Supplementary data

Anti-neuroinflammatory Agent, Restricticin B from the Marine-Derived Fungus *Penicillium janthinellum* and Its Inhibitory Activity on the NO Production in BV-2 Microglia Cells

Byeoung-Kyu Choi¹, Song-Hee Jo², Dong-Kuk Choi², Phan Thi Hoai Trinh³, Hwa-Sun Lee¹, Cao Van Anh^{1,4}, Tran Thi Thanh Van³, and Hee Jae Shin^{1,4}, *

- 1 Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; choibk4404@kiost.ac.kr (B.-K.C.), hwasunlee@kiost.ac.kr (H.-S.L.); caovananh@kiost.ac.kr (C.V.A.)
- 2 Department of Applied Life Science, Graduate school of Konkuk University, Chungju 27478, Korea; wowsong333@naver.com (S.-H.J.), choidk@kku.ac.kr (D.-K.C.)
- 3 Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam; phanhoaitrinh84@gmail.com (P.T.H.T.); tranthanhvan@nitra.vast.vn (T.T.T.V.)
- 4 Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea

^{*}Corresponding author. Tel.: +82-51-664-3341; fax: +82-51-664-3340; e-mail: shinhj@kiost.ac.kr

Contents

Figure S1. HRESIMS data of restricticin B (1)	1
Figure S2. ¹ H NMR spectrum of restricticin B (1)	2
Figure S3. ¹³ C NMR spectrum of restricticin B (1)	2
Figure S4. COSY spectrum of restricticin B (1)	3
Figure S5. HSQC spectrum of restricticin B (1)	4
Figure S6. HMBC spectrum of restricticin B (1).	5
Figure S7. ¹ H NMR spectrum of restricticin B (1) in CDCl ₃	6
Figure S8. NOESY spectrum of restricticin B (1)	7
Table S1. Comparison of ¹ H and ¹³ C NMR data for 1a (major) and 1b (minor)	
at 500 MHz and 150 MHz in $CD_3OD(\delta \text{ in ppm}, J \text{ in Hz})$	8
Figure S9. NOESY spectrum of restricticin B (1) for EXSY correlations.	9
Figure S10. Comparison of the ¹ H NMR data between 1 and 6	10
Figure S11. HRESIMS data of N-acetyl restricticin (2).	11
Figure S12. ¹ H NMR spectrum of N-acetyl restricticin (2)	12
Figure S13. ¹³ C NMR spectrum of N-acetyl restricticin (2)	12
Figure S14. LRMS data of 3,3"-dihydroxy-6'- desmethyl terphenyllin (3)	13
Figure S15. ¹ H NMR spectrum of 3,3"-dihydroxy-6'- desmethyl terphenyllin (3).	14
Figure S16. ¹³ C NMR spectrum of 3,3"-dihydroxy-6'- desmethyl terphenyllin (3)	14
Figure S17. HRESIMS data of fellutanine B (4)	15
Figure S18. ¹ H NMR spectrum of fellutanine B (4)	16
Figure S19. ¹³ C NMR spectrum of fellutanine B (4)	16
Figure S20. LRMS data of 10,23-dihydro-24,25-dehydro aflavinin (5).	17
Figure S21. ¹ H NMR spectrum of 10,23-dihydro-24,25-dehydro aflavinin (5)	18
Figure S22. ¹³ C NMR spectrum of 10,23-dihydro-24,25-dehydro aflavinin (5)	19
Figure S23. DFT optimized conformers and populations of restricticin B (1'S,2'R,3'S,4'S)	
above 5% population	20
Table S2. Gibbs free energies and Boltzmann distribution of conformers of compound 1	20
Table S3–S7. ECD calculation and energy minimized coordinates of conformer 1–5	
for all atoms (Å).	21

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 70 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 1-30 H: 1-40 N: 1-3 O: 1-10 Na: 1-1 Minimum: -1.5 Maximum: 100 0 5 0 50 0

Maximum.		100.0	0.0	30.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
496.2306	496.2311	-0.5	-1.0	9.5	679.3	n/a	n/a	C26 H35 N O7 Na

Figure S1. HRESIMS data of restricticin B (1).

Figure S8. NOESY spectrum of restricticin B (1).

Position	1 (N	ſajor)		1 (Minor)			
	<i>δ</i> н (<i>J</i> in Hz)	Туре	δς	δ н (J in Hz)	Туре	δς	
1′	3.60 (d, 9.5)	СН	84.9	3.60 (d, 9.5)	СН	84.9	
2'	5.00 (dd, 9.5, 9.5)	CH	70.4	5.00 (dd, 9.5, 9.5)	СН	70.4	
3'	3.52, m	CH	81.0	3.52, m	СН	81.0	
4'	2.33, m	CH	32.1	2.33, m	СН	32.1	
5'	3.63 (d, 12.0) 3.78 (d, 12.0)	CH_2	70.2	3.63 (d, 12.0) 3.78 (d, 12.0)	CH_2	70.2	
1	1.74. s	CH_3	10.4	1.74. s	CH_3	10.4	
2		С	132.5		С	132.5	
3	5.98 (d, 10.5)	CH	129.5	5.98 (d, 10.5)	CH	129.5	
4	6.27 (dd, 14.5, 10.0)	CH	125.3	6.27 (dd, 14.5, 10.0)	CH	125.3	
5	6.21 (dd, 14.5, 10.0)	CH	134.4	6.21 (dd, 14.5, 10.0)	CH	134.4	
6	6.08 (dd, 15.0, 10.5)	CH	130.6	6.08 (dd, 15.0, 10.5)	СН	130.6	
7	5.70, m	CH	135.3	5.70, m	СН	135.3	
8	2.05 (q, 7.0)	CH_2	34.5	2.05 (q, 7.0)	CH_2	34.5	
9	1.40, m	CH_2	22.0	1.40, m	CH_2	22.0	
10	0.90 (t, 7.5)	CH_3	12.6	0.90 (t, 7.5)	CH_3	12.6	
11	1.06 (d, 7.0)	CH_3	9.5	1.06 (d, 7.0)	CH ₃	9.5	
12	3.33, s	OCH ₃	55.0	3.33, s	OCH ₃	55.0	
13		С	167.2		С	167.1	
14	4.27 (d, 18.0) 4.36 (d, 18.0)	CH_2	50.0	4.29 (d, 18.0) 4.38 (d, 18.0)	CH ₂	49.9	
NH	11.8, brs			10.1, brs			
1‴	8.20, s	CH	162.7	8.32, s	С	161.5	
2''		С	96.6		CH_3	96.5	
3‴		С	184.1			181.7	
4''	5.74, s	CH	106.9	5.74, s		106.6	
5″		С	165.4			165.3	
6''		С	164.9			164.9	
7''	2.51, s	CH_3	18.7	2.51, s		18.7	

Table S1. Comparison of ¹H and ¹³C NMR data for isomer **1** (major) and isomer **1** (minor) at 500 MHz and 150 MHz in CD₃OD(δ in ppm, *J* in Hz)

Figure S9. NOESY spectrum of restricticin B (1) for EXSY correlations.

Figure S10. Comparison of the ${}^{1}H$ NMR data between 1 and 6.

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 118 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 1-30 H: 1-50 N: 1-3 O: 1-10 Na: 1-1 Minimum: -1.5 100.0 5.0 50.0 Maximum: mDa PPM DBE i-FIT Mass Calc. Mass Norm Conf(%) n/a n/a 402.2251 402.2256 -0.5 -1.2 5.5 884.7

Formula

C21 H33 N O5 Na

Figure S11. HRESIMS data of N-acetyl restricticin (2).

Figure S13. ¹³C NMR spectrum of N-acetyl restricticin (2).

Figure S14. HRESIMS data of 3,3"-dihydroxy-6'- desmethyl terphenyllin (3).

Figure S15. ¹H NMR spectrum of 3,3"-dihydroxy-6'- desmethyl terphenyllin (**3**).

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 155 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: N: 1-5 C: 1-30 H: 1-40 O: 1-10 Na: 1-1 Minimum: -1.5 100.0 5.0 50.0 Maximum: Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Mass 463.2110 463.2110 0.0 0.0 15.5 720.6 n/a n/a

Formula

Figure S17. HRESIMS data of fellutanine B (4).

Figure S19. ¹³C NMR spectrum of fellutanine B (4).

Figure S20. LRMS data of 10,23-dihydro-24,25-dehydro aflavinin (5).

Figure S21. ¹H NMR spectrum of 10,23-dihydro-24,25-dehydro aflavinin (**5**).

Figure S22. ¹³C NMR spectrum of 10,23-dihydro-24,25-dehydro aflavinin (**5**).

Figure S23. DFT optimized conformers and populations of restricticin B (1'S,2'R,3'S,4'S) above 5% population.

Table S2. Gibbs free energies and Boltzmann distribution of conformers of compound 1.

B3LYP/6-31+G(d,p) Gibbs free energy (298.15K)							
	G (Hartree)	Population (%)					
Conformer 1	-1593.089167	9.48					
Conformer 2	-1593.082241	7.93					
Conformer 3	-1593.081688	6.00					
Conformer 4	-1593.081518	5.64					
Conformer 5	-1593.081505	5.54					

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-5.8352	0.9565	0.4930	Н	-5.6931	2.8867	1.4903
С	-5.1268	2.2903	0.7698	Н	-2.9002	1.9911	-0.5002
0	-3.8328	2.0952	1.3488	Н	-3.5733	-0.5204	1.1147
С	-2.9365	1.4347	0.4456	Н	-4.8600	0.6055	-1.4094
С	-3.5196	0.0248	0.1711	Н	-0.7436	2.4215	-0.5780
С	-4.9243	0.1067	-0.4333	Н	1.1416	1.4315	1.6912
С	-1.5558	1.3891	1.0562	Н	-0.5927	1.0671	2.9738
С	-0.5237	1.9351	0.3725	Н	-2.3332	0.7673	2.9641
С	0.8733	1.9098	0.7513	Н	-1.2249	-0.4006	2.2271
С	-1.4165	0.6704	2.3762	Н	1.6119	2.8835	-0.9700
С	1.8679	2.4125	-0.0201	Н	3.5272	1.8736	1.2686
С	3.2747	2.3399	0.3152	Н	4.0108	3.2433	-1.4325
С	4.2698	2.7847	-0.4765	Н	6.1983	3.6599	-0.1883
С	5.7336	2.6624	-0.1737	Н	5.8719	2.2656	0.8401
0	-5.3796	-1.2280	-0.6154	Н	-6.6272	-0.7606	1.5772
С	-6.2300	0.2349	1.7889	Н	-5.3776	0.1241	2.4653
0	-2.6023	-0.8008	-0.6013	Н	-6.9990	0.8063	2.3181
С	-2.2476	-0.4893	-1.8531	Н	-6.6693	-2.4146	-1.6357
0	-2.6802	0.4261	-2.5209	Н	-7.4005	-0.8912	-1.0803
С	-6.4910	-1.3465	-1.4935	Н	-6.2811	-0.8858	-2.4691
С	-1.2172	-1.4953	-2.3704	Н	-1.7573	-2.3919	-2.6972
С	6.4791	1.7652	-1.1843	Н	-0.7183	-1.0606	-3.2368
С	7.9770	1.6560	-0.8863	Н	6.0195	0.7696	-1.1811
Ν	-0.2385	-1.8505	-1.3589	Н	6.3331	2.1673	-2.1955
С	1.0546	-1.5992	-1.4412	Н	8.4818	1.0164	-1.6176
С	1.9658	-1.8711	-0.4155	Н	8.4594	2.6398	-0.9137
С	1.5317	-2.4181	0.8614	Н	8.1531	1.2288	0.1075
С	2.5785	-2.6114	1.8500	Н	-0.5378	-2.2495	-0.4598
С	3.8620	-2.2934	1.5770	Н	1.4233	-1.1544	-2.3622
0	4.2516	-1.7788	0.3717	Н	2.3119	-3.0161	2.8183
С	3.3508	-1.5439	-0.6706	Н	5.4998	-1.4717	2.6719
0	3.8261	-1.0828	-1.6945	Н	4.6999	-2.8516	3.4637
0	0.3328	-2.7009	1.1015	Н	5.7744	-3.1061	2.0667
С	5.0213	-2.4426	2.5052				
Н	-6.7495	1.1894	-0.0677				
Н	-5.0314	2.8749	-0.1584				

Table S3. ECD calculation and energy minimized coordinates of conformer 1 for all atoms (Å).

Atom	Х	Y	Ζ	Atom	Х	Y	Z
С	-4.9736	2.4854	0.6471	Н	-4.3849	4.3436	1.6172
С	-3.9882	3.6383	0.8818	Н	-1.9230	2.8718	-0.4670
0	-2.7454	3.1705	1.4132	Н	-3.0475	0.5503	1.1795
С	-2.0417	2.3357	0.4827	Н	-4.1746	1.9399	-1.2892
С	-2.9201	1.0823	0.2355	Н	0.2597	2.8422	-0.6247
С	-4.3014	1.4636	-0.3077	Н	2.0237	1.6009	1.6174
С	-0.6787	2.0146	1.0530	Н	0.3269	1.3782	2.8701
С	0.4182	2.3447	0.3323	Н	-1.3790	1.8031	3.0710
С	1.8037	2.1063	0.6792	Н	-0.9330	0.2749	2.3146
С	-0.6554	1.3338	2.3975	Н	2.6310	2.9783	-1.0550
С	2.8418	2.4763	-0.1098	Н	4.4467	1.7475	1.1557
С	4.2359	2.2503	0.2108	Н	5.0448	3.1210	-1.5207
С	5.2647	2.6160	-0.5783	Н	6.8167	1.8419	0.6731
С	6.7159	2.4017	-0.2653	Н	7.1693	1.7795	-1.0521
0	-5.0364	0.2559	-0.4623	Н	-6.0592	0.9714	1.7787
С	-5.4559	1.8632	1.9646	Н	-4.6175	1.5787	2.6069
0	-2.2463	0.0837	-0.5853	Н	-6.0672	2.5823	2.5189
С	-1.9150	0.3328	-1.8542	Н	-6.5914	-0.6266	-1.4189
0	-2.0930	1.3705	-2.4590	Н	-6.9600	1.0132	-0.8368
С	-6.1861	0.3792	-1.2889	Н	-5.9282	0.7913	-2.2746
С	-1.2935	-0.8885	-2.5338	Н	-2.0277	-1.2492	-3.2635
С	7.5169	3.7164	-0.1723	Н	-0.4204	-0.5482	-3.0941
С	9.0070	3.4852	0.0930	Н	7.3912	4.2807	-1.1056
Ν	-0.9160	-1.9633	-1.6416	Н	7.0888	4.3392	0.6231
С	0.3233	-2.3737	-1.4430	Н	9.5510	4.4331	0.1563
С	0.6711	-3.4057	-0.5668	Н	9.1627	2.9477	1.0353
С	-0.3353	-4.1133	0.2120	Н	9.4634	2.8907	-0.7066
С	0.1675	-5.1668	1.0773	Н	-1.6187	-2.4557	-1.0758
С	1.4863	-5.4495	1.1369	Н	1.1122	-1.8775	-2.0031
0	2.4179	-4.7741	0.3985	Н	-0.5373	-5.7265	1.6795
С	2.0755	-3.7381	-0.4762	Н	2.8538	-6.0512	2.6617
0	3.0000	-3.2182	-1.0761	Н	1.3719	-7.0340	2.5688
0	-1.5563	-3.8370	0.1444	Н	2.6603	-7.2193	1.3538
С	2.1222	-6.5022	1.9828				
Н	-5.8412	2.9053	0.1221				
Н	-3.8068	4.1868	-0.0556				

Table S4. ECD calculation and energy minimized coordinates of conformer 2 for all atoms (Å).

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-4.8499	2.5517	0.6551	Н	-4.2082	4.4127	1.5852
С	-3.8377	3.6878	0.8553	Н	-1.8118	2.8569	-0.5138
0	-2.5962	3.2032	1.3744	Н	-2.9555	0.5869	1.1903
С	-1.9250	2.3391	0.4466	Н	-4.0928	1.9582	-1.2840
С	-2.8323	1.0999	0.2352	Н	0.3669	2.7863	-0.7046
С	-4.2140	1.5007	-0.2928	Н	2.1442	1.5454	1.5272
С	-0.5591	2.0004	0.9998	Н	0.4640	1.3707	2.8094
С	0.5317	2.2998	0.2570	Н	-1.2296	1.8325	3.0319
С	1.9183	2.0422	0.5858	Н	-0.8265	0.2848	2.2911
С	-0.5267	1.3391	2.3537	Н	2.7329	2.8784	-1.1718
С	2.9500	2.3848	-0.2236	Н	4.5622	1.6450	1.0263
С	4.3450	2.1406	0.0791	Н	5.1401	2.9775	-1.6752
С	5.3674	2.4798	-0.7302	Н	6.9306	1.7063	0.5073
С	6.8208	2.2330	-0.4492	Н	7.2242	1.5650	-1.2245
0	-4.9760	0.3063	-0.4160	Н	-5.9486	1.0799	1.8291
С	-5.3233	1.9611	1.9904	Н	-4.4805	1.6690	2.6234
0	-2.1921	0.0736	-0.5783	Н	-5.9097	2.7022	2.5427
С	-1.8763	0.2938	-1.8565	Н	-6.5634	-0.5594	-1.3339
0	-2.0439	1.3240	-2.4769	Н	-6.8894	1.0968	-0.7732
С	-6.1358	0.4398	-1.2267	Н	-5.8851	0.8306	-2.2230
С	-1.2894	-0.9512	-2.5237	Н	-2.0421	-1.3103	-3.2351
С	7.6763	3.5190	-0.4351	Н	-0.4190	-0.6378	-3.1037
С	7.3320	4.4746	0.7106	Н	8.7326	3.2312	-0.3687
Ν	-0.9179	-2.0170	-1.6182	Н	7.5593	4.0365	-1.3964
С	0.3158	-2.4511	-1.4359	Н	7.9633	5.3686	0.6831
С	0.6582	-3.4744	-0.5474	Н	6.2875	4.7988	0.6586
С	-0.3479	-4.1456	0.2634	Н	7.4796	3.9914	1.6835
С	0.1489	-5.1940	1.1382	Н	-1.6201	-2.4832	-1.0300
С	1.4623	-5.5044	1.1780	Н	1.1041	-1.9829	-2.0203
0	2.3935	-4.8630	0.4095	Н	-0.5559	-5.7272	1.7640
С	2.0566	-3.8360	-0.4777	Н	2.8460	-6.1078	2.6872
0	2.9801	-3.3477	-1.1050	Н	1.3417	-7.0595	2.6412
0	-1.5637	-3.8438	0.2140	Н	2.6019	-7.2951	1.4053
С	2.0918	-6.5550	2.0311				
Н	-5.7172	2.9807	0.1370				
Н	-3.6605	4.2175	-0.0938				
				•			

Table S5. ECD calculation and energy minimized coordinates of conformer 3 for all atoms (Å).

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-4.8499	2.5517	0.6551	Н	-4.2082	4.4127	1.5852
С	-3.8377	3.6878	0.8553	Н	-1.8118	2.8569	-0.5138
0	-2.5962	3.2032	1.3744	Н	-2.9555	0.5869	1.1903
С	-1.9250	2.3391	0.4466	Н	-4.0928	1.9582	-1.2840
С	-2.8323	1.0999	0.2352	Н	0.3669	2.7863	-0.7046
С	-4.2140	1.5007	-0.2928	Н	2.1442	1.5454	1.5272
С	-0.5591	2.0004	0.9998	Н	0.4640	1.3707	2.8094
С	0.5317	2.2998	0.2570	Н	-1.2296	1.8325	3.0319
С	1.9183	2.0422	0.5858	Н	-0.8265	0.2848	2.2911
С	-0.5267	1.3391	2.3537	Н	2.7329	2.8784	-1.1718
С	2.9500	2.3848	-0.2236	Н	4.5622	1.6450	1.0263
С	4.3450	2.1406	0.0791	Н	5.1401	2.9775	-1.6752
С	5.3674	2.4798	-0.7302	Н	6.9306	1.7063	0.5073
С	6.8208	2.2330	-0.4492	Н	7.2242	1.5650	-1.2245
0	-4.9760	0.3063	-0.4160	Н	-5.9486	1.0799	1.8291
С	-5.3233	1.9611	1.9904	Н	-4.4805	1.6690	2.6234
0	-2.1921	0.0736	-0.5783	Н	-5.9097	2.7022	2.5427
С	-1.8763	0.2938	-1.8565	Н	-6.5634	-0.5594	-1.3339
0	-2.0439	1.3240	-2.4769	Н	-6.8894	1.0968	-0.7732
С	-6.1358	0.4398	-1.2267	Н	-5.8851	0.8306	-2.2230
С	-1.2894	-0.9512	-2.5237	Н	-2.0421	-1.3103	-3.2351
С	7.6763	3.5190	-0.4351	Н	-0.4190	-0.6378	-3.1037
С	7.3320	4.4746	0.7106	Н	8.7326	3.2312	-0.3687
Ν	-0.9179	-2.0170	-1.6182	Н	7.5593	4.0365	-1.3964
С	0.3158	-2.4511	-1.4359	Н	7.9633	5.3686	0.6831
С	0.6582	-3.4744	-0.5474	Н	6.2875	4.7988	0.6586
С	-0.3479	-4.1456	0.2634	Н	7.4796	3.9914	1.6835
С	0.1489	-5.1940	1.1382	Н	-1.6201	-2.4832	-1.0300
С	1.4623	-5.5044	1.1780	Н	1.1041	-1.9829	-2.0203
0	2.3935	-4.8630	0.4095	Н	-0.5559	-5.7272	1.7640
С	2.0566	-3.8360	-0.4777	Н	2.8460	-6.1078	2.6872
0	2.9801	-3.3477	-1.1050	Н	1.3417	-7.0595	2.6412
0	-1.5637	-3.8438	0.2140	Н	2.6019	-7.2951	1.4053
С	2.0918	-6.5550	2.0311				
Н	-5.7172	2.9807	0.1370				
Н	-3.6605	4.2175	-0.0938				
				•			

Table S6. ECD calculation and energy minimized coordinates of conformer 4 for all atoms (Å).

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-3.2052	4.1731	0.5704	Н	-2.0326	5.6511	1.6571
С	-1.8802	4.8737	0.9034	Н	-0.1844	3.4479	-0.4073
0	-0.9239	3.9658	1.4592	Н	-2.1554	1.6684	1.1120
С	-0.5302	2.9608	0.5133	Н	-2.5543	3.4174	-1.3532
С	-1.7925	2.1244	0.1896	Н	1.8894	2.7620	-0.4254
С	-2.9034	2.9990	-0.3996	Н	2.9551	0.7981	1.7398
С	0.5983	2.1463	1.1032	Н	1.1904	1.1243	2.9253
С	1.7968	2.1542	0.4748	Н	-0.3773	1.9365	3.0078
С	2.9933	1.4340	0.8575	Н	-0.2115	0.4174	2.1207
С	0.2907	1.3651	2.3561	Н	4.2013	2.1398	-0.7214
С	4.1573	1.5085	0.1671	Н	5.3265	0.1687	1.4110
С	5.3699	0.8015	0.5235	Н	6.5583	1.5182	-1.0527
С	6.5252	0.8845	-0.1644	Н	8.5921	0.8915	0.3641
С	7.7924	0.1584	0.1772	Н	7.6604	-0.4051	1.1095
0	-4.0213	2.1533	-0.6380	Н	-4.8384	3.1420	1.5815
С	-3.9600	3.7402	1.8349	Н	-3.3260	3.1478	2.5009
0	-1.4851	0.9557	-0.6219	Н	-4.2933	4.6204	2.3936
С	-1.0027	1.0682	-1.8610	Н	-5.7338	1.9307	-1.7011
0	-0.7965	2.0990	-2.4684	Н	-5.5061	3.5765	-1.0660
С	-4.9951	2.7120	-1.5096	Н	-4.5469	3.0224	-2.4640
С	-0.7226	-0.3013	-2.4870	Н	-1.4541	-0.4602	-3.2847
С	8.2656	-0.7931	-0.9406	Н	0.2635	-0.2399	-2.9563
С	9.5885	-1.4881	-0.6069	Н	7.4862	-1.5432	-1.1239
Ν	-0.7687	-1.4087	-1.5583	Н	8.3720	-0.2257	-1.8744
С	-1.6966	-2.3477	-1.5451	Н	9.9003	-2.1576	-1.4150
С	-1.7652	-3.3562	-0.5796	Н	10.3903	-0.7577	-0.4499
С	-0.8228	-3.4123	0.5287	Н	9.5020	-2.0864	0.3072
С	-1.0251	-4.5002	1.4698	Н	-0.1082	-1.4654	-0.7719
С	-2.0274	-5.3893	1.3023	Н	-2.4426	-2.3287	-2.3360
0	-2.9030	-5.3223	0.2545	Н	-0.3535	-4.5892	2.3145
С	-2.8276	-4.3265	-0.7243	Н	-2.2837	-7.4829	1.6306
0	-3.6688	-4.3775	-1.6044	Н	-1.6313	-6.5908	3.0267
0	0.1040	-2.5784	0.6688	Н	-3.3525	-6.4583	2.5900
С	-2.3348	-6.5456	2.1947				
Н	-3.8242	4.8985	0.0271				
Н	-1.4591	5.3475	0.0031				

Table S7. ECD calculation and energy minimized coordinates of conformer 5 for all atoms (Å).