Supporting Information

Bioactive Bianthraquinones and Meroterpenoids from a Marine Sponge-Derived *Stemphylium* sp. Fungus

Ji-Yeon Hwang,¹ Sung Chul Park,¹ Woong Sub Byun,¹ Dong-Chan Oh,¹ Sang Kook Lee,¹ Ki-Bong Oh,^{2,*} and Jongheon Shin^{1,*}

¹Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea

²Department of Agricultural Biotechnology, College of Agricultural and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea

List of Supporting Information

Figure S	51	The ¹ H NMR spectrum of Alterportiol Z1 (1) (600MHz, CD ₃ OD)	<u> </u>
Figure S	52	The ¹³ C NMR spectrum of Alterportiol Z1 (1) (150MHz, CD ₃ OD)	S4
Figure S	53	The HSQC spectrum of Alterporriol Z1 (1) (600MHz, CD ₃ OD)	S5
Figure S	54	The COSY spectrum of Alterporriol Z1 (1) (600MHz, CD ₃ OD)	S5
Figure S	55	The HMBC spectrum of Alterporriol Z1 (1) (600MHz, CD ₃ OD)	S6
Figure S	56	The LR-HSQMBC spectrum of Alterporriol Z1 (1) (800MHz, CD ₃ OD)	S6
Figure S	57	The NOESY spectrum of Alterporriol Z1 (1) (400MHz, CD ₃ OD)	S7
Figure S	58	The ¹ H NMR spectrum of Alterportiol Z1 (1) (800MHz, THF- d_8)	S7
Figure S	5 9	The NOESY spectrum of Alterportiol Z1 (1) (800MHz, THF- d_8)	S8
Figure S	510	The HRFABMS data of Alterportiol Z1 (1)	S8
Figure S	511	The ¹ H NMR spectrum of Alterporriol Z2 (2) (400MHz, CD ₃ OD)	S9
Figure S	512	The ¹³ C NMR spectrum of Alterporriol Z2 (2) (100MHz, CD ₃ OD)	S9
Figure S	513	The HSQC spectrum of Alterportiol Z2 (2) (400MHz, CD ₃ OD)	S10
Figure S	514	The COSY spectrum of Alterporriol Z2 (2) (400MHz, CD ₃ OD)	S10
Figure S	\$15	The HMBC spectrum of Alterporriol Z2 (2) (400MHz, CD ₃ OD)	S11
Figure S	516	The NOESY spectrum of Alterporriol Z2 (2) (400MHz, CD ₃ OD)	S11
Figure S	517	The HRFABMS data of Alterportiol Z2 (2)	S12
Figure S	518	The ¹ H NMR spectrum of Alterporriol Z3 (3) (800MHz, CD ₃ OD)	S13
Figure S	519	The ¹³ C NMR spectrum of Alterporriol Z3 (3) (200MHz, CD ₃ OD)	S13
Figure S	520	The HSQC spectrum of Alterportiol Z3 (3) (500MHz, CD ₃ OD)	S14
Figure S	521	The COSY spectrum of Alterporriol Z3 (3) (500MHz, CD ₃ OD)	S14
Figure S	522	The HMBC spectrum of Alterporriol Z3 (3) (800MHz, CD ₃ OD)	S15
Figure S	523	The NOESY spectrum of Alterportiol Z3 (3) (500MHz, CD ₃ OD)	S15
Figure S	S24	The HRFABMS data of Alterportiol Z3 (3)	S16
Figure S	S25	The ¹ H NMR spectrum of Tricycloalterfurene E (7) (800MHz, CD ₃ OD)	<u>S17</u>
Figure S	\$26	The ¹³ C NMR spectrum of Tricycloalterfurene E (7) (100MHz, CD ₃ OD)	<u></u>
Figure S	S27	The HSQC spectrum of Tricycloalterfurene E (7) (400MHz, CD ₃ OD)	S18
Figure S	S28	The COSY spectrum of Tricycloalterfurene E (7) (400MHz, CD ₃ OD)	S18
Figure S	S29	The HMBC spectrum of Tricycloalterfurene E (7) (800MHz, CD ₃ OD)	S19
Figure S	S30	The NOESY spectrum of Tricycloalterfurene E (7) (600MHz, CD ₃ OD)	<u> </u>
Figure S	S31	The HRFABMS data of Tricycloalterfurene E (7)	S20
Figure S	S32	The ¹ H NMR spectrum of Tricycloalterfurene F (8) (800MHz, CD ₃ OD)	S21
Figure S	S33	The ¹³ C NMR spectrum of Tricycloalterfurene F (8) (100MHz, CD ₃ OD)	S21
Figure S	S34	The HSQC spectrum of Tricycloalterfurene F (8) (800MHz, CD ₃ OD)	S22
Figure S	S35	The COSY spectrum of Tricycloalterfurene F (8) (800MHz, CD ₃ OD)	S22
Figure S	S36	The HMBC spectrum of Tricycloalterfurene F (8) (800MHz, CD ₃ OD)	S23
Figure S	S37	The NOESY spectrum of Tricycloalterfurene F (8) (800MHz, CD ₃ OD)	
Figure S	S38	The HRFABMS data of Tricycloalterfurene F (8)	S24
Figure S	S39	The ¹ H NMR spectrum of Tricycloalterfurene G (9) (500MHz, CD ₃ OD)	
Figure S	S40	The ¹³ C NMR spectrum of Tricycloalterfurene G (9) (100MHz, CD ₃ OD)-	S25
Figure S	S41	The HSQC spectrum of Tricycloalterfurene G (9) (500MHz, CD ₃ OD)	S26
Figure S	S42	The COSY spectrum of Tricycloalterfurene G (9) (400MHz, CD ₃ OD)	S26
Figure S	S43	The HMBC spectrum of Tricycloalterfurene G (9) (400MHz, CD ₃ OD)	
Figure S	S44	The NOESY spectrum of Tricycloalterfurene G (9) (400MHz, CD ₃ OD)	
Figure S	S45	The HRFABMS data of Tricycloalterfurene G (9)	S28
Figure S	S46	The ¹ H NMR spectrum of (S)-MTPA Ester of 7 (800MHz, CD ₃ OD)	S29
Figure S	S47	The 'H NMR spectrum of (R)-MTPA Ester of 7 (800MHz, CD ₃ OD)	S29

Figure	S48	The ¹ H NMR spectrum of (S)-MTPA Ester of 8 (800MHz, CD ₃ OD)S30
Figure	S49	The ¹ H NMR spectrum of (R)-MTPA Ester of 8 (800MHz, CD ₃ OD)S30
Figure	S50	The ¹ H NMR spectrum of (S)-PGME Amide of 7 (800MHz, CD ₃ OD)S31
Figure	S51	The ¹ H NMR spectrum of (R)-PGME Amide of 7 (800MHz, CD ₃ OD)S31
Figure	S52	The ¹ H NMR spectrum of (S)-PGME Amide of 8 (800MHz, CD ₃ OD)S32
Figure	S53	The ¹ H NMR spectrum of (R)-PGME Amide of 8 (800MHz, CD ₃ OD)S32
Figure	S54	The results of DP4 analyses of Alterporriol Z1 (1)S33
Figure	S55	The viability of RAW 264.7 cells was measured using the MTT assayS34
Table	S 1	Experimental (Exp.) and calculated (Cal.) chemical shift values of enantiomers A
		and B on aliphatic ring part of Alterporriol Z1 (1)S35
Table	S 2	The ¹ H NMR Data of Alterportiol Z1 (1) in THF- d_8 S36

Figure S1. The ¹H NMR spectrum of Alterportiol Z1 (1) (600MHz, CD₃OD)

Figure S2. The ¹³C NMR spectrum of Alterporriol Z1 (1) (150MHz, CD₃OD)

Figure S3. The HSQC spectrum of Alterporriol Z1 (1) (600MHz, CD₃OD)

Figure S4. The COSY spectrum of Alterporriol Z1 (1) (600MHz, CD₃OD)

Figure S5. The HMBC spectrum of Alterporriol Z1 (1) (600MHz, CD₃OD)

Figure S6. The LR-HSQMBC spectrum of Alterporriol Z1 (1) (800MHz, CD₃OD)

Figure S7. The NOESY spectrum of Alterporriol Z1 (1) (400MHz, CD₃OD)

Figure S9. The NOESY spectrum of Alterportiol Z1 (1) (800MHz, THF-ds)

```
[Elemental Composition]
Data : HJH-1-C32H26O13
Sample: -
                                                                                Page: 1
                                          Date : 24-Oct-2016 15:29
Note: -

Inlet: Direct Ion M

RT: 0.43 min Scan

Elements: C 32/0, H 27/0, O 13/0, Na 1/0
                                          Ion Mode : FAB+
Scan#: (9,10)
Mass Tolerance : 1mmu
Unsaturation (U.S.) : -0.5 - 100.0
Observed m/z Int%
581.3657 76.2
                      Err[ppm / mmu]
                                           U.S. Composition
  618.1377
               36.4
                         +0.6 / +0.4
                                          20.0 C 32 H 26 O 13
  619.1449
              100.0
                         -0.4 / -0.3
                                          19.5 C 32 H 27 O 13
  620.1522
               52.6
  621.1547
               15.2
  625.3936
               69.7
  641.1275
                         +0.6 / +0.4 19.5 C 32 H 26 O 13 Na
               62.5
  642.1318
               29.7
 670.4144
               15.6
  [ Theoretical Ion Distribution ]
 [ Theoretical Ion Distribution ,
Molecular Formula : C32 H27 O13
(m/z 619.1452, MW 619.5586, U.S. 19.5)
                                                                               Page: 1
 Base Peak : 619.1452, Averaged MW : 619.5554(a),
                                                              619.5562(w)
   624.1589
625.1614
               0.0335
   626.1639
               0.0004
```


Figure S12. The ¹³C NMR spectrum of Alterportiol Z2 (2) (100MHz, CD₃OD)

Figure S13. The HSQC spectrum of Alterporriol Z2 (2) (400MHz, CD₃OD)

Figure S14. The COSY spectrum of Alterporriol Z2 (2) (400MHz, CD₃OD)

Figure S15. The HMBC spectrum of Alterporriol Z2 (2) (400MHz, CD₃OD)

Figure S16. The NOESY spectrum of Alterporriol Z2 (2) (400MHz, CD₃OD)

[Elemental Composition] Data : HJH-2-C32H26013 Page: 1 Date : 24-Oct-2016 13:52 Data : HJH-2-C32H20013 Sample: -Note : -Inlet : Direct Ion Mode : FAB+ RT : 0.18 min Scan#: (4,5) Elements : C 32/0, H 27/0, O 13/0, Na 1/0 Mass Tolerance : 1000ppm, 1mmu if m/z < 1, 2mmu if m/z > 2 Unsaturation (U.S.) : -0.5 - 100.0 Observed m/z Int% 581.3678 100.0 Err[ppm / mmu] U.S. Composition 618.1376 +0.4 / +0.2 20.0 C 32 H 26 O 13 11.4 619.1454 +0.4 / +0.2 19.5 C 32 H 27 O 13 30.8 620.1486 16.6 625.3922 27.7 -0.6 / -0.4 19.5 C 32 H 26 O 13 Na 641.1267 20.8 [Theoretical Ion Distribution] Page: 1 Molecular Formula : C32 H27 O13 (m/z 619.1452, MW 619.5586, U.S. 19.5) Base Peak : 619.1452, Averaged MW : 619.5554(a), 619.5562(w) m/z INT. 8.9194 ***** 621.1512 622.1539 1.6527 * 623.1564 0.2540 624.1589 0.0335 625.1614 0.0039 626.1639 0.0004

Figure S17. The HRFABMS data of Alterporriol Z2 (2)

Figure S19. The ¹³C NMR spectrum of Alterportiol Z3 (**3**) (200MHz, CD₃OD)

Figure S20. The HSQC spectrum of Alterporriol Z3 (3) (500MHz, CD₃OD)

Figure S21. The COSY spectrum of Alterporriol Z3 (3) (500MHz, CD₃OD)

Figure S22. The HMBC spectrum of Alterporriol Z3 (3) (800MHz, CD₃OD)

Figure S23. The NOESY spectrum of Alterporriol Z3 (3) (500MHz, CD₃OD)

Page: 1 [Elemental Composition] Data : HJH-3-C33H28013 Date : 24-Oct-2016 14:10 Sample: -Note : -Inlet : Direct Ion Mode : FAB+ RT : 0.68 min Scan#: (14,15) Scan#: (14,15) Elements : C 33/0, H 28/0, O 13/0, Na 1/0 Mass Tolerance : 1000ppm, 1mmu if m/z < 1, 3mmu if m/z > 3 Unsaturation (U.S.) : -0.5 - 100.0 U.S. Composition 20.0 C 33 H 27 O 13 Na Observed m/z Int% Err[ppm / mmu] 654.1349 29.7 -0.1 / +0.0 654.1349 100.0 +0.4 / +0.2 19.5 C 33 H 28 O 13 Na 655.1430 656.1479 46.1 657.1496 13.4 677.1232 17.0 678.1359 11.8

Page: 1 [Theoretical Ion Distribution] Molecular Formula : C33 H28 O13 Na (m/z 655.1428, MW 655.5673, U.S. 19.5) 655.1428, Averaged MW : 655.5641(a), 655.5648(w) Base Peak : 9.3208 **** 657.1488 1.7519 * 658.1515 0.2724 659.1541 660.1566 0.0363 661.1591 0.0043 662.1616 0.0005

Figure S24. The HRFABMS data of Alterportiol Z3 (3)

Figure S26. The ¹³C NMR spectrum of Tricycloalterfurene E (7) (100MHz, CD₃OD)

Figure S27. The HSQC spectrum of Tricycloalterfurene E (7) (400MHz, CD₃OD)

Figure S28. The COSY spectrum of Tricycloalterfurene E (7) (400MHz, CD₃OD)

Figure S29. The HMBC spectrum of Tricycloalterfurene E (7) (800MHz, CD₃OD)

Figure S30. The NOESY spectrum of Tricycloalterfurene E (7) (600MHz, CD₃OD)

[Elemental C Data : HJH-4 Sample: - Note : - Inlet : Direc RT : 0.48 min Elements : C	Composition] -C21H30O6 t 21/0, H 31/0, O 6/0	Date : 24-Oct-2016 14:17 Ion Mode : FAB+ Scan#: (10,11)	Page: 1
Unsaturation	(U.S.) : -0.5 - 100.0		
Observed m/z 378.2040	Int% Err[ppm / mmu] 15.5 -0.6 / -0.2	U.S. Composition 7.0 C 21 H 30 O 6	
379.2118	100.0 -0.7 / -0.3	6.5 C 21 H 31 O 6	
380.2150	26.8		
401.1942	20.2		
[Theoretical Molecular For Base Peak :	Ion Distribution] mula : C21 H31 O6 (m/z 379.2121 379.2121, Averaged MW :	L, MW 379.4735, U.S. 6.5) : 379.4702(a), 379.4709(w)	Page: 1
m/z 379.2121 10 380.2154 2 381.2180 382.2207 383.2232 384.2258 385.2283	INT. 0.0000 *******************************	*****	****

Figure S31. The HRFABMS data of Tricycloalterfurene E (7)

Figure S33. The ¹³C NMR spectrum of Tricycloalterfurene F (8) (100MHz, CD₃OD)

Figure S34. The HSQC spectrum of Tricycloalterfurene F (8) (800MHz, CD₃OD)

Figure S35. The COSY spectrum of Tricycloalterfurene F (8) (800MHz, CD₃OD)

Figure S36. The HMBC spectrum of Tricycloalterfurene F (8) (800MHz, CD₃OD)

Figure S37. The NOESY spectrum of Tricycloalterfurene F (8) (800MHz, CD₃OD)

[Elemental Composition] Data : HJH-5-C21H3006 Page: 1 Date : 24-Oct-2016 14:35 Sample: -Note : -Inlet : Direct Ion Mode : FAB+ RT : 0.53 min Scan#: (11,12) Elements : C 21/0, H 31/0, O 6/0, Na 1/0 Mass Tolerance : 1000ppm, 1mmu if m/z < 1, 3mmu if m/z > 3 Unsaturation (U.S.) : -0.5 - 100.0 U.S. Composition Observed m/z Int% Err[ppm / mmu] 373.1743 17.6 379.2120 100.0 -0.1 / +0.0 6.5 С 21 Н 31 О 6 24.1 380.2148 +0.4 / +0.2 6.5 C 21 H 30 O 6 Na 401.1942 91.9 402.1957 22.1 Page: 1 [Theoretical Ion Distribution] Molecular Formula : C21 H31 O6 (m/z 379.2121, MW 379.4735, U.S. 6.5) Base Peak : 379.2121, Averaged MW : 379.4702(a), 379.4709(w) 3.8543 ** 381.2180 382.2207 0.4722 383.2232 384.2258 385.2283 0.0474 0.0040

Figure S38. The HRFABMS data of Tricycloalterfurene F (8)

Figure S40. The ¹³C NMR spectrum of Tricycloalterfurene G (9) (100MHz, CD₃OD)

Figure S41. The HSQC spectrum of Tricycloalterfurene G (9) (500MHz, CD₃OD)

Figure S42. The COSY spectrum of Tricycloalterfurene G (9) (400MHz, CD₃OD)

Figure S43. The HMBC spectrum of Tricycloalterfurene G (9) (400MHz, CD₃OD)

Figure S44. The NOESY spectrum of Tricycloalterfurene G (9) (400MHz, CD₃OD)

[Elemental Composition] Page: 1 Data : FAB-S652 Date : 07-Jun-2019 14:21 Sample: 3[006(4)-RF3RP21] Note : m-NBA Inlet : Direct Ion Mode : FAB+ Scan#: (160,164) RT : 4.03 min Elements : C 100/0, H 100/0, O 10/0, Na 1/0 Mass Tolerance : 20ppm, 5mmu if m/z < 250, 10mmu if m/z > 500 Unsaturation (U.S.) : -0.5 - 50.0 Observed m/z Int% Err[ppm / mmu] U.S. Composition +10.1 / +4.2 -4.0 / -1.7 +15.9 / +6.6 +1.8 / +0.7 18.5 C 31 H 27 O 415.2104 100.0 9.5 C 24 H 31 O 6 15.5 C 29 H 28 O Na 6.5 C 22 H 32 O 6 Na Page: 1 [Theoretical Ion Distribution] Molecular Formula : C22 H32 O6 Na (m/z 415.2097, MW 415.4822, U.S. 6.5) Base Peak : 415.2097, Averaged MW : 415.4788(a), 415.4795(w) m/z INT. 416.2130 24.6977 ************* 4.1166 ** 417.2157 418.2183 0.5151 0.0526 419.2209 0.0046 420.2234 421.2260 0.0003

Figure S45. The HRFABMS data of Tricycloalterfurene G (9)

Figure S47. The ¹H NMR spectrum of (R)-MTPA Ester of 7 (800MHz, CD₃OD)

Figure S48. The ¹H NMR spectrum of (S)-MTPA Ester of 8 (800MHz, CD₃OD)

Figure S49. The ¹H NMR spectrum of (R)-MTPA Ester of 8 (800MHz, CD₃OD)

4.5

1.60-1

0.95-<u>₹</u> 1.12-≪

4.0

3.02-

3.5

3.0

1.00-1

5.0

0.92-3

5.5

6.0

196

7.0

6.5

7.5

8.0

8.5

9.5

9.0

1.0

0.5

0.0

1.5

8288888888

2.0

2.5

Figure S53. The ¹H NMR spectrum of (R)-PGME Amide of 8 (800MHz, CD₃OD)

Please select version of database to use:	Select probability distribution:
DP4-original	I distribution (recommended)
DP4-database2	o normal distribution
	<u> </u>
13C Calc:	1H Calc:
C1,C2,C3,C4,C4A,C5,C6,C7,C8,C8A,C9,C9A,C1	0, H1,H4,H7,H11,H11A,H11B,H12,H12A,H12B,H1',H2
112.2,157.0,131.8,135.6,127.9,154.9,146.1,128.4	1,17.6,8.6,7.3,2.6,2.6,2.4,3.3,3.8,3.6,5.0,3.6,4.7,7.5,1.8
112.1,107.1,101.8,100.7,127.0,104.0,140.3,120.4	+, 1 7.0,0.0, 7.3, 2.0, 2.0, 2.0, 3.0, 3.2, 3.0, 3.0, 3.0, 4.7, 7.4, 1.8
13C Expt:	1H Expt:
111 7(C1) 164 0(C2) 133 8(C3) 131 2(C4) 126	8 7 51(H1) 7 65(H4) 6 78(H7) 2 23(H11) 2 23(H11)
Read Data Show Assignments	Calculate Clear
Results of DP4 using both carbon and proton dat Isomer 1: 2.7%	ia.
Isomer 2: 97.3%	
Results of DP4 using the carbon data only:	
Isomer 1: 11.1%	
130mer 2. 00.970	
Results of DP4 using the proton data only:	=
Isomer 1: 18.0%	
Isomer 2: 82.0%	
	_

(c) Jonathan M Goodman and Steven G Smith

Figure S54. The results of DP4 analyses of Alterporriol Z1 (1)

Figure S55. The viability of RAW 264.7 cells was measured using the MTT assay

aR,1'R,2'S,3'R,4'R

[Isomer 1]

a*R*,1'S,2'R,3'S,4'S

[Isomer 2]

No	Ate	erporriol Z1	No		Isomer 1	No.	I	somer 2
1	111.7.CH	7.51. d (0.5)	1	112.2	7.6	1	112.1	7.6
2	164.0. C		2	157.0		2	157.1	
3	133.8, C		3	131.8		3	131.9	
4	131.2, CH	7.65, d (0.5)	4	135.6	8.6	4	135.7	8.6
4a	126.8, C		4a	127.9		4a	127.5	
5	165.8, C		5	154.9		5	154.5	
6	125.3, C		6	146.1		6	146.3	
7	104.6, CH	6.78, s	7	128.4	7.3	7	128.4	7.3
8	166.9, C		8	157.7		8	158.1	
8a	111.9, C		8a	117.4		8a	116.9	
9	188.7, C		9	187.1		9	187.2	
9a	134.7, C		9a	132.0		9a	131.9	
10	183.5, C		10	182.7		10	182.7	
10a	133.4 <i>,</i> C		10a	124.9		10a	124.1	
11	16.6, CH ₃	2.23, s	11	20.6	2.6,2.6,2.4	11	20.6	2.5,2.6,2.5
12	56.9, CH ₃	3.69 <i>,</i> s	12	61.7	3.3,3.8,3.6	12	61.8	3.8,3.2,3.6
1′	70.6, CH	4.73, d (7.5)	1′	75.0	5.0	1′	75.1	5.0
2′	75.2, CH	3.79, d (7.5)	2′	84.6	3.6	2′	82.6	3.6
3′	74.6, C		3′	77.6		3′	77.6	
4'	70.1, CH	4.26, s	4′	76.0	4.7	4′	76.1	4.7
4a'	143.8, C		4a'	141.2		4a'	141.1	
5'	166.3 <i>,</i> C		5′	156.4		5'	156.9	
6′	123.4, C		6′	146.1		6′	146.6	
7′	104.6, CH	6.81, s	7′	130.0	7.5	7′	129.5	7.4
8′	166.1 <i>,</i> C		8′	156.8		8′	157.1	
8a'	111.0, C		8a'	116.3		8a'	116.2	
9′	190.5, C		9′	188.6		9′	189.4	
9a'	143.9, C		9a'	143.4		9a'	143.4	
10′	185.7, C		10′	187.8		10′	187.8	
10a'	130.8, C		10a'	124.0		10a'	123.5	
11′	22.3, CH ₃	1.33, s	11′	25.9	1.8,0.9,1.9	11′	26.7	1.9,0.9,1.7
12′	57.0, CH ₃	3.70, s	12′	61.4	3.5,4.0,3.4	12′	61.1	4.0,3.6,3.4

Table S1.Experimental (Exp.) and calculated (Cal.) chemical shift values of enantiomers A
and B on aliphatic ring part of Alterporriol Z1 (1)

No.	1^{a}
	$\delta_{\rm H}(J \text{ in Hz})$
1	7.52, s
2	
3	
4	7.70, s
4a	
5	
6	
7	6.78, s
8	
8a	
9	
9a	
10	
10a	
11	2.23, s
12	3.68, s
1′	4.64, d (7.0)
2′	3.70, d (7.0)
3′	
4′	4.12, d (6.0)
4a′	
5'	
6'	
7′	6.78, s
8'	
8a'	
9′	
9a′	
10′	
10a′	
11′	1.26, s
12′	3.69, s
13′	
1' OH	4.29, br. s
2′ OH	4.22, br. s
3' OH	3.78, s
4' OH	4.70, d (6.0)

^a Measured at 800 MHz for ¹H NMR

Table S2. The 1 H NMR Data of Alterportiol Z1 (1) in THF-ds