30R.
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Oscillatoxin L (3) was obtained as a white solid ([α]25
D + 35 (c = 0.1, MeCN); UV

(MeOH) λmax (log ε) 197 (2.57), 275 (0.78) nm (Supplementary Information Figure S2.3.9)).
It has a molecular formula of C32H48O11, with nine degrees of unsaturation, as assigned
by HR-ESI-MS data (m/z 631.3087 [M + Na]+, calculated for C32H48O11Na, 631.3094). The
interpretation of the 1D and 2D NMR spectra indicated that the planar structure of 3
closely agreed with debromoaplysiatoxin except for a hydroxyl on C-4 in 3. The HMBC
correlations of H3-26 to C-3, C-4 and C-5 and H-2 to C-1 and C-3 strongly supported this
connection. By comparing the 1H chemical shift and coupling constant of 3 with that of
DAT 3, it was observed that they have the same stereochemical properties as DAT, except
for C-3 and C-4 [36]. The DP4 analysis was again applied to the simulated 13C NMR
chemical shifts of the four possible epimers 3a–3d (Figure 5). The results showed that the
correct structure of compound 3 is the epimer 3a, with 100% probability (Figure 5 and
Table S1.4.8., Supplementary Materials Information). Hence, the absolute configuration of
3 was determined to be 3S, 4S, 7S, 9S, 10S, 11R, 12S, 15S, 29R and 30R (Figure 5).
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Oscillatoxin M (4) was isolated as a white solid ([α]25
D + 35 (c = 0.3, MeCN); UV (MeOH)

λmax (log ε) 196 (2.52), 275 (0.59) nm (Figure S2.4.9)). The molecular formula of C32H46O10
with 10 degrees of unsaturation was inferred from HRESIMS data at m/z 613.2994 [M + Na]+

(calcd for C32H46O10Na, 613.2989). The inspection of spectral data showed that the planar
structure of oscillatoxin M (4) was identical to that of debromoaplysiatoxin (5), with the
exception that C-3 had a methyl group instead of a hydroxyl group, and C-4 had a ketone
carbonyl group instead of a methyl group. The HMBC correlations of H-5 to C-3, C-4 and
C-6; H3-26 to C-3 and C-4; and H-2 to C-1, C-3 and C-4 strongly support this assignment.
The relative configuration of H-9/H-10/H-11/H-12, H-15 and H-29/H-30 in compound
4 was determined in accordance with that of compound 2. Furthermore, the results of
DP4 statistical analysis using the 13C NMR chemical shift values proved that the correct
structure for 4 is the epimer 4a (Figure 6 and Supplementary Information Table S1.4.11.).
Finally, the absolute configuration of 4 was established as 3R, 7S, 9S, 10S, 11R, 12S, 15S, 29R
and 30R.
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2.2. Bioactivities
2.2.1. Inhibitory Activities against Kv1.5

The Kv1.5 (ultra-fast-delay rectifier potassium channel) mediation of ultra-rapid de-
layed rectifier K+ current (IKur) is the main current in the repolarization process of atrial
action potentials. Our previous research has highlighted the capability of ATXs as ion
channel blockers [34,37]. Some compounds have blocked Kv1.5 with certain selectivity [29].
In this work, a dose–response study was conducted on compounds 1–4 to evaluate their
inhibitory activity against Kv1.5. Our results showed that compounds 1, 2 and 4 had
significant inhibitory effects on Kv1.5, with IC50 values of 2.61 ± 0.91 µM (Figure 7),
3.86 ± 1.03 µM (Figure 8) and 3.79 ± 1.01 µM (Figure 9), respectively. Compound 1, 2 and
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4 all voltage dependently inhibited the Kv1.5 current (Supplementary Materials 1.3). The
inhibition was stronger at 50 mV than other tested potentials. The voltage dependence
supported the fact that three compounds preferentially affected the open state of the Kv1.5
channels. However, compound 3, oscillatoxin L, is structurally almost identical to DAT
(IC50 = 1.28 ± 0.08 µM), except having an additional hydroxy motif on adjacent carbon C-4,
exhibiting minimum effects on the modulation of Kv1.5 at 10 µM (Figure S1.3.1). Aplysi-
atoxin and its derivatives are activators of protein kinase C (PKC), which has been well
researched [38]. In a previous study, we have demonstrated DAT strongly upregulating the
expression of phosphor PKCδ in human hepatocellular carcinomas (HepG2) at 10 µM [29]
and proposed the potential mechanism for DATs modulating the Kv channel by activating
protein kinase C [39]. The results might indicate that the simple modifications of the
functionalities on A ring system in DAT structure may affect either the interaction of PKC
or the blocking site of the Kv1.5 ion channel. Consequently, determining the mechanism of
Kv1.5 inhibition activity of DAT analogues will be our ongoing project.
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Figure 7. (A) Kv1.5 currents were evoked by a 300 ms depolarizing pulse from –50 mV to 50 mV in
20 mV increments from a holding potential of –70 mV in the absence and presence of 0.3 µM, 1 µM,
3 µM and 10 µM oscillatoxin J (1). The current amplitudes were measured at the end of the 300 ms
pulse at 50 mV. (B) Concentration–inhibition curve expressed in %. The abscissa represents the
concentration, and the ordinate represents the percentage of Kv1.5 current that is blocked at different
concentrations of oscillatoxin J (1). Data points represent mean ± SEM of 3 to 5 measurements, and
the inhibitory effect showed an IC50 value of 2.61 ± 0.91 µM.
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Figure 8. (A) Kv1.5 currents were evoked by a 300 ms depolarizing pulse from –50 mV to 50 mV in
20 mV increments from a holding potential of –70 mV in the absence and presence of 0.3 µM, 1 µM,
3 µM and 10 µM oscillatoxin K (2). The current amplitudes were measured at the end of the 300 ms
pulse at 50 mV. (B) Concentration–inhibition curve expressed in %. The abscissa represents the
concentration, and the ordinate represents the percentage of Kv1.5 current that is blocked at different
concentrations of oscillatoxin K (2). Data points represent mean ± SEM of 3 to 5 measurements, and
the inhibitory effect showed an IC50 value of 3.86 ± 1.03 µM.
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Figure 9. Kv1.5 currents were evoked by a 300 ms depolarizing pulse from –50 mV to 50 mV in 20 mV
increments from a holding potential of –70 mV in the absence and presence of 0.3 µM, 1 µM, 3 µM
and 10 µM oscillatoxin M (4). The current amplitudes were measured at the end of the 300 ms pulse at
50 mV. (B) Concentration–inhibition curve expressed in %. The abscissa represents the concentration,
and the ordinate represents the percentage of Kv1.5 current that is blocked at different concentrations
of oscillatoxin M (4). Data points represent mean ± SEM of 3 to 5 measurements, and the inhibitory
effect showed an IC50 value of 3.79 ± 1.01 µM.

2.2.2. Toxicity of Brine Shrimp

In order to understand the toxicity effect of such compounds, brine shrimp Artemia
salina (A. salina) was used as a model organism. The investigation of brine shrimp toxi-
city of debromoaplysiatoxin (DAT) and four DAT analogs (oscillatoxin J, oscillatoxin K,
oscillatoxin L and oscillatoxin M) isolated from marine cyanobacterium Lyngbya sp., was
conducted. When DAT concentration was as low as 0.1 µM, the survival of Artemia salina (A.
salina) began to be affected (Table S1.3.2.1). Compounds 1, 2, 3 and 4 had no apparent effect
at 30 µM. As shown in Figure 10, compared to other tested derivatives, debromoaplysia-
toxin was the most toxic compound (IC50 value = 0.34 ± 0.036 µM) (Figure S1.3.2.1). The
current results with a previous study [37] indicated that the 3-hydroxy group at DAT
seemed to play an important role in determining higher toxicity. However, the specific
mechanism of toxic action of these compounds remains unclear, and further studies are
needed.
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Figure 10. Dose effect of compounds 1–4 to Artemia salina (A. salina). A. salina was treated with indicated concentration
(1 µM and 30 µM) of dichloromethane (DCM), debromoaplysiatoxin (DAT) and compounds 1–4 for 24 h. (A) The percentage
of A. salina compounds 1–4 in 1 µM; (B) the percentage of A. salina with compounds 1–4 in 30 µM. N.D: the life of brine
shrimp not detected. Data were analyzed by GraphPad prism (Table S1.3.2.1).

3. Materials and Methods
3.1. General Experimental Procedure

UV was acquired on a UV/EV300 spectrometer (Thermo Scientific, Waltham, MA,
USA), and IR spectra were obtained on a Nicolet iS20 instrument (Thermo Fisher Scientific,
MA, USA). Optical rotation data were performed by a Jasco P-2000 polarimeter (Jasco,
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Hachiojishi, Tokyo, Japan). 1H and 13C NMR spectra were acquired on an Agilent 600 MHz
spectrometer (Agilent Technologies, Santa Clara, CA, USA), with CDCl3 (δH 7.26 and
δC 77.16) as the solvent and internal standard. HRESIMS data were collected with a
Bruker micrOTOF-Q II mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany).
A Shimadzu LC-16 series instrument (Shimadzu, Kyoto, Japan) was equipped with C-18
column (5 µm, 10 mm × 250 mm, YMC, Kyoto, Japan) and an SPD-M20A diode array
detector (Shimadzu, Kyoto, Japan) for high-performance liquid chromatography (HPLC)
analysis. For column chromatography, Silica gel 60 (200–300 mesh; Yantai, China) and
octadecylsilyl (ODS) (50 µm, YMC, Kyoto, Japan) were used. A silica gel 60 F254 plate
(Merck, Darmstadt, Germany) was used for analytical thin-layer chromatography.

3.2. Material

Cyanobacterium Lyngbya sp. was obtained from the harbor of Sanya, Hainan province,
China, in November 2016. The sample was identified by Prof. Bing-Nan Han (Zhejiang
Sci-Tech University, Zhejiang, China). After morphological and molecular identifica-
tion, a voucher specimen (voucher number: BNH-201606; gene bank accession numbers:
MH636576) has been well deposited in Zhejiang Sci-Tech University.

3.3. Extraction and Isolation

Cyanobacterium freeze-dried powder (150 g) was extracted with CH2Cl2/MeOH (1:1,
v/v). The obtained extract was dissolved in 1 L of MeOH/H2O (9:1, v/v) and extracted
with CH2Cl2 (3 × 1 L) in order to obtain the CH2Cl2 extract (20 g), which was subjected
to vacuum liquid chromatography (VLC) over silica gel to obtain seven subfractions (F.
A–G). The separation conditions of the gradient used gradients of PE/EtOAc (5:1, 2:1, 1:1,
1:2, 1:5, 0:1, v/v). F.B, (2000 mg) was further separated by reversed-phase octadecylsilyl
silica (ODS) (UV detection at 254 nm, flow rate 20 mL/min, 10%–100% MeCN/H2O and
180 min) in order to acquire 17 subfractions (F.B.1–17). Subsequently, the subfraction
F.B.7 (231 mg) was purified by semi-preparative HPLC (Shimadzu silgreen C-18, 70%
MeCN/H2O, 2.0 mL/min and UV detection at 190 nm) to collect oscillatoxin J (8 mg),
oscillatoxin K (15.2 mg), oscillatoxin L (3.7 mg) and oscillatoxin M (25.4 mg) (Supplementary
Materials 1.2).

3.4. Ion Channel Inhibitory Experiment
3.4.1. Cell Culture

For culturing mouse L cells lacking thymidine kinase (LTK) cells stably expressing
human Kv1.5 channels (LTK/Kv1.5), 10% fetal bovine serum (FBS), 10,000 U/ml penicillin
G and 10 mg/ml streptomycin were added into Dulbecco’s Modified Eagle Media (DMEM).
LTK/Kv1.5 cells were cultured in a 37 ◦C humidified incubator set to 5% CO2. The
amount of 100 µg/ml Genetic (G418) was added into the culture media to select transgenic
cells. When the cells grew to 75–85% confluence, they were passaged for subsequent
electrophysiological records (Supplementary Materials 1.3.1.1).

3.4.2. Electrophysiology

LTK cells cultured for at least 24 h could be used for currents recording. For Kv1.5
potassium current recording, the recording micropipettes were pulled with a P97 microelec-
trode puller (Sutter, CA, USA) with a resistance of about 3 MΩ when filling with internal
solution containing the following: KCl 140 mM, MgCl2 1 mM, EGTA 5 mM, HEPES 10 mM
and MgATP 1 mM (pH was adjusted to 7.25 by KOH). The bath solution contained the
following: NaCl 137 mM, KCl 5.4 mM, CaCl2 1.8 mM, MgCl2 1 mM, Glucose 10 mM and
HEPES 10 mM (pH was adjusted to 7.4 by NaOH). Kv1.5 currents were recorded at room
temperature (22–24 ◦C) by PulseMaster (Version 2.65, Heka, Lambrecht, Germany) via an
EPC-10 USB amplifier (Heka, Lambrecht, Germany). In order to reduce recording errors,
cells with seal resistance above 1 GΩ and series resistance that was fully compensated
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above 80% were used. Leak compensation was used to compensate the leak current and to
subtract the capacitive artifacts (Supplementary Materials 1.3.1.2).

3.5. Brine Shrimp Toxicity Assay

Brine shrimp A. salina is an important model organism for ecosystems, and because
of its high sensitivity and easy availability, it can be used in laboratory settings to study
toxic effects and to provide safe results. A. salina or brine shrimp cysts were cultivated in
3.2% of saline water. After aeration with normal saline, cysts were placed at temperature
for 24 h and then cultured. For toxicity screening, hatched larvae were collected and
introduced in saline water. Add 0.9% brine and 30 larvae with good activity to each well to
produce a 96-well test culture plate. New compounds of 0.1 µM, 1 µM, 10 µM and 30 µM
and DAT were added to the experimental culture plate, respectively. Dimethyl sulfoxide
(Aladdin, Shanghai, China) and dichloromethane (Aladdin, Shanghai, China) were added
as blank control and positive control. The survival rate of A. salina was calculated after 24 h
treatment at 25 ◦C.

4. Conclusions

In conclusion, four new debromoaplysiatoxin analogues, oscillatoxin J–M (1–4), were
isolated from the cyanobacterium Lyngbya sp. The structures of the new compounds
were characterized by 1D and 2D NMR and MS data. ATXs easily underwent structural
rearrangement to form new structures with new functionality and new stereochemistry
because of the presence of some unstable functional groups such as hemiacetal and ketal,
etc. However, the current study confirmed the absolute configuration of pivotal chiral
positions (7S, 9S, 10S, 11R, 12S, 15S, 29R and 30R) at traditional ATXs with 6/12/6 tricyclic
ring system of compounds 1–4 via X-ray diffraction and GIAO NMR shift calculation
followed by DP4 analysis. Compound 1, 2 and 4 showed inhibitory activities against
Kv1.5 with IC50 value of 2.61 ± 0.91 µM, 3.86 ± 1.03 µM and 3.79 ± 1.01 µM, respectively.
Compound 3 exhibited no apparent Kv1.5 inhibition activity at 10 µM. Discovery of
new DAT analogs may highlight some insightful structures and activity relationships for
developing strong, effective and safe Kv1.5 inhibitors in the future. Our future work will
focus on characterizing the selectivity of these compounds for Kv1.5 and how they inhibit
Kv1.5 channel.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19110630/s1, experimental details; Figure S1.1.: Identification of cyanobacterium;
Figure S1.3.1.1.– S1.3.1.4.: Ion channel experiment; Table S1.3.2.1.: Brine shrimp cytotoxicity assay;
Tables S1.4.1.–S1.4.11.: NMR calculation and followed by DP4 analysis; Figures S2.1.–S2.4.: 1D and
2D NMR, HRESIMS, UV and IR spectra of compounds 1–4.
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