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Abstract: Three new phenylhydrazones, penoxahydrazones A–C (compounds 1–3), and two new
quinazolines, penoxazolones A (compound 4) and B (compound 5), with unique linkages were
isolated from the fungus Penicillium oxalicum obtained from the deep sea cold seep. Their structures
and relative configurations were assigned by analysis of 1D/2D NMR and mass spectroscopic data,
and the absolute configurations of 1, 4, and 5 were established on the basis of X-ray crystallography
or ECD calculations. Compound 1 represents the first natural phenylhydrazone-bearing steroid,
while compounds 2 and 3 are rarely occurring phenylhydrazone tautomers. Compounds 4 and 5 are
enantiomers that feature quinazoline and cinnamic acid units. Some isolates exhibited inhibition of
several marine phytoplankton species and marine-derived bacteria.

Keywords: Penicillium oxalicum; deep sea; cold seep; phenylhydrazone; quinazoline

1. Introduction

Microorganisms of different origin may possess unique genomes and potentials that
enable them to produce rare metabolites [1,2]. As an important class of microorganisms,
fungi are substantial sources of striking secondary metabolites with diverse structures
and bioactivities. The fungal species Penicillium oxalicum is widespread in terrestrial
and marine environments, and its secondary metabolites are abundant. In the investi-
gation towards terrestrial-derived P. oxalicum, an azo compound [3], a diterpene [4], a
diphenylmethanone [5], a spiro-oxindole alkaloid [6], isochroman carboxylic acids [3],
and polyketides [7] were obtained from soil-derived isolates, several limonoids [8], bu-
tyrolactones [9], and isocoumarins [10] were discovered from plant-derived isolates, and
alkaloids with 1,3-thiazole and 1,2,4-thiadiazole units [11] were separated from an animal-
derived isolate. On the other hand, more and more marine-derived P. oxalicum strains were
chemically examined. A variety of metabolites including chromones [12–15] from marine-
animal-derived strains, phenolic enamides [16], meroterpenoids [16], and alkaloids [17,18]
from marine-plant-derived strains, and secalonic acids [19–21], anthraquinones [22], al-
kaloids [23], and a diphenylmethanone [21] from marine-sediment-derived strains were
characterized. It is obvious that the metabolic profiles of P. oxalicum strains varied with
their habitats. Secondary metabolite biosynthesis genes from fungi have been found to be
expressed in deep sea sediments [24,25]. However, chemical surveys were rarely performed
on deep-sea-derived P. oxalicum strains, especially cold-seep-derived ones.
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2. Results and Discussion

Penicillium oxalicum 13–37 was isolated from the deep sea cold seep sediments. After
static fermentation at room temperature for 30 days, the cultures were extracted with
organic solvents and then purified by repeated column chromatography on silica gel,
RP-18, and Sephadex LH-20 as well as semipreparative HPLC to yield penoxahydrazones
A–C (1–3), penoxazolones A (4) and B (5), and dankasterone A (Figure 1). The structures of
these compounds were identified by extensive 1D/2D NMR and mass spectrometric data,
X-ray crystallographic analysis or ECD calculations.
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13C NMR spectrum of 1, and this carbon atom was located at C-3 by its heteronuclear 
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then subjected to the X-ray diffraction analysis using Cu Kα radiation [28]. Consequently, 
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Although more than 200 natural molecules with a nitrogen–nitrogen bond have been 
found so far, phenylhydrazone derivatives rarely occurred [27,29]. Furthermore, 1 
represents the first natural phenylhydrazone-bearing steroid. 
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Penoxahydrazone A (1) was purified as yellow crystals. The molecular formula
C35H46N2O4 was determined by interpretation of HRESIMS data. In combination with
HSQC correlations, the 1H NMR spectrum (Table 1) displayed four methyl doublets, two
methyl singlets, two double doublets and one singlet ascribable to three olefinic protons,
two double doublets and two doublets attributable to four aromatic protons, and a range
of signals at δH 1.3–2.9 for seven methylenes and five methines. The 13C NMR spectrum
(Table 1) exhibited 35 resonances, classified into six methyls, seven methylenes, twelve
methines, and ten non-protonated carbons by DEPT experiments. The above NMR data
partially resembled those for co-isolated dankasterone A [26]. Replacing the signal at δC
199.1 for the C-3 carbonyl group in dankasterone A, a signal at δC 144.4 appeared in the 13C
NMR spectrum of 1, and this carbon atom was located at C-3 by its heteronuclear multiple
bond correlation (HMBC)with H-1a. Additionally, the remaining NMR data corresponded
to an ortho-substituted benzoic acid unit [27], as supported by the 1H-1H chemical shift
correlation spectroscopy (COSY) correlations from H-32 thoroughly to H-35 and the HMBC
correlations from H-32 to C-36, from H-33 to C-31 and C-35, and from H-35 to C-33 and
C-37. To satisfy the elemental composition, an azo unit was situated between C-3 and C-31,
which was supported by the HMBC correlations from H-30 to C-3, C-31, C-32, and C-36.
Thus, the whole connectivity of 1 was established, which was further validated by other
COSY and HMBC correlations (Figure 2). The absolute configuration was determined by
X-ray crystallographic analysis (Figure 3). A suitable single crystal was obtained from a
solution of EtOH with a drop of water and then subjected to the X-ray diffraction analysis
using Cu Kα radiation [28]. Consequently, the absolute configuration of 1 was assigned to
be 8R, 9R, 10R, 13R, 17R, 20R, and 24R. Although more than 200 natural molecules with
a nitrogen–nitrogen bond have been found so far, phenylhydrazone derivatives rarely
occurred [27,29]. Furthermore, 1 represents the first natural phenylhydrazone-bearing
steroid.
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Table 1. 1H and 13C NMR data for compound 1 (in CDCl3, 500 MHz).

Pos δc, Type δH (J in Hz)

1a 37.6, CH2 1.98, m
1b 1.90, m
2a 20.9, CH2 2.60, m
2b 2.40, m
3 144.4, C
4 131.7, CH 7.08, s
5 141.6, C
6 199.2, C
7a 41.3, CH2 2.61, d (16.1)
7b 2.53, d (16.1)
8 62.8, C
9 49.5, CH 2.85, t (9.4)
10 35.6, C

11a 25.6, CH2 1.92, m
11b 1.81, m
12a 39.2, CH2 1.75, m
12b 1.62, dt (12.5, 8.1)
13 53.8, C
14 215.9, C

15a 38.2, CH2 2.56, m
15b 2.46, m
16a 23.2, CH2 1.86, m
16b 1.74, m
17 50.8, CH 1.39, br d (12.7)
18 17.3, CH3 1.00, s
19 24.5, CH3 1.16, s
20 37.5, CH 2.39, m
21 23.6, CH3 1.07, d (7.0)
22 132.8, CH 5.25, dd (15.5, 4.6)
23 135.0, CH 5.28, dd (15.5, 5.0)
24 43.4, CH 1.87, m
25 33.2, CH 1.47, octet (6.8)
26 19.8, CH3 0.82, d (6.8)
27 20.2, CH3 0.84, d (6.8)
28 17.8, CH3 0.92, d (6.8)
30 11.07, s
31 147.3, C
32 114.1, CH 7.66, d (8.5)
33 135.8, CH 7.45, dd (8.5, 7.1)
34 119.1, CH 6.84, dd (7.8, 7.1)
35 131.7, CH 7.98, d (7.8)
36 109.4, C
37 172.4, C

Penoxahydrazones B(2) and C(3) were obtained as a brown powder. During the
purification process, 2 could gradually turn to 3 and vice versa. The sodium adducts
ion peaks at m/z 283.0695 and m/z 283.0691 determined by high performance liquid
chromatography-electrospray mass spectrometry (HPLC-ESIMS) suggested that 2 and 3
feature the same molecular formula C13H12N2O4. On the basis of these characteristics,
it is inferred that these two compounds should be a pair of tautomers. The 1H and 13C
NMR spectra (Table 2) showed two sets of signals with a ratio of 2:1. Aided by HSQC data,
they indicated the presence of one oxymethylene, 11 aromatic/olefinic methines, and one
carboxyl in each compound. Similar to the analysis of the structure of compound 1, an ortho-
substituted benzoic acid unit was deduced to be present in both 2 and 3 based on their NMR
data [27], which was further supported by the COSY and the HMBC correlations (Figure 2).
Compared to the NMR data of δ-hydroxymethyl-α-vinylfuran [30], the remaining carbon
signals could be assigned to δ-hydroxymethyl furan attached by an olefinic methine group
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at α position, which was verified by the COSY correlation between H-12 and H-13 and
the HMBC correlations from H-10 to C-11 and C-12 and from H2-15 to C-13 and C-14. To
match the molecular formula, these two moieties were linked via an azo unit, as seen from
the HMBC correlation from the de-shielded exchangeable proton to C-7 and C-10 in 2.
Although this HMBC correlation was not detected for 3, the similarities of NMR data for
C-7 and C-10 between 2 and 3 suggested the same connectivity of them. Through analysis
of the whole structures of 2 and 3, their tautomerization probably arose from the geometric
isomerization of the double bond between N-9 and C-10. The 13C NMR data of 9Z and 9E
isomers were computed using the gauge-independent atomic orbital (GIAO) method at the
B3LYP/6-31+G(d,p) level via Gaussian 09 software [31] and then were input into Sarotti’s
DP4+ sheet (https://sarotti-nmr.weebly.com) [32]. According to the DP4+ probabilities
for 1H (100% between 9Z isomer and 2, 100% between 9E isomer and 3, Tables S1 and S2)
and 13C NMR data (99.99% between 9Z isomer and 2, 98.80% between 9E isomer and 3,
Tables S3 and S4), 2 and 3 were proposed to possess 9Z and 9E configurations, respectively.
These two tautomers are possibly formed by the reaction between 2-hydrazinylbenzoic
acid and 5-hydroxymethylfurfural, and the latter is a valuable platform chemical produced
mainly by the hydrolysis of saccharides [30].
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Penoxazolones A (4) and B (5) were originally purified as a colorless oil by a series
of achiral isolation. HRESIMS analysis gave the molecular formula C18H16N2O4. In
accordance with the molecular formula, the 1H and 13C NMR spectra (Table 3) displayed
just one set of signals assignable to one methyl, one methylene, ten methines, and six
non-protonated carbons aided by DEPT and HSQC data. A detailed comparison of NMR
data revealed the presence of a quinazolin-4(3H)-one unit [33], which was supported by the
COSY correlations from H-6 thoroughly to H-9 and the HMBC correlations from H-2 to C-4
and C-10, from H-6 to C-4, C-8, and C-10, from H-8 to C-6 and C-10, and from H-9 to C-5.
However, the signal for an exchangeable proton (H-3) in quinazolin-4(3H)-one was missing.
The remaining NMR data corresponded to methyl 3-(4-hydroxyphenyl) propanoate [34],
except for the presence of signals for a de-shielded methine group and the lack of signals for

https://sarotti-nmr.weebly.com
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a methylene group. This methine group was adjacent to the ester carbonyl group as seen
from their HMBC correlation, and it was bonded to N-3 of the quinazolin-4(3H)-one moiety
on the basis of its HMBC correlations with C-2 and C-4. Thus, the planar structure was
established, validated by other COSY and HMBC correlations (Figure 2). Before assignment
of the absolute configuration, a chiral HPLC was used to detect the enantiomeric purity
due to the presence of a stereogenic carbon atom (C-12). As a result, enantiomers 4 and 5
with a ratio of 1:2 were obtained (Figure S26), and they exhibited opposite optical rotations.
To ascertain the absolute configurations of 4 and 5, their ECD spectra were determined
in MeOH and simulated via the time-dependent density function theory method with
the same solvent. Based on the similarities between experimental and calculated ECD
spectra (Figure 4), the absolute configurations of 4 and 5 were proposed as 12R and 12S,
respectively. These two enantiomers might be yielded by adding quinazolin-4(3H)-one to
methyl 3-(4-hydroxyphenyl)acrylate through a carbocation intermediate.

Table 2. 1H and 13C NMR data for compounds 2 and 3 (in DMSO-d6).

Pos
2 3

δc, Type δH (J in Hz) δc, Type δH (J in Hz)

1 169.6, C 169.5, C
2 111.0, C 110.1, C
3 131.3, CH 7.89, dd (7.9, 1.3) 131.2, CH 7.84, dd (7.9, 1.4)
4 118.3, CH 6.84, br dd (7.9, 7.1) 117.6, CH 6.79, dd (7.9, 7.1)
5 134.4, CH 7.48, br dd (8.4, 7.1) 134.4, CH 7.48, br dd (8.4, 7.1)
6 112.9, CH 7.68, br d (8.4) 113.1, CH 7.59, br d (8.4)
7 147.1, C 146.9, C
8 12.33, br s 11.23, br s

10 125.4, CH 7.27, s 131.4, CH 8.03, s
11 146.8, C 149.4, C
12 113.7, CH 7.01, d (3.3) 112.0, CH 6.65, d (3.3)
13 108.9, CH 6.54, d (3.3) 109.2, CH 6.40, d (3.3)
14 157.2, C 156.7, C
15 56.0, CH2 4.57, s 55.8, CH2 4.44, s

Table 3. 1H and 13C NMR data for compounds 4 and 5 (in DMSO-d6).

Pos δc, Type δH (J in Hz)

2 147.2, CH 8.01, s
4 159.9, C
5 121.1, C
6 126.1, CH 8.12, dd (7.9, 1.2)
7 127.4, CH 7.55, dd (7.9, 7.1)
8 134.8, CH 7.83, ddd (8.1, 7.1, 1.2)
9 127.2, CH 7.62, d (8.1)
10 147.4, C
11 169.3, C
12 60.4, CH 5.41, dd (11.1, 4.9)

13a 33.3, CH2 3.41, dd (14.3, 4.9)
13b 3.32, dd (14.3, 11.1)
14 126.1, C
15 129.8, CH 6.87, d (8.4)
16 115.3, CH 6.54, d (8.4)
17 156.2, C
18 115.3, CH 6.54, d (8.4)
19 129.8, CH 6.87, d (8.4)
20 52.6, CH3 3.69, s
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Mariculture is often threatened by harmful algal blooms and pathogenic bacteria.
Compounds 1–5 and dankasterone A were assayed for inhibition of the three microalgae
Chattonella marina, Heterosigma akashiwo, and Prorocentrum donghaiense [35], and the results
are shown in Table 4. Isolates 1, 4, 5, and dankasterone A could inhibit the three microalga
species with the IC50 values ranging from 0.57 to 9.1 µg/mL. The noticeable activities of 1
and dankasterone A suggested that the steroid moiety seemed to be the key pharmacophore.
In combination with the weak activities of 2/3, the slightly higher activities of 1 than those
of dankasterone A indicated that the 2-hydrazinylbenzoic acid unit appeared weak to
increase the activities. In addition, their inhibition against four marine-derived bacterial
pathogens including Vibrio anguillarum, Vibrio harveyi, Vibrio parahaemolyticus, and Vibrio
splendidus was detected using the disk diffusion method [36]. We found that 1, 4, 5, and
dankasterone A showed moderate inhibition against V. harveyi and V. parahaemolyticus, and
their inhibition zone diameters exceeded 10 mm at 20 µg/disk. The MIC values of active
molecules were also measured, but only those of 4 and 5 (8 µg/mL) appeared lower than
10 µg/mL. A structure–activity relationship analysis revealed that both enantiomerization
of 4 and 5 and addition of 2-hydrazinylbenzoic acid to dankasterone A had almost no
influence on the antibacterial activities. In view of the above inhibitory effects of 1, 4, 5,
and dankasterone A on the microalgal and bacterial species, their toxicities to the marine
zooplankton Artemia salina were also tested. All the isolates possess low toxicities, with
LC50 values being higher that 40 µg/mL.

Table 4. Inhibition of marine microalgae and marine-derived bacteria.

Compounds
IC50 (µg/mL) Inhibitory Zone Diameter (mm) at 20 µg/disk LC50

(µg/mL)

C.
marina

H.
akashiwo

P. dong-
haiense

V. anguil-
larum

V.
harveyi

V. para-
haemolyticus

V. splen-
didus A. salina

1 1.2 3.7 0.68 0 11 12 0 58
2/3 17 >100 5.4 0 0 7.0 9.7 >100

4 2.8 8.1 0.57 7.0 13 11 7.3 >100
5 9.1 9.0 1.2 0 13 11 7.0 >100

dankasterone A 1.9 4.6 1.0 7.0 12 12 0 43
K2Cr2O7 0.60 2.4 1.2 18

chloramphenicol 18 29 28 23

3. Materials and Methods
3.1. General Experimental Procedures

Melting points were measured with an SGW X-4 micro melting point apparatus
(Shanghai Precision & Scientific Instrument Co., Ltd, Shanghai, China). Optical rotations
were determined on an SGW-3 polarimeter (Shanghai Shenguang Instrument Co., Ltd.,
Shanghai, China). UV and ECD spectra were measured on a Chirascan CD spectrometer
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(Applied Photophysics Ltd., Surrey, UK). IR spectra were recorded on a Nicolet iS50 FT-IR
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). 1D and 2D NMR spectra were
acquired on a Bruker Avance III 500 NMR spectrometer (Bruker Corp., Billerica, MA, USA).
Low and high resolution ESI mass spectra were obtained on an Agilent G6230 (Agilent
Technologies Inc., Santa Clara, CA, USA) or a Waters ACQUITY TOF mass spectrometer
(Waters Corp., Milford, MA, USA). Agilent 1260 HPLC system (Agilent Technologies Inc.,
Santa Clara, CA, USA) with an Eclipse SB-C18 (5 µm, 9.4 × 250 mm) column or a (R, R)
Whelk-O1 chiral column (10 µm, 4.6 × 250 mm) was used for HPLC separation. Silica gel
(200–300 mesh, Qingdao Haiyang Chemical Co. Qingdao, China), RP-18 (AAG12S50, YMC
Co. Ltd., Kyoto, Japan), and Sephadex LH-20 (GE Healthcare, Uppsala, Sweden) were
employed for column chromatography (CC). Precoated silica gel plates (GF-254, Qingdao
Haiyang Chemical Co., Qingdao, China) were used for thin-layer chromatography (TLC).
Gaussian 09 software (IA32W-G09RevC.01, Gaussian, Inc., Wallingford, CT, USA) was
applied to quantum chemical calculations.

3.2. Fungal Material and Fermentation

Penicillium oxalicum 13–37 was isolated from deep sea cold seep sediments. The species
was identified by morphology and by analysis of the ITS regions of its rDNA, whose
sequence data have been deposited at GenBank with the accession number MT898464.
Its fermentation was carried out statically at room temperature for 30 days in 200 × 1 L
Erlenmeyer flasks, each containing 50 g rice, 2 g glucose, 0.6 g peptone, 0.5 g yeast extract,
0.3 g monosodium glutamate, 0.1 g NaBr, 50 mL pure water, and 50 mL natural seawater
from the coast of Yantai, China.

3.3. Extraction and Isolation

At the end of the above fermentation, the mycelia were dried in the shade and then
exhaustively extracted with CH2Cl2 and MeOH (1:1, v/v). After removing organic solvents
by evaporation under vacuum, the residue was partitioned between EtOAc and H2O
to give an EtOAc-soluble extract (536 g). The extract was subjected to silica gel CC for
separation with step-gradient solvent systems consisting of petroleum ether (PE)/EtOAc
(50:1 to 0:1) and then CH2Cl2/MeOH (10:1 to 0:1). Based on TLC analysis, eight fractions
(Frs. 1-8) were obtained. Fr. 5 eluted with PE/EtOAc (1:1) and was further purified by CC
on RP-18 (MeOH/H2O, 93:7 to 49:1) to give two subfractions, Fr. 5-1 and 5-2. Fr. 5-1 eluted
with MeOH/H2O (93:7) and was further purified by Sephadex LH-20 (CH2Cl2/MeOH,
1:1) CC and semipreparative HPLC (acetonitrile/H2O, 19:1 to 49:1) to obtain dankasterone
A (13.4 mg). Fr. 5-2 eluted with MeOH/H2O (49:1) and was further purified by Sephadex
LH-20 (MeOH) CC to afford 1 (9.4 mg). Fr. 6 eluted with EtOAc and was further purified
by CC on RP-18 MeOH/H2O (7:3) and was further purified by Sephadex LH-20 (MeOH)
CC as well as semipreparative HPLC (acetonitrile/H2O, 23:27) to obtain a mixture of 2 and
3 (totally 24.7 mg). Fr. 7 eluted with CH2Cl2/MeOH (20:1) and was further purified by
CC on RP-18 (MeOH/H2O, 3:2) and Sephadex LH-20 (MeOH) and semipreparative HPLC
(acetonitrile/H2O, 3:7) as well as chiral HPLC (hexane/EtOH, 7:3) to give 4 (1.2 mg) and
its enantiomer 5 (1.4 mg).

Penoxahydrazone A (1): yellow crystals; mp 207–209 ◦C; [α]27
D +142 (c 0.024, MeOH);

UV (MeOH) λmax (∆ε) 401 (4.5), 222 (4.3) nm; IR (KBr) vmax 3446, 2959, 1681, 1603, 1261,
1223, 1148, 1024, 978, 754 cm−1; 1H and 13C NMR data (Table 1); HRESIMS m/z 581.3357
[M + Na]+ (calculated for C35H46N2O4Na, 581.3355).

Penoxahydrazone B/C (2/3): brown powder; IR (KBr) vmax 3415, 2921, 2852, 1669,
1647, 1243, 1020, 755 cm−1; 1H and 13C NMR data (Table 2); HRESIMS m/z 283.0695
[M + Na]+ (calculated for C13H12N2O4Na, 283.0689) and 283.0691 [M + Na]+ (calculated
for C13H12N2O4Na, 283.0689).

Penoxazolone A/B (4/5): colorless oil; [α]28
D +169 (c 0.040, MeOH) for 4 and −176

(c 0.050, MeOH) for 5; UV (MeOH) λmax (∆ε) 226 (4.1), 272 (3.4) nm for 4 and 226 (4.3),
272 (3.6) nm for 5; IR (KBr) vmax 3441, 2921, 2853, 1670, 1572, 1416, 1013 cm−1; 1H and 13C
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NMR data (Table 3); HRESIMS m/z 347.1013 [M + Na]+ (calculated for C18H16N2O4Na,
347.1008).

3.4. X-ray Crystallographic Analysis

Yellow crystals of 1 were obtained from a solution of EtOH with a drop of water. Crys-
tallographic data were collected at 100 K using Cu Kα radiation (λ = 1.54178Å) on a Bruker
APEX DUO diffractometer equipped with an APEX II CCD. The structure of 1 was solved
by direct methods with the SHELXS-97 software package. All non-hydrogen atoms were
refined anisotropically with SHELXL-97 and SHELXL-2014 using full-matrix least-squares,
and refinements of the H atoms in calculated positions were performed using a riding
model. Molecular graphics were calculated with PLATON [37]. Crystallographic data have
been deposited in the Cambridge Crystallographic Data Centre as CCDC 2,024,007 for 1.
These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif
(or from the CCDC, 12 Union Road, Cambridge CB21EZ, U.K.; fax: + 44-1223-336-033;
e-mail: deposit@ccdc.cam.ac.uk).

3.5. Crystal Data for Penoxahydrazone A (1)

Crystal data is as follows: 2(C35H46N2O4)•H2O, M = 1135.49, a = 14.7945(4) Å,
b = 9.4752(2) Å, c = 23.3965(6) Å, α = 90◦, β = 98.7230(10)◦, γ = 90◦, V = 3241.80(14) Å3,
T = 100.(2) K, space group P1211, Z = 2, µ(Cu Kα) = 0.604 mm−1, 60,835 reflections mea-
sured, 12,787 independent reflections (Rint = 0.0347). The final R1 values were 0.0427
(I > 2σ(I)). The final wR(F2) values were 0.1171 (I > 2σ(I)). The final R1 values were 0.0433
(all data). The final wR(F2) values were 0.1179 (all data). The goodness of fit on F2 was
1.032. Flack parameter = 0.01(4).

3.6. Computational Details

Conformational searches for compounds 2–5 were operated via the Dreiding force
field in MarvinSketch software (optimization limit = normal, diversity limit = 0.1; MarvinS-
ketch with Calculator Plugins for Structure Property Prediction and Calculation, Marvin,
Version 6.2.2, 2014, ChemAxon, Budapest, Hungary). Regardless of the rotation of methyl
and hydroxy groups, the energy-minimized conformers (Figures S1–S4) within a 3 kcal/mol
energy threshold from the global minimum were generated after conformational optimiza-
tion at the B3LYP/6-31+G(d,p) level in DMSO for 2 and 3 and at the B3LYP/6-31G(d)
level in MeOH for 4 and 5 using Gaussian 09 software [31]. The 1H and 13C NMR data
of each conformer of 2 and 3 were computed at the B3LYP/6-31+G(d,p) level in DMSO
through the gauge-independent atomic orbital (GIAO) method, while the ECD spectrum
of each conformer of 4 and 5 was calculated at the B3LYP/6-31G(d) level in MeOH via the
time-dependent density function theory (TD-DFT) method and then drawn by SpecDis
software with sigma = 0.25 and UV-shift = −8 nm. The overall calculated 1H and 13C NMR
data and ECD curves of each compound were produced by Boltzmann weighting. All of
the above calculations were performed with the integral equation formalism variant (IEF)
of the polarizable continuum model (PCM) as implemented in Gaussian 09.

4. Conclusions

Five new dinitrogen-bearing metabolites have been isolated and identified from a cold-
seep-derived strain of P. oxalicum, and they display high novelty due to the unprecedented
linkages. As phenylhydrazone derivatives, 1 features a special steroid framework, while
tautomers 2 and 3 contain a furan ring bonding to the azo group. It seems that this fungal
strain has the ability to form phenylhydrazones through adding 2-hydrazinylbenzoic acid
to ketones or aldehydes. The discovery of penoxahydrazones A–C (1–3) adds greatly to the
diversity of phenylhydrazone derivatives. As quinazoline derivatives, enantiomers 4 and
5 possess a unique linkage between quinazoline alkaloid and cinnamic acid units. These
metabolites with more or less antimicroalgal and antibacterial activities are structurally
different from those isolated from the P. oxalicum strains of other origin, which demonstrates

http://www.ccdc.cam.ac.uk/data_request/cif
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that deep-sea-derived fungi actually feature the potential to produce novel metabolites
and further underpins the significance of chemically exploring the extreme-environment-
derived fungi, such as those from the deep sea cold seep.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-3
397/19/1/9/s1, Tables S1–S4: Sarotti′s DP4+ sheets. Figures S1–S4: energy-minimized conformers,
Figures S5–S26: 1D/2D NMR and HRMS spectra.
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