SUPPLEMENTARY MATERIALS FOR

Bioactive Metabolites from the Mariana Trench Sediment-Derived Fungus *Penicillium* **sp. SY2107**

Sidra Kaleem¹, Le Qin¹, Wenwen Yi¹, Xiao-Yuan Lian^{2,*} and Zhizhen Zhang^{1,*}

- ¹ Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China; kaleemsidra85@yahoo.com (S.K.), qinle19951102@126.com (L.Q.), 18790658213@163.com (W.Y.)
- ² College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
- * Correspondence: xylian@zju.edu.cn (X.L.); zzhang88@zju.edu.cn (Z.Z.); Tel.: +86-13575476388 (X.L.); +86-13675859706 (Z.Z.)

CONTENT

Figure S ₁ . Colonies of <i>Penicillium</i> sp. SY2107	3
Figure S2. ITS rDNA sequence of Penicillium sp. SY2107	3
Table S ₁ . Score statistics for sequence alignment of strain SY2107	4
Physicochemical data of known compounds 3–16	4
Table S ₂ . ¹³ C NMR data of compounds $2-8$	7
Table S ₃ . ¹ H NMR data of compounds 2–5.	8
Table S4. ¹ H NMR data of compounds 6–8.	9
Table S ₅ . ¹³ C NMR data of compounds 9–16.	.10
Table S ₆ . ¹ H NMR data of compounds 9–12	.11
Table S7. ¹ H NMR data of compounds 13–16.	12
Figures S ₃₋₅ . ¹ H NMR spectra of andrastone C (1)	.13
Figures S ₆₋₉ . ¹³ C NMR spectra of andrastone C (1)	.14
Figures S ₁₀₋₁₂ . DEPT spectra of andrastone C (1)	.16
Figures S ₁₃₋₁₅ . HMQC spectra of andrastone C (1)	.18
Figure S ₁₆ . COSY spectrum of andrastone C (1)	.19
Figures S ₁₇₋₂₀ . HMBC spectra of andrastone C (1)	.20
Figure S ₂₁ . NOE spectrum of andrastone C (1)	.22
Figure S _{22.} HRESIMS spectrum of andrastone C (1)	.22
Table S ₈ . Crystal data and structure refinement parameters of and rastone C (1)	.23
Table S ₉ . Fractional atomic coordinates $(\times 10^4)$ and equivalent isotropic displacem	ıent
parameters ($Å^2 \times 10^3$) for andrastone C (1). U _{eq} is defined as 1/3 of the trace of	the
orthogonalised U _{IJ} tensor	24
Table S ₁₀ . Anisotropic displacement parameters ($Å^2 \times 10^3$) for andrastone C (1).	The
anisotropic displacement factor exponent takes the form:	-
$2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.25
Table S_{11} . Bond lengths for and rastone $C(1)$	26
Table S12. Bond angles for andrastone C (1)	.27
Table S_{13} . Torsion angles for and rastone $C(1)$	28
Table S14. Hydrogen atom coordinates (Å×10 ⁴) and isotropic displacement parameter	ters
$(Å^2 \times 10^3)$ for andrastone C (1)	.30
Table S_{15} . Crystal data and structure refinement parameters of andrastone B (2)	.31
Table S ₁₆ . Fractional atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement	ient
parameters ($Å^2 \times 10^3$) for and rastone B (2). U _{eq} is defined as 1/3 of the trace of	the
orthogonalised U _{IJ} tensor	.32
Table S17. Anisotropic displacement parameters (Å $^{2}\times10^{3}$) for and rastone B (2). The anisotropic	opic
displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$	33
Table S18. Bond lengths for andrastone B (2).	34
Table S19. Bond Angles for andrastone B (2)	.35
Table S20. Torsion angles for andrastone B (2).	.36
Table S ₂₁ . Hydrogen atom coordinates (Å×10 ⁴) and isotropic displacement parameter	ters
$(Å^2 \times 10^3)$ for andrastone B (2)	.38

Figure S₁. Colonies of *Penicillium* sp. SY2107 cultured in ISP2Y solid medium at 28 °C for 7 days

Figure S2. ITS rDNA sequence of Penicillium sp. SY2107

Accession	Description	Max	Total	Query	Evalue	Ident
	Description	score	score	coverage		
MN413181.1	Penicillium sp. strain Pb-G small subunit ribosomal RNA gene, 5.8S ribosomal RNA gene, and internal transcribed spacer 2	1020	1020	100%	0.0	100%
MK267450.1	Penicillium chrysogenum isolate E20401_ITS small subunit ribosomal RNA gene, 5.8S ribosomal RNA gene, and internal transcribed spacer 2	1020	1020	100%	0.0	100%
MK178856.1	Penicillium chrysogenum isolate Seq_MEL-07 small subunit ribosomal RNA gene, 5.8S ribosomal RNA gene,	1020	1020	100%	0.0	100%
MH865997.1	Penicillium chrysogenum strain CBS 132216, 5.8S ribosomal RNA gene	1020	1020	100%	0.0	100%
MF077262.1	Penicillium chrysogenum strain F-98 small subunit ribosomal RNA gene, internal transcribed spacer 1, 5,85	1020	1020	100%	0.0	100%
MF077261.1	ribosomal RNA gene, and internal transcribed spacer 2 <i>Penicillium chrysogenum</i> strain F-94 small subunit ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2	1020	1020	100%	0.0	100%

Table S₁. Score statistics for sequence alignment of strain SY2107

Physicochemical data of known compounds 3–16

(*Z*)-*N*-(4-hydroxystyryl)formamide (**3**): Colorless amorphous powder; molecular formula C₉H₉NO₂; UV (MeOH) λ_{max} (log ε) 278 (3.10), 217 (2.81) nm; IR (MeOH) ν_{max} 3253, 2920, 2850, 1653, 1604, 1484, 1394, 1231, 1204, 1180, 841 cm⁻¹; ¹³C NMR data (150 MHz, in DMSO-*d*₆), Table S₂, ¹H NMR data (600 MHz, in DMSO-*d*₆), Table S₃; HRESIMS *m/z* 164.0711 [M+H]⁺ (calcd for C₉H₁₀NO₂, 164.0712) and 186.0527 [M+Na]⁺ (calcd for C₉H₉NNaO₂, 186.0531).

Pyripyropene A (4): White solid; molecular formula $C_{31}H_{37}NO_{10}$; $[\alpha]_D^{20} + 42^\circ$ (*c* 0.10, MeOH); ¹³C NMR (data 150 MHz, in MeOH-*d*₄), Table S₂, ¹H NMR data (600 MHz, in MeOH-*d*₄), Table S₃.

Fumiquinazoline C (5): Light-yellow amorphous powder; molecular formula $C_{24}H_{21}N_5O_4$; $[\alpha]_D{}^{20}$ -60.8° (*c* 0.10, MeOH); {}^{13}C NMR data (150 MHz, in DMSO-*d*₆), Table S₂, {}^{1}H NMR data (600 MHz, in DMSO-*d*₆), Table S₃.

Spirotryprostatin C (6): Pale-yellow amorphous powder; molecular formula $C_{27}H_{33}N_3O_6 [\alpha]_D{}^{20} -52^\circ (c \ 0.20, MeOH); {}^{13}C \ NMR \ data (150 \ MHz, in CHCl_3-d), Table S_2,$ ${}^{1}H \ NMR \ data (600 \ MHz, in CHCl_3-d), Table S_4.$

Fumiquinazoline J (7): White amorphous powder; molecular formula C₂₁H₁₆N₄O₂;

 $[\alpha]_D^{20}$ –68° (*c* 0.10, MeOH), MeOH); ¹³C NMR data (150 MHz, in DMSO-*d*₆), Table S₂, ¹H NMR data (600 MHz, in DMSO-*d*₆), Table S₄.

Pseurotin A (8): White amorphous powder; molecular formula $C_{22}H_{25}NO_8$; $[\alpha]_D^{20}-45^\circ$ (*c* 0.20, MeOH); ¹³C NMR data (150 MHz, in DMSO-*d*₆), Table S₂, ¹H NMR data (600 MHz, in DMSO-*d*₆), Table S₄.

Penicilliumin B (9): White crystal; molecular formula $C_{21}H_{30}O_3$; $[\alpha]_D^{20}+32^\circ$ (*c* 0.20, MeOH); ¹³C NMR data (150 MHz, in CHCl₃-*d*), Table S₅, ¹H NMR data (600 MHz, in CHCl₃-*d*), Table S₆.

(-)-Viridin (10): White crystals; molecular formula $C_{20}H_{16}O_6$; $[\alpha]_D^{20}$ –34° (*c* 0.20, MeOH); ¹³C NMR data (150 MHz, in DMSO-*d*₆), Table S₅, ¹H NMR data (600 MHz, in DMSO-*d*₆), Table S₆.

Monascusone A (11): Yellow oil; molecular formula $C_{13}H_{18}O_5$; $[\alpha]_D^{20} + 48^\circ$ (*c* 0.20, MeOH); ¹³C NMR data (150 MHz, in MeOH-*d*₄), Table S₅, ¹H NMR data (600 MHz, in MeOH-*d*₄), Table S₆.

Aspergillumarin A (12): Colorless oil; molecular formula $C_{14}H_{16}O_4$; $[\alpha]_D{}^{20}-39^\circ$ (*c* 0.10, MeOH); ¹³C NMR data (150 MHz, in CHCl₃-*d*), Table S₅, ¹H NMR data (600 MHz, in CHCl₃-*d*), Table S₆.

1,2-Seco-trypacidin (13): White powder; molecular formula $C_{18}H_{18}O_7$; ¹³C NMR data (150 MHz, in DMSO-*d*₆), Table S₅, ¹H NMR data (600 MHz, in DMSO-*d*₆), Table S₇.

Di-Me 2,3'-dimethylosoate (14): White needle; molecular formula $C_{19}H_{20}O_8$; ¹³C NMR data (150 MHz, in MeOH-*d*₄), Table S₅, ¹H NMR data (600 MHz, in MeOH-*d*₄), Table S₇.

(*S*)-2-(2-Hydroxypropanamido)benzamide (**15**): Light-yellow powder; molecular formula $C_{10}H_{12}N_2O_3$; $[\alpha]_D^{20}-34^\circ$ (*c* 0.15, MeOH); ¹³C NMR data (150 MHz, in DMSO-*d*₆), Table S₅, ¹H NMR data (600 MHz, in DMSO-*d*₆), Table S₇.

Bisdethiobis(methylthio)gliotoxin (**16**): Yellow oil; molecular formula $C_{15}H_{20}N_2O_4S_2$; $[\alpha]_D^{20}-21^\circ$ (*c* 0.15, MeOH); ¹³C NMR data (150 MHz, in CHCl₃-*d*), Table S₅, ¹H NMR data (600 MHz, in CHCl₃-*d*), Table S₇.

No.	2^{a}	3 ^{<i>a</i>}	4^{a}	5^{b}	6 ^c	7^{b}	8 ^b
1	21.9, CH ₂	127.9, C	37.2, CH ₂	172.3, C	_	169.1, C	_
2	23.2, CH ₂	130.8, CH	24.0, CH ₂	_	178.9, C	_	166.6, C
3	77.5, CH	116.7, CH	75.4, CH	83.8, C	60.9, C	54.6, C	111.6, C
4	35.7, C	157.9, C	41.8, C	150.3, C	117.5, C	154.3, C	196.7, C
5	56.8, CH	116.7, CH	46.8, CH	_	126.9, CH	_	92.5, C
6	79.6, CH	130.8, CH	26.2, CH ₂	146.3, C	106.6, CH	146.6, C	187.0, C
7	36.5, CH ₂	114.0, CH	79.9, CH	128.0, CH	160.6, C	127.4, CH	_
8	41.0, C	118.7, CH	84.6, C	134.5, CH	97.2, CH	134.8, CH	91.2, C
9	53.4, CH	161.9, CH	55.6, CH	128.1, CH	144.6, C	127.4, CH	75.0, CH
10	45.4, C		39.3, C	126.1, CH	75.4, CH	126.4, CH	72.0, CH
11	125.9, CH		60.4, CH	121.1, C	87.2, C	119.4, C	68.2, CH
12	135.3, CH		104.7, C	159.3, C	_	159.3, C	129.1, CH
13	62.0, C		165.2, C	_	169.0, C	_	133.9, CH
14	209.4, C		158.4, C	51.1, CH	60.7, CH	54.1, CH	$20.7, CH_2$
15	73.1, C		101.1, CH	31.2, CH ₂	27.7, CH ₂	25.6, CH ₂	14.2, CH ₃
16	213.9, C		164.3, C	23.9, CH ₃	23.3, CH ₂	18.3, CH ₃	5.7, CH ₃
17	74.7, C		13.6, CH ₃	87.0, C	45.0, CH ₂	105.5, C	196.5, C
18	23.0, CH ₃		$66.2, CH_2$	85.6, CH	_	134.0, C	133.8, C
19	26.8, CH ₃		16.9, CH ₃	_	165.1, C	—	130.3, CH
20	21.5, CH ₃		18.1, CH ₃	58.1, CH	57.6, CH	134.8, C	128.4, CH
21	181.3, C		129.3, C	170.0, C	121.8, CH	111.7, CH	133.5, CH
22	18.9, CH ₃		135.1, CH	_	138.7, C	122.3, CH	128.4, CH
23	19.6, CH ₃		125.6, CH	136.2, C	17.9, CH ₃	120.2, CH	130.3, CH
24	20.1, CH ₃		152.1, CH	114.5, CH	$25.3, CH_3$	118.1, CH	51.7, CH ₃
25	169.4, C		147.6, CH	129.9, CH	38.6, CH ₂	127.3, C	
26	172.4, C		172.1, C	125.5, CH	117.4, CH		
27	21.0, CH ₃		21.2, CH ₃	125.1, CH	137.7, C		
28	52.5, CH ₃		172.7, C	138.3, C	18.2, CH ₃		
29			20.8, CH ₃	17.5, CH ₃	25.6, CH ₃		
30			172.6, C		55.6, CH ₃		
31			21.2, CH ₃				

Table S₂. ¹³C NMR data of compounds **2–8** (150 MHz)

^{*a,,b,c*} The data were recorded in MeOH-*d*₄, DMSO-*d*₆, and CHCl₃-*d*, respectively.

No.	2^a	3 ^{<i>a</i>}	4^{a}	5^{b}
1	α: 2.10, dd (13.5, 3.6); β: 1.42, dt (13.5, 5.7)	_	a: 2.15, m; b: 1.27, m	_
2	a: 1.74, m; b: 1.66, m	7.18, d (8.5)	a: 1.89, m; b: 1.84, m	9.97, s
3	4.62, dd (3.7, 1.9)	6.79, d (8.5)	4.80, dd (11.9, 5.1)	_
5	1.95, br s	6.79, d (8.5)	1.61, m	_
6	4.91, d (4.0)	7.18, d (8.5)	a: 1.82, m; b: 1.66, m	_
7	α: 2.64, dd (14.5, 4.7); β: 1.42, d (14.5)	5.74, d (9.9)	4.98, m	7.78, d (8.0)
8	_	6.73, d (9.9)	_	7.87, td (8.0, 1.6)
9	2.73, t (2.3)	8.09, s	1.61, m	7.62, td (8.0, 1.6)
10	-		_	8.19, d (8.0)
11	5.79, br s		4.97, m	_
14	-		_	5.36, d (7.0)
15	-		6.80, s	a: 2.91 dd (15.3, 7.0); b: 2.04, d (15.3)
16	_		_	1.89, s
17	_		0.92, s	_
18	0.90, s		a: 3.79, d (11.9); b: 3.74, d (11.9)	5.08, d (9.3)
19	1.00, s		1.75, s	2.32, t (9.3)
20	1.40, s		1.49, s	3.50, m
21	_		_	_
22	1.72, d (2.3)		8.27, dd (8.2, 2.0)	-
23	1.35, s		7.53, dd (8.2, 5.1)	-
24	1.32, s		8.62, d (5.1)	7.33, d (7.6)
25	-		9.02, s	7.34, t (7.6)
26	-		_	7.20, t (7.6)
27	2.05, s		2.03, s	7.30, d (7.6)
28	3.62, s		_	_
29	_		2.07, s	0.87, d (7.2)
31			2.13	

Table S₃. ¹H NMR data of compounds **2–5** (600 MHz, *J* in Hz)

 $\overline{a_{,b,c}}$ The data were recorded in MeOH- d_4 and DMSO- d_6 , respectively.

No	6 ^{<i>a</i>}	7 b	8 ^b
2	Ū	957 s	0
5	6 98 d (9 0)	-	_
6	6.56 dd $(9.0, 2.7)$	_	_
0	0.50, uu(5.0, 2.7)	-7644(70)	0.06
/ 8	- 6 42 d (2 7)	7.04, d(7.9)	9.90, 8
0	0.42, d (2.7)	7.80, t(7.9)	
9	_ 4.92 ~	7.32, t(7.9)	4.40, d (8.8)
10	4.82, S	8.14, d (7.9)	4.34, t (5.7)
11	_	-	4.45, m
12	—	-	5.40, t (7.7)
13	-	-	5.37, m
14	4.61, t (8.8)	5.70, dd (4.6, 3.0)	a: 2.02, m; b: 1.96, m
15	a: 2.38, m; b: 2.08, m	a: 3.41 dd (17.5, 3.0); b: 3.21, dd (17.5, 4.6)	0.87, t (7.7)
16	a: 2.05, m; b: 1.97, m	2.12, s	1.64, s
17	3.59, m	_	_
19	_	11.21, s	8.25, d (8.1)
20	4.85, d (9.0)	_	7.52, t (8.1)
21	4.90, d (9.0)	7.36, d (8.0)	7.66, t (8.1)
22	_	7.10, t (8.0)	7.52, t (8.1)
23	1.07, s	6.98, t (8.0)	8.25, d (8.1)
24	1.61, s	7.40, d (8.0)	3.24, s
25	a: 4.39, dd (15.6, 7.0); b: 4.22, dd (15.6, 7.0)	_	_
26	5.12, t (7.0)	_	_
28	1.83, s	_	_
29	1.73, s	_	_
30	3.82, s	_	_
OH-9	_	_	6.24, d (8.8)
OH-10	_	_	5.75, d (5.7)
OH-11	_	_	4.88, d (4.8)

Table S₄. ¹H NMR data of compounds **6–8** (600 MHz, *J* in Hz)

 a,b The data were recorded in CHCl₃-*d* and DMSO-*d*₆, respectively.

No.	9 ^a	10 ^b	11 ^c	12 ^{<i>a</i>}	13 ^b	14 ^c	15 ^b	16 ^{<i>a</i>}
1	38.6, CH ₂	72.3, CH	65.3, CH ₂	170.0, C	110.1, C	136.1, C	121.5, C	165.8, C
2	19.3, CH ₂	85.6, CH	_	_	163.3, C	157.3, C	139.3, C	_
3	41.9, CH ₂	187.8, C	166.9, C	79.6, CH	103.5, CH	106.3, CH	123.0, CH	71.8, C
4	33.7, C	121.6, C	104.4, CH	33.0, CH ₂	147.8, C	155.4, C	132.3, CH	166.7, C
5	55.5, CH	144.4, C	$35.6,\mathrm{CH}_2$	118.2, CH	110.1, CH	109.2, CH	120.5, CH	_
6	24.4, CH ₂	145.9, C	73.7, CH	136.4, CH	160.8, C	127.7. C	129.1, CH	69.6, CH
7	38.0, CH ₂	172.9, C	78.3, C	116.4, CH	199.4, C	168.0, C	170.9, C	74.4, CH
8	149.7, C	129.2, C	199.2, C	162.4, C	125.8, C	52.8, CH ₃	174.7, C	130.0, CH
9	51.2, CH	157.2, C	114.4, C	108.6, C	156.6, C	56.8, CH ₃	68.5, CH	123.2, CH
10	40.0, C	41.9, C	151.4, C	139.5, C	103.2, CH	158.2, C	21.5, CH ₃	120.1, CH
11	33.5, CH ₃	128.1, CH	44.8, CH ₂	$34.2,\mathrm{CH}_2$	158.2, C	111.5, C	_	131.5, C
12	21.6, CH ₃	126.5, CH	66.6, CH	19.2, CH ₂	107.2, CH	159.0, C	_	39.0, CH ₂
13	14.7, CH ₃	136.4, C	18.3, CH ₃	$43.1, \mathrm{CH}_2$	127.9, C	106.0, CH	_	71.5, C
14	30.0, CH ₂	157.2, C	23.6, CH ₃	208.5, C	21.9, CH ₃	143.0, C	_	63.6, CH ₂
15	$108.4, \mathrm{CH}_2$	$28.2,\mathrm{CH}_2$	_	30.2, CH ₃	165.8, C	107.8, CH	_	28.6, CH ₃
16	75.5, C	$35.9,\mathrm{CH}_2$	_	_	52.1, CH ₃	169.1, C	_	13.7, CH ₃
17	203.2, C	205.7, C	_	_	55.9, CH ₃	22.2, CH ₃	_	15.1, CH ₃
18	160.4, C	$29.8,\mathrm{CH}_3$	_	_	55.9, CH ₃	56.6, CH ₃	_	_
19	142.9, CH	151.5, CH	_	_	_	52.8, CH ₃	_	_
20	201.6, C	$60.5,\mathrm{CH}_3$	-	_	_	_	_	-
21	12.0, CH ₃	_	-	_	_	_	-	-
22	_	—	_	_	_	_	_	_

Table S₅. ¹³C NMR data of compounds 9-16 (150 MHz)

 $\overline{a_{,b,c}}$ The data were recorded in CHCl₃-*d*, DMSO-*d*₆, and MeOH-*d*₄, respectively.

No.	9 ^a	10 ^b	11 ^c	12 ^{<i>a</i>}
1	a: 1.58, br d (12.4); b: 0.92, dt (12.4, 4.2)	4.38, d (4.5)	a: 4.86, d (12.8); b: 4.78, d (12.8)	_
2	a: 1.50, m; b: 1.46, m	3.76, d (4.5)	_	-
3	a: 1.34, br d (13.2); b: 1.13, dt (13.2, 4.2)	_	_	4.56, m
4	_	_	5.38, s	a: 2.94, dd (16.2, 10.3); b: 2.90, dd (16.2, 4.5)
5	1.10, dd (12.8, 2.9)	_	a: 2.63, dd (17.9, 5.4); b: 2.41, d (17.9, 10.1)	6.69, d (7.9)
6	a: 1.72, m; b: 1.66, m	_	3.90, dd (10.1, 5.4)	7.40, t (7.9)
7	a: 2.31, td (12.6, 2.9); b: 1.94, m	_	_	6.88, d (7.9)
8	_	_	_	_
9	1.86, d (14.2)	_	_	_
10	_	_	_	a: 1.86, m; b: 1.79, m
11	0.84, s	8.68, d (8.1)	a: 2.34, dd (14.2, 7.3); b: 2.28, d (14.2, 5.3)	a: 1.86, m; b: 1.79, m
12	0.75, s	7.92, d (8.1)	3.98, m	a: 1.83, m; b: 1.75, m
13	0.59, s	_	1.19, d (6.0)	2.53, t (7.1)
14	a: 2.01, dd (14.2, 10.6); b: 1.91, d (14.2)	_	1.22, s	_
15	a: 4.85, s; b: 4.54, s	a: 3.63, m; b: 3.52, m	_	2.17, s
16	_	2.66, m	_	_
18	_	1.64, s	_	_
19	6.93, s	8.97, s	_	_
20	_	3.58, s	_	_
21	2.09, s	_	_	_
OH-8	_	_	_	10.99, s

Table S₆. ¹H NMR data of compounds **9–12** (600 MHz, J in Hz)

^{*a,b,c*} The data were recorded in CHCl₃-*d*, DMSO-*d*₆, and MeOH-*d*₄, respectively.

No.	13 ^b	14 ^c	15^b	16 ^{<i>a</i>}
3	6.69, d (1.9)	6.72, d (2.8)	7.74, d (8.2)	_
4	_	_	7.46, t (8.2)	_
5	6.90, d (1.9)	6.80, d (2.8)	7.10, t (8.2)	_
6	—	—	8.57, d (8.2)	4.92, d (14.2)
7	—	—	_	4.89, d (14.2)
8	—	3.72, s	_	5.73, d (9.8)
9	—	3.68, s	4.10, m	5.87, dd (9.8, 4.7)
10	6.26, s	_	1.30, d (6.5)	5.93, d (4.7)
12	6.38, s	_	_	a: 3.06, d (16.0); b: 2.92, d (16.0)
13	—	6.48, s	—	_
14	2.26, s	_	_	a: 4.37, d (12.0); b: 3.90, d (12.0)
15	—	5.86, s	—	3.14, s
16	3.33, s	—	—	2.26, s
17	3.63, s	2.19, s	_	2.24, s
18	3.62, s	3.81, s	_	_
19	—	3.85, s	—	_
OH-2	12.97, s	—	—	_
OH-9	—	—	5.98, d (3.5)	_
NH-2	—	—	12.0, s	_
NH2-7	_	_	a: 8.17, s; b: 7.70, s	_

Table S₇. ¹H NMR data of compounds 13–16 (600 MHz, J in Hz) 1 2

^{*a,,b,c*} The data were recorded in CHCl₃-*d*, DMSO-*d*₆, and MeOH-*d*₄, respectively.

Figure S₄. ¹H NMR spectrum of andrastone C (1)

Figure S₅. ¹H NMR spectrum of andrastone C (1)

Figure S₇. ¹³C NMR spectrum of andrastone C (1)

Figure S₉. ¹³C NMR spectrum of and rastone C (1)

Figure S_{11} . DEPT spectrum of andrastone C (1)

Figure S_{16} . COSY spectrum of andrastone C (1)

Figure S₁₉. HMBC spectrum of andrastone C (1)

Figure S₂₁. NOESY spectrum of compound andrastone C (1)

Figure S₂₂. HRESIMS spectrum of andrastone C (1)

 $\left[M+H\right]^{+}: 501.2482 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.2488\text{)}; \\ \left[M+Na\right]^{+}: 523.2308 \text{ (calcd for } C_{28}H_{37}O_8\text{, } 501.24888\text{)}; \\ \left[M+Na\right]^{+}: 523.24888\text{, } 501.24888\text{, } 501.24888\text{, } 501.24888$

[M–H]⁻: 499.2340 (calcd for C₂₈H₃₅O₈, 499.2332).

Identification code	2107-К
Empirical formula	$C_{28}H_{36}O_8$
Formula weight	500.57
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21
a/Å	8.58899(11)
b/Å	8.86131(11)
c/Å	16.7937(2)
$\alpha/^{\circ}$	90
β/°	96.8005(12)
$\gamma/^{\circ}$	90
Volume/Å ³	1269.17(3)
Z	2
$\rho_{calc}g/cm^3$	1.310
µ/mm ⁻¹	0.784
F(000)	536.0
Crystal size/mm ³	0.13 imes 0.11 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	5.3 to 147.088
Index ranges	$-10 \le h \le 10, -10 \le k \le 10, -18 \le l \le 20$
Reflections collected	7640
Independent reflections	4316 [$R_{int} = 0.0172$, $R_{sigma} = 0.0240$]
Data/restraints/parameters	4316/1/335
Goodness-of-fit on F ²	1.037
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0311, wR_2 = 0.0856$
Final R indexes [all data]	$R_1 = 0.0318, wR_2 = 0.0866$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.14
Flack/Hooft parameter	-0.02(8)/-0.00(6)
CCDC Number	1979103

Table S₈. Crystal data and structure refinement parameters of and rastone C (1)

Atom	x	У	Z	U(eq)
05	5697.8(16)	6774.5(16)	8055.2(8)	36.4(3)
08	3171.0(18)	5230(2)	8793.7(10)	48.0(4)
O2	10450(2)	8077(2)	6820.6(9)	52.8(4)
O6	8413(2)	3456(2)	9891.0(11)	61.4(5)
O4	4682(2)	6551(2)	5876.3(9)	53.2(4)
O7	2802.9(19)	3000(2)	8192.1(12)	57.2(5)
O3	7765(3)	2996(2)	5536.2(11)	61.5(5)
01	12595(2)	8999(3)	6371.0(13)	70.5(6)
С9	7303(2)	4288(2)	7296.6(11)	30.3(4)
C25	3639(2)	4035(3)	8405.8(12)	37.2(4)
C15	7127(2)	5562(3)	9227.1(12)	37.1(4)
C16	6065(2)	5629(2)	8573.1(11)	32.4(4)
C3	9882(3)	7474(3)	6028.7(13)	42.2(5)
C8	5520(2)	4413(2)	7359.9(11)	31.4(4)
C7	5043(2)	6080(2)	7284.9(12)	34.3(4)
C5	7381(2)	6673(2)	6531.0(11)	32.0(4)
C17	5377(2)	4162(2)	8271.8(11)	32.1(4)
C10	7854(2)	4976(2)	6520.2(11)	32.2(4)
C6	5642(2)	6960(3)	6598.7(12)	38.3(4)
C12	7470(3)	2114(2)	8222.7(13)	40.0(5)
C21	7178(3)	4114(3)	5770.2(12)	40.6(5)
C11	7845(2)	2732(2)	7545.6(12)	37.7(4)
C14	7439(2)	3968(3)	9376.0(12)	38.9(5)
C2	10390(3)	5846(3)	5996.6(13)	42.6(5)
C4	8096(3)	7678(3)	5902.5(12)	40.1(5)
C26	11812(3)	8808(3)	6909.9(17)	52.0(6)
C13	6424(2)	2950(2)	8756.0(11)	35.2(4)
C1	9655(2)	4867(3)	6599.9(12)	39.1(4)
C19	7548(3)	7273(3)	5019.9(13)	54.5(6)
C24	8036(3)	6801(3)	9661.1(15)	51.7(6)
C20	4509(3)	3388(3)	6782.0(13)	45.0(5)
C28	1541(3)	5248(4)	8939.8(15)	55.1(7)
C23	5529(3)	1861(3)	9247.5(15)	52.7(6)
C18	7686(4)	9340(3)	6029.5(18)	60.5(7)
C22	8087(4)	587(3)	8491.7(17)	65.2(8)
C27	12264(4)	9299(4)	7757(2)	76.5(9)

Table S₉. Fractional atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ for andrastone C (1). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{II}tensor.

umbour		ment netor exp	onent takes ti		011 - 21114	0 012].
Atom	U11	U ₂₂	U33	U ₂₃	U13	U ₁₂
05	40.0(7)	32.5(7)	37.4(7)	-2.4(6)	6.7(6)	1.9(6)
08	36.7(8)	58.8(10)	50.8(9)	-11.6(8)	14.6(7)	-1.6(7)
O2	55.3(9)	60.2(11)	43.7(8)	-10.2(8)	9.9(7)	-21.3(8)
06	60.6(11)	68.3(12)	50.0(10)	4.9(9)	-15.4(8)	7.0(9)
O4	44.3(9)	71.3(12)	41.1(8)	9.5(8)	-6.6(6)	11.5(8)
O7	41.1(8)	57.6(11)	74.5(11)	-13.3(9)	14.0(8)	-14.7(8)
03	97.0(14)	41.1(10)	48.3(9)	-11.9(8)	17.3(9)	-0.3(9)
01	47.4(10)	77.7(14)	88.7(14)	-4.9(12)	17.4(10)	-10.1(10)
C9	35.3(9)	30.2(9)	25.9(8)	-0.2(7)	5.5(7)	3.2(7)
C25	33.6(9)	44.8(12)	33.8(9)	1.6(8)	6.6(8)	-3.2(9)
C15	32.3(9)	46.6(12)	33.4(9)	-7.2(9)	7.8(7)	-3.0(9)
C16	31.0(9)	35.6(10)	31.8(9)	-2.8(8)	9.0(7)	0.1(8)
C3	46.3(11)	47.6(13)	34.2(10)	-0.9(9)	10.9(9)	-11.5(10)
C8	31.6(9)	33.2(10)	29.2(9)	-0.3(7)	2.9(7)	-1.5(7)
C7	30.6(9)	38.1(10)	34.2(9)	0.3(8)	3.5(7)	3.2(8)
C5	36.6(10)	31.0(9)	28.7(9)	1.9(8)	5.4(7)	2.0(8)
C17	31.4(9)	34.1(10)	31.1(9)	-0.8(8)	4.8(7)	-2.4(8)
C10	36.6(10)	32.2(10)	28.3(9)	0.1(8)	6.2(7)	1.8(8)
C6	40.1(11)	36.8(11)	38.0(10)	5.9(8)	4.6(8)	5.9(9)
C12	47.9(11)	33.5(10)	38.8(10)	4.9(9)	6.5(9)	5.4(9)
C21	53.7(12)	39.1(11)	30.1(9)	-1.2(8)	9.8(8)	-7.8(9)
C11	45.8(11)	32.7(10)	36.1(10)	-0.1(8)	11.0(8)	7.6(9)
C14	35.5(10)	50.4(13)	31.3(9)	1.2(9)	5.7(8)	0.5(9)
C2	39.5(11)	52.0(13)	38.2(10)	-1.9(10)	12.8(9)	-2.3(10)
C4	48.2(11)	38.1(11)	34.8(10)	7.3(9)	8.5(8)	-0.9(9)
C26	43.8(12)	39.6(13)	72.1(16)	-6.7(12)	5.1(11)	0.7(10)
C13	36.3(10)	37.8(11)	32.0(9)	4.9(8)	5.9(7)	-1.2(8)
C1	37.6(10)	43.7(11)	37.4(10)	3.1(9)	9.9(8)	5.5(9)
C19	62.3(15)	66.4(17)	34.1(11)	14.1(11)	3.3(10)	-4.0(13)
C24	44.4(12)	59.9(15)	50.5(13)	-16.6(12)	4.4(10)	-7.7(11)
C20	45.9(12)	49.6(13)	38.1(10)	-5.3(10)	-0.2(9)	-10.8(10)
C28	35.5(11)	78.4(19)	53.5(13)	-5.3(13)	14.2(10)	6.1(11)
C23	50.3(13)	56.6(15)	52.5(13)	20.1(12)	11.9(10)	-5.0(11)
C18	78.7(18)	36.8(13)	70.1(17)	15.2(12)	25.9(14)	1.5(12)
C22	91(2)	48.7(15)	59.5(15)	19.2(12)	23.5(14)	25.5(14)
C27	65.5(17)	72(2)	89(2)	-35.6(18)	-4.7(15)	-6.1(15)

Table S₁₀. Anisotropic displacement parameters ($Å^2 \times 10^3$) for andrastone C (1). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

			.).		
Atom	Atom	Length/Å	Atom	Atom	Length/Å
O5	C16	1.349(2)	C3	C4	1.534(3)
O5	C7	1.482(2)	C8	C7	1.534(3)
08	C25	1.330(3)	C8	C17	1.567(2)
O8	C28	1.449(3)	C8	C20	1.523(3)
O2	C3	1.463(3)	C7	C6	1.530(3)
O2	C26	1.330(3)	C5	C10	1.559(3)
O6	C14	1.218(3)	C5	C6	1.533(3)
O4	C6	1.431(3)	C5	C4	1.562(3)
07	C25	1.194(3)	C17	C13	1.565(3)
O3	C21	1.199(3)	C10	C21	1.527(3)
O1	C26	1.202(3)	C10	C1	1.540(3)
С9	C8	1.551(3)	C12	C11	1.335(3)
С9	C10	1.562(2)	C12	C13	1.533(3)
С9	C11	1.499(3)	C12	C22	1.503(3)
C25	C17	1.540(3)	C14	C13	1.563(3)
C15	C16	1.343(3)	C2	C1	1.526(3)
C15	C14	1.454(3)	C4	C19	1.543(3)
C15	C24	1.487(3)	C4	C18	1.535(3)
C16	C17	1.492(3)	C26	C27	1.494(4)
C3	C2	1.510(3)	C13	C23	1.534(3)

Table S_{11} . Bond lengths for and rastone C (1).

Table S_{12} .	Bond ang	les for an	drastone C (I).	A /	A 4	A 1 /0
Atom	Atom	Atom	Angle/	Atom	Atom	Atom	Angle/
C16	05	C7	106.63(15)	C13	C17	C8	119.92(15)
C25	08	C28	116.49(18)	C5	C10	C9	105.14(14)
C26	O2	C3	118.36(18)	C21	C10	C9	111.72(16)
C8	C9	C10	115.37(15)	C21	C10	C5	114.68(17)
C11	C9	C8	108.84(16)	C21	C10	C1	108.69(16)
C11	C9	C10	118.46(15)	C1	C10	C9	107.68(15)
08	C25	C17	111.62(17)	C1	C10	C5	108.67(16)
O7	C25	08	123.53(18)	O4	C6	C7	107.34(18)
O7	C25	C17	124.85(19)	O4	C6	C5	111.34(16)
C16	C15	C14	106.11(18)	C7	C6	C5	112.86(16)
C16	C15	C24	129.4(2)	C11	C12	C13	121.09(18)
C14	C15	C24	123.9(2)	C11	C12	C22	120.9(2)
05	C16	C17	112.58(16)	C22	C12	C13	118.03(19)
C15	C16	05	130.15(19)	O3	C21	C10	123.4(2)
C15	C16	C17	116.22(18)	C12	C11	C9	121.11(18)
O2	C3	C2	108.36(19)	06	C14	C15	125.6(2)
O2	C3	C4	107.65(17)	06	C14	C13	122.7(2)
C2	C3	C4	113.33(18)	C15	C14	C13	111.66(17)
С9	C8	C17	104.41(14)	C3	C2	C1	112.07(17)
C7	C8	С9	108.62(15)	C3	C4	C5	107.84(17)
C7	C8	C17	99.56(15)	C3	C4	C19	106.93(17)
C20	C8	С9	113.97(16)	C3	C4	C18	109.6(2)
C20	C8	C7	113.29(17)	C19	C4	C5	114.64(19)
C20	C8	C17	115.69(17)	C18	C4	C5	109.78(18)
05	C7	C8	104.95(15)	C18	C4	C19	107.9(2)
05	C7	C6	108.61(16)	02	C26	C27	112.1(2)
C6	C7	C8	116.25(16)	01	C26	O2	123.2(2)
C10	C5	C4	114.74(15)	01	C26	C27	124.7(3)
C6	C5	C10	114.78(17)	C12	C13	C17	111.63(15)
C6	C5	C4	114.84(17)	C12	C13	C14	110.44(16)
C25	C17	C8	110.03(15)	C12	C13	C23	112.08(19)
C25	C17	C13	112.43(16)	C14	C13	C17	101.02(16)
C16	C17	C25	111.46(16)	C23	C13	C17	114.66(17)
C16	C17	C8	97.69(15)	C23	C13	C14	106.27(17)
C16	C17	C13	103.98(15)	C2	C1	C10	113.37(17)

 $\underline{ Table \ S_{12}. \ Bond \ angles \ for \ and rastone \ C \ (1). }$

В С В С Angle/° А D Angle/° А D C16 C17 C25 C5 05 -80.06(19)C10 C1 C2 -51.7(2)05 C16 C17 C8 C17 C7 05 35.91(17) 35.06(18) C8 05 C16 C17 C13 158.59(14) C17 C8 C7 C6 155.92(17) -56.2(2) 05 C7 C6 04 -164.47(15)C10 C9 C8 C7 -161.73(16) 05 C7 C6 C5 C10 C9 C8 C17 72.5(2) C25 C17 C16 08 -3.0(2)C10 C9 C8 C20 71.1(2) 08 C25 C17 C8 -110.28(19)C10 C9 C11 C12 176.9(2) C25 C13 08 C17 113.3(2)C10 C5 C6 04 -70.5(2)C3 C2 C1 O2 63.4(2)C10 C5 C6 C7 50.3(2)O2 C3 C4 C5 -54.8(2)-65.0(2)C10 C5 C4 C3 O2 C3 C19 C10 C4 171.24(18) C5 C4 C19 64.1(2)C3 C18 O2 C4 54.5(2)C10 C5 C4 C18 -174.2(2)C14 C13 C17 06 178.49(19) C6 C5 C10 C9 -55.2(2)06 C14 C13 C12 C6 C5 C10 C21 68.0(2)-63.3(3)06 C14 C13 C23 C6 C5 C1 -170.21(15)58.5(3)C10 C17 **O**7 C25 C16 C5 C3 177.0(2)C6 C4 168.98(17) **O**7 C25 C17 C8 69.8(3) C6 C5 C4 C19 -72.1(2)**O**7 C25 C17 C13 -66.7(3)C6 C5 C4 C18 49.6(3)C9 C8 C7 O5 -72.93(17)C21 C10 C1 C2 73.7(2) C9 C8 C7 C6 47.1(2)C11 C9 C8 C7 167.81(16) C9 C8 C17 C25 -172.12(16)C11 C9 C8 C17 62.29(19) C8 C17 C16 C9 71.64(17) C11 C9 C8 C20 -64.9(2)C9 C8 C17 C13 -39.4(2)C11 C9 C10 C5 -168.91(16)C9 C10 C21 C21 O3 -84.7(2)C11 C9 C10 66.1(2)C9 C10 C1 C2 -165.08(17)C11 C9 C10 C1 -53.2(2)C25 C17 C13 C12 130.23(18) C11 C12 C13 C17 23.1(3)C14 C25 C17 C13 -112.39(17)C11 C12 C13 C14 -88.5(3)C25 C17 C13 C23 1.4(3)C11 C12 C13 C23 153.2(2)C15 C17 C25 C16 110.45(19) C14 -159.30(18)C15 C16 05 C17 C8 C15 C16 -134.43(17)C14 C15 C16 C17 8.0(2) C17 C15 C16 C13 -10.9(2)C2 C3 C4 C5 54.8(2) C13 C17 C15 C14 -4.6(2)C2 C3 C4 C19 -68.9(2)C15 C14 C13 C12 C2 C3 113.65(18) C4 C18 174.29(19) C23 C15 C14 C13 C3 C2 C1 -124.57(19)C4 -56.1(2)C16 C7 C8 C10 O5 -15.83(18)C4 C5 C9 168.61(16) C16 O5 C7 C6 -140.79(16)C4 C5 C10 -68.3(2)C21 C16 C15 C14 06 C4 C5 C10 C1 175.2(2)53.6(2)

Table S_{13} . Torsion angles for andrastone C (1).

C16	C15	C14	C13	-1.6(2)	C4	C5	C6	O4	65.7(2)
C16	C17	C13	C12	-109.07(18)	C4	C5	C6	C7	-173.52(18)
C16	C17	C13	C14	8.31(17)	C26	O2	C3	C2	94.5(2)
C16	C17	C13	C23	122.1(2)	C26	O2	C3	C4	-142.5(2)
C3	O2	C26	01	0.1(4)	C13	C12	C11	C9	2.2(3)
C3	O2	C26	C27	-177.7(2)	C1	C10	C21	O3	34.0(3)
C3	C2	C1	C10	54.2(3)	C24	C15	C16	05	11.5(3)
C8	C9	C10	C5	59.5(2)	C24	C15	C16	C17	178.82(19)
C8	C9	C10	C21	-65.5(2)	C24	C15	C14	06	3.8(3)
C8	C9	C10	C1	175.25(17)	C24	C15	C14	C13	-173.04(18)
C8	C9	C11	C12	-48.7(3)	C20	C8	C7	05	159.35(15)
C8	C7	C6	O4	77.5(2)	C20	C8	C7	C6	-80.6(2)
C8	C7	C6	C5	-45.5(2)	C20	C8	C17	C25	-46.0(2)
C8	C17	C13	C12	-1.5(3)	C20	C8	C17	C16	-162.27(18)
C8	C17	C13	C14	115.92(18)	C20	C8	C17	C13	86.7(2)
C8	C17	C13	C23	-130.3(2)	C28	08	C25	07	-1.2(3)
C7	05	C16	C15	154.60(19)	C28	08	C25	C17	178.83(18)
C7	05	C16	C17	-13.03(19)	C22	C12	C11	C9	-176.7(2)
C7	C8	C17	C25	75.69(19)	C22	C12	C13	C17	-158.0(2)
C7	C8	C17	C16	-40.55(16)	C22	C12	C13	C14	90.4(3)
C7	C8	C17	C13	-151.59(17)	C22	C12	C13	C23	-27.9(3)
C5	C10	C21	03	155.78(19)					

Atom	x	у	Z	U(eq)
H4	3946.01	7143.07	5795.54	80
H9	7787.97	4938.68	7728.48	36
H3	10349.58	8049.3	5618.92	51
H7	3896.6	6150.76	7233.23	41
Н5	7906.92	7034.3	7045.31	38
H6	5499.68	8040.22	6693.81	46
H21	6264.25	4475.87	5480.3	49
H11	8451.83	2187.48	7223.01	45
H2A	11522.48	5791.1	6106.87	51
H2B	10092.02	5455.45	5460.62	51
H1A	10076.42	5167.89	7137.82	47
H1B	9950.62	3823.67	6527.5	47
H19A	8038.43	7938.26	4673.53	82
H19B	6430.13	7377.9	4917.99	82
H19C	7836	6249.29	4919.35	82
H24A	9045.35	6878.71	9472.22	78
H24B	8169.9	6587.95	10225.55	78
H24C	7480.57	7735.71	9565.68	78
H20A	4625.02	3670.67	6240.21	67
H20B	3430.62	3488.37	6870.89	67
H20C	4836.02	2359.68	6870.56	67
H28A	883.06	5077.82	8445.05	83
H28B	1296.13	6210.43	9155.8	83
H28C	1365.72	4467.29	9315.43	83
H23A	4859.98	2426.04	9556.86	79
H23B	6262.7	1285.3	9601.36	79
H23C	4904.87	1190.39	8891.92	79
H18A	7876.96	9579.94	6590.01	91
H18B	6600.47	9508.49	5842.07	91
H18C	8325.34	9971.39	5735.75	91
H22A	7226.33	-96.39	8512.94	98
H22B	8668.64	669.5	9014.51	98
H22C	8761.73	213.51	8119.44	98
H27A	12073.56	10361.66	7801.67	115
H27B	13357.34	9096.65	7907.72	115
H27C	11653.01	8755.65	8104.32	115

Table S₁₄. Hydrogen atom coordinates (Å×10⁴) and isotropic displacement parameters (Å²×10³) for andrastone C (1).

Table S_{15} . Crystal data and structure refinement parameters of andrastone B (2)						
Identification code	2017J					
Empirical formula	$C_{28}H_{38}O_{10}$					
Formula weight	534.58					
Temperature/K	293(2)					
Crystal system	orthorhombic					
Space group	P212121					
a/Å	9.1880(3)					
b/Å	13.2582(5)					
c/Å	22.8448(6)					
α/°	90					
β/°	90					
$\gamma^{ m o}$	90					
Volume/Å ³	2782.87(16)					
Z	4					
$\rho_{calc}g/cm^3$	1.276					
μ/mm^{-1}	0.802					
F(000)	1144.0					
Crystal size/mm ³	0.13 imes 0.11 imes 0.1					
Radiation	Cu Ka ($\lambda = 1.54184$)					
2Θ range for data collection/°	7.71 to 147.056					
Index ranges	$-9 \le h \le 11, -15 \le k \le 16, -19 \le l \le 27$					
Reflections collected	13131					
Independent reflections	5414 [$R_{int} = 0.0263$, $R_{sigma} = 0.0313$]					
Data/restraints/parameters	5414/0/355					
Goodness-of-fit on F ²	1.052					
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0438, wR_2 = 0.1126$					
Final R indexes [all data]	$R_1 = 0.0499, wR_2 = 0.1180$					
Largest diff. peak/hole / e Å ⁻³	0.22/-0.17					
Flack/Hooft parameter	-0.01(11)/0.08(10)					
CCDC Number	1976943					

Table S_{15} . Crystal data and structure refinement parameters of andrastone B (2)

jjulisor.			
x	У	Z	U(eq)
10189(2)	3527.8(16)	5501.4(9)	50.5(5)
5171(2)	1916.8(17)	6057.0(8)	52.3(5)
5732(2)	5784.5(18)	5462.8(10)	61.0(6)
11038(2)	4532(2)	6204.7(11)	66.9(7)
6516(3)	-64.8(19)	6676.8(11)	72.6(7)
8499(4)	153(2)	6136.7(15)	91.5(9)
4542(4)	2811(3)	7244.9(11)	90.3(9)
5724(3)	1162(3)	8024.6(10)	94.9(10)
7877(3)	3407(2)	6476.6(10)	40.1(5)
7781(3)	4093.5(19)	5462.0(10)	37.0(5)
8404(3)	4297(2)	6077.8(11)	39.2(5)
7837(3)	4996(2)	5028.4(12)	46.9(6)
8397(3)	2339(2)	6290.9(11)	42.7(6)
10013(3)	4165(2)	5954.3(12)	47.5(6)
5725(3)	1795(2)	6528.0(11)	44.2(6)
8740(3)	3198(2)	5300.8(11)	42.6(6)
7379(3)	1601(2)	6631.9(11)	46.1(6)
4002(3)	4099(3)	6368(2)	103.4(11)
7269(3)	5944(2)	5333.8(14)	53.1(7)
8297(3)	2233(2)	5611.9(11)	44.5(6)
8000(3)	5321(2)	6337.9(13)	49.4(7)
7586(4)	491(2)	6443.2(14)	60.2(8)
8055(4)	6184(2)	5900.1(15)	59.3(8)
7551(4)	1694(3)	7322.8(12)	57.5(8)
7932(4)	2779(3)	7505.2(12)	63.1(9)
8088(3)	3523(3)	7127.3(12)	56.8(7)
6011(4)	1485(3)	7545.9(13)	64.2(9)
4874(4)	1797(3)	7096.4(12)	58.7(8)
9371(4)	5241(3)	4787.5(15)	62.2(8)
9996(3)	2121(3)	6480.0(15)	59.6(8)
4787(4)	6486(3)	5303(2)	79.1(11)
6882(4)	4729(3)	4502.6(14)	66.0(9)
5155(4)	7261(3)	5100(3)	183(3)
3550(4)	1134(4)	7085.3(17)	90.7(15)
6587(7)	-1145(3)	6548(2)	96.2(15)
8607(5)	930(4)	7605.3(17)	86.9(13)
3259(4)	6175(3)	5404(2)	84.3(12)
8113(7)	2969(4)	8157.4(14)	104.2(17)
	x10189(2)5171(2)5732(2)11038(2)6516(3)8499(4)4542(4)5724(3)7877(3)7877(3)7877(3)7837(3)8397(3)10013(3)5725(3)8740(3)7379(3)4002(3)7269(3)8297(3)8000(3)7586(4)8055(4)7551(4)7932(4)8088(3)6011(4)4874(4)9371(4)9996(3)4787(4)6882(4)5155(4)3550(4)6587(7)8607(5)3259(4)8113(7)	x y $10189(2)$ $3527.8(16)$ $5171(2)$ $1916.8(17)$ $5732(2)$ $5784.5(18)$ $11038(2)$ $4532(2)$ $6516(3)$ $-64.8(19)$ $8499(4)$ $153(2)$ $4542(4)$ $2811(3)$ $5724(3)$ $1162(3)$ $7877(3)$ $3407(2)$ $7781(3)$ $4093.5(19)$ $8404(3)$ $4297(2)$ $7837(3)$ $4996(2)$ $8397(3)$ $2339(2)$ $10013(3)$ $4165(2)$ $5725(3)$ $1795(2)$ $8740(3)$ $3198(2)$ $7379(3)$ $1601(2)$ $4002(3)$ $4099(3)$ $7269(3)$ $5944(2)$ $8297(3)$ $2233(2)$ $8000(3)$ $5321(2)$ $7586(4)$ $491(2)$ $8055(4)$ $6184(2)$ $7551(4)$ $1694(3)$ $7932(4)$ $2779(3)$ $8088(3)$ $3523(3)$ $6011(4)$ $1485(3)$ $4874(4)$ $1797(3)$ $9371(4)$ $5241(3)$ $9996(3)$ $2121(3)$ $4787(4)$ $6486(3)$ $6882(4)$ $4729(3)$ $5155(4)$ $7261(3)$ $3550(4)$ $1134(4)$ $6587(7)$ $-1145(3)$ $8607(5)$ $930(4)$ $3259(4)$ $6175(3)$ $8113(7)$ $2969(4)$	xyz10189(2)3527.8(16)5501.4(9)5171(2)1916.8(17)6057.0(8)5732(2)5784.5(18)5462.8(10)11038(2)4532(2)6204.7(11)6516(3)-64.8(19)6676.8(11)8499(4)153(2)6136.7(15)4542(4)2811(3)7244.9(11)5724(3)1162(3)8024.6(10)7877(3)3407(2)6476.6(10)7781(3)4093.5(19)5462.0(10)8404(3)4297(2)6077.8(11)7837(3)4996(2)5028.4(12)8397(3)2339(2)6290.9(11)10013(3)4165(2)5954.3(12)5725(3)1795(2)6528.0(11)8740(3)3198(2)5300.8(11)7379(3)1601(2)6631.9(11)4002(3)4099(3)6368(2)7269(3)5944(2)5333.8(14)8297(3)2233(2)5611.9(11)8000(3)5321(2)6337.9(13)7586(4)491(2)6443.2(14)8055(4)6184(2)5900.1(15)7551(4)1694(3)7322.8(12)7932(4)2779(3)7505.2(12)8088(3)3523(3)7127.3(12)6011(4)1485(3)7545.9(13)4874(4)1797(3)7096.4(12)9371(4)5241(3)4787.5(15)9996(3)2121(3)6480.0(15)4787(4)6486(3)5303(2)6882(4)4729(3)4502.6(14)5155(4)7261(3)5100(3)3550(4

Table S₁₆. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for andrastone B (2). U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ}tensor.

anopia		emponente tantes			e e ₁₂].	
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O3	39.5(9)	55.5(11)	56.6(10)	-8.3(9)	9.5(8)	2.1(9)
08	52.2(11)	63.8(13)	40.8(9)	5.4(9)	-7.0(8)	-5.2(10)
02	48.3(11)	54.4(12)	80.4(14)	16.4(11)	-1.7(11)	4.6(10)
04	38.1(11)	81.6(17)	81.1(15)	-17.4(13)	-11.3(10)	-6.5(10)
06	86.1(17)	51.7(13)	79.9(15)	15.0(11)	15.7(13)	2.8(13)
05	100(2)	52.8(14)	122(2)	4.5(15)	44.3(19)	18.5(15)
09	100(2)	112(2)	58.7(13)	-9.2(14)	3.6(14)	46.3(19)
07	90.1(19)	144(3)	50.4(12)	40.4(15)	6.2(13)	1(2)
С9	35.7(12)	49.2(15)	35.6(11)	-4.6(10)	-0.3(10)	4.0(11)
C5	37.6(12)	37.4(12)	36.1(10)	-3.7(9)	0.1(10)	-5.1(10)
C10	34.9(12)	42.3(13)	40.4(11)	-8.3(10)	-2.0(10)	0.7(10)
C4	50.2(15)	43.0(14)	47.4(13)	3.7(11)	-1.1(12)	-8.6(12)
C8	38.0(13)	47.7(14)	42.2(12)	1.1(11)	0.5(11)	8.9(11)
C21	38.1(13)	52.9(16)	51.5(14)	-7.2(12)	-1.5(12)	-1.3(12)
C16	49.3(14)	43.7(14)	39.5(12)	4.5(11)	-0.9(11)	1.9(12)
C6	45.3(13)	44.1(14)	38.5(11)	-6.8(11)	5.7(10)	-1.6(11)
C17	46.6(14)	49.8(16)	42.0(12)	7.0(11)	1.1(11)	12.1(12)
O10	67.0(17)	79(2)	165(3)	26(2)	-11(2)	13.4(15)
C3	49.9(15)	40.0(14)	69.4(17)	6.9(13)	-0.6(14)	-2.1(12)
C7	51.5(14)	38.8(14)	43.3(13)	-4.4(10)	7.4(12)	3.3(12)
C1	45.3(15)	50.5(16)	52.4(14)	-18.1(12)	-4.1(12)	2.5(12)
C25	70(2)	48.9(17)	61.9(17)	16.9(14)	5.1(16)	8.7(16)
C2	60.1(18)	39.3(15)	79(2)	-14.8(14)	-1.2(16)	-4.3(13)
C13	55.1(17)	74(2)	43.0(13)	17.2(14)	-4.7(12)	11.4(16)
C12	63.2(18)	89(3)	36.7(13)	2.4(14)	-9.2(13)	4.1(18)
C11	59.7(17)	71(2)	39.4(13)	-10.9(13)	-6.4(12)	4.2(15)
C14	68(2)	83(2)	41.7(14)	16.4(15)	0.4(14)	5.1(18)
C15	54.0(16)	77(2)	44.8(14)	9.0(14)	4.6(13)	11.9(16)
C18	64.0(19)	53.4(18)	69.2(18)	5.1(15)	16.1(16)	-12.4(15)
C20	44.0(16)	68(2)	66.4(18)	4.6(15)	0.9(14)	17.9(14)
C26	56.2(19)	50.0(19)	131(3)	18(2)	-6(2)	7.5(16)
C19	86(2)	62(2)	49.8(15)	12.6(14)	-16.1(16)	-15.3(18)
01	77(2)	78(2)	395(8)	101(4)	7(4)	13.5(19)
C24	54.6(19)	148(5)	70(2)	30(2)	9.6(18)	-15(2)
C28	132(4)	49(2)	108(3)	21(2)	14(3)	2(2)
C23	78(2)	114(4)	69(2)	36(2)	-17(2)	24(2)
C27	53.6(19)	79(3)	120(3)	17(2)	-6(2)	11.1(19)
C22	138(4)	136(4)	38.5(16)	-2(2)	-17(2)	-5(4)

Table S₁₇. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for andrastone B (2). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O3	C21	1.345(3)	C4	C19	1.529(4)
O3	C6	1.474(3)	C8	C17	1.562(4)
08	C16	1.201(3)	C8	C7	1.560(3)
O2	C3	1.458(4)	C8	C20	1.558(4)
O2	C26	1.324(4)	C16	C17	1.559(4)
O4	C21	1.205(4)	C16	C15	1.516(4)
O6	C25	1.340(4)	C6	C7	1.519(4)
O6	C28	1.463(5)	C17	C25	1.545(4)
05	C25	1.181(4)	C17	C13	1.591(4)
09	C15	1.421(5)	C3	C2	1.515(5)
O7	C14	1.204(4)	C1	C2	1.520(5)
C9	C10	1.568(4)	C13	C12	1.538(5)
C9	C8	1.553(4)	C13	C14	1.529(5)
C9	C11	1.507(3)	C13	C23	1.544(5)
C5	C10	1.543(3)	C12	C11	1.319(5)
C5	C4	1.554(4)	C12	C22	1.520(4)
C5	C6	1.524(4)	C14	C15	1.522(4)
C10	C21	1.515(4)	C15	C24	1.501(5)
C10	C1	1.528(4)	C26	01	1.177(5)
C4	C3	1.530(4)	C26	C27	1.481(6)
C4	C18	1.547(4)			

Table S_{18} . Bond lengths for and rastone B (2).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C21	03	C6	108.50(19)	C16	C17	C8	113.8(2)
C26	02	C3	118.5(3)	C16	C17	C13	103.6(2)
C25	O6	C28	115.2(3)	C25	C17	C8	112.6(2)
C8	C9	C10	115.64(19)	C25	C17	C16	103.6(3)
C11	C9	C10	117.2(2)	C25	C17	C13	109.8(2)
C11	C9	C8	108.9(2)	O2	C3	C4	107.6(2)
C10	C5	C4	115.7(2)	O2	C3	C2	108.6(3)
C6	C5	C10	98.18(19)	C2	C3	C4	113.5(3)
C6	C5	C4	115.3(2)	C6	C7	C8	111.9(2)
C5	C10	C9	106.5(2)	C2	C1	C10	113.9(2)
C21	C10	С9	108.8(2)	O6	C25	C17	108.8(3)
C21	C10	C5	99.9(2)	05	C25	O6	123.2(3)
C21	C10	C1	114.4(2)	05	C25	C17	127.9(3)
C1	C10	С9	111.6(2)	C3	C2	C1	112.9(2)
C1	C10	C5	114.8(2)	C12	C13	C17	111.3(2)
C3	C4	C5	109.3(2)	C12	C13	C23	110.9(3)
C3	C4	C18	107.5(2)	C14	C13	C17	103.0(2)
C18	C4	C5	114.7(2)	C14	C13	C12	106.8(3)
C19	C4	C5	107.7(2)	C14	C13	C23	108.9(3)
C19	C4	C3	110.7(3)	C23	C13	C17	115.2(3)
C19	C4	C18	107.0(3)	C11	C12	C13	123.2(3)
C9	C8	C17	104.5(2)	C11	C12	C22	120.3(4)
C9	C8	C7	109.6(2)	C22	C12	C13	116.5(3)
C9	C8	C20	112.5(2)	C12	C11	С9	123.7(3)
C7	C8	C17	113.8(2)	07	C14	C13	124.7(3)
C20	C8	C17	108.1(2)	07	C14	C15	124.0(3)
C20	C8	C7	108.3(2)	C15	C14	C13	111.2(2)
O3	C21	C10	109.4(2)	09	C15	C16	108.5(3)
O4	C21	O3	121.7(3)	09	C15	C14	104.1(3)
O4	C21	C10	128.8(3)	09	C15	C24	112.6(3)
08	C16	C17	124.8(2)	C16	C15	C14	102.9(3)
08	C16	C15	123.3(3)	C24	C15	C16	113.7(3)
C15	C16	C17	111.9(2)	C24	C15	C14	114.2(3)
O3	C6	C5	102.45(19)	02	C26	C27	112.6(3)
O3	C6	C7	110.3(2)	01	C26	02	122.2(4)
C7	C6	C5	112.9(2)	01	C26	C27	125.2(4)
C8	C17	C13	112.8(3)				

Table S₁₉. Bond Angles for and rastone B (2).

		-			<i>,</i>				
А	В	С	D	Angle/°	А	В	С	D	Angle/°
03	C6	C7	C8	53.4(3)	C6	C5	C10	C21	42.1(2)
08	C16	C17	C8	47.3(4)	C6	C5	C10	C1	164.9(2)
08	C16	C17	C25	-75.2(3)	C6	C5	C4	C3	-161.0(2)
08	C16	C17	C13	170.2(3)	C6	C5	C4	C18	-40.2(3)
08	C16	C15	09	-77.0(4)	C6	C5	C4	C19	78.7(3)
08	C16	C15	C14	173.2(3)	C17	C8	C7	C6	155.3(2)
08	C16	C15	C24	49.1(5)	C17	C16	C15	09	103.9(3)
02	C3	C2	C1	62.9(3)	C17	C16	C15	C14	-6.0(4)
07	C14	C15	09	85.5(5)	C17	C16	C15	C24	-130.0(3)
07	C14	C15	C16	-161.3(4)	C17	C13	C12	C11	0.1(4)
07	C14	C15	C24	-37.6(6)	C17	C13	C12	C22	179.5(3)
С9	C10	C21	O3	83.8(3)	C17	C13	C14	07	154.7(4)
С9	C10	C21	O4	-95.3(4)	C17	C13	C14	C15	-28.6(4)
С9	C10	C1	C2	-162.3(2)	C3	02	C26	O1	-5.5(8)
С9	C8	C17	C16	54.9(3)	C3	02	C26	C27	173.8(4)
С9	C8	C17	C25	172.4(2)	C7	C8	C17	C16	-64.7(3)
С9	C8	C17	C13	-62.8(3)	C7	C8	C17	C25	52.8(3)
С9	C8	C7	C6	38.6(3)	C7	C8	C17	C13	177.6(2)
C5	C10	C21	O3	-27.5(3)	C1	C10	C21	O3	-150.7(2)
C5	C10	C21	O4	153.4(3)	C1	C10	C21	04	30.2(5)
C5	C10	C1	C2	-41.0(3)	C25	C17	C13	C12	158.4(3)
C5	C4	C3	O2	-65.5(3)	C25	C17	C13	C14	-87.5(3)
C5	C4	C3	C2	54.7(3)	C25	C17	C13	C23	31.0(4)
C5	C6	C7	C8	-60.5(3)	C13	C17	C25	06	64.1(3)
C10	C9	C8	C17	-163.8(2)	C13	C17	C25	05	-117.2(4)
C10	C9	C8	C7	-41.4(3)	C13	C12	C11	C9	1.5(5)
C10	C9	C8	C20	79.2(3)	C13	C14	C15	09	-91.2(3)
C10	C9	C11	C12	-168.0(3)	C13	C14	C15	C16	21.9(4)
C10	C5	C4	C3	-47.2(3)	C13	C14	C15	C24	145.6(3)
C10	C5	C4	C18	73.6(3)	C12	C13	C14	07	-88.0(5)
C10	C5	C4	C19	-167.5(3)	C12	C13	C14	C15	88.8(3)
C10	C5	C6	O3	-43.5(2)	C11	C9	C10	C5	-168.4(2)
C10	C5	C6	C7	75.1(2)	C11	C9	C10	C21	84.7(3)
C10	C1	C2	C3	48.4(4)	C11	C9	C10	C1	-42.4(3)
C4	C5	C10	C9	165.7(2)	C11	C9	C8	C17	61.9(3)
C4	C5	C10	C21	-81.2(3)	C11	C9	C8	C7	-175.8(2)
C4	C5	C10	C1	41.7(3)	C11	C9	C8	C20	-55.2(3)
C4	C5	C6	O3	80.1(2)	C14	C13	C12	C11	-111.6(4)
C4	C5	C6	C7	-161.3(2)	C14	C13	C12	C22	67.7(4)

Table S_{20} . Torsion angles for andrastone B (2).

C4	C3	C2	C1	-56.8(4)	C15	C16	C17	C8	-133.5(3)
C8	C9	C10	C5	61.1(3)	C15	C16	C17	C25	103.9(3)
C8	C9	C10	C21	-45.7(3)	C15	C16	C17	C13	-10.7(3)
C8	C9	C10	C1	-172.9(2)	C18	C4	C3	O2	169.4(2)
C8	C9	C11	C12	-34.4(4)	C18	C4	C3	C2	-70.3(3)
C8	C17	C25	06	-169.4(2)	C20	C8	C17	C16	174.9(2)
C8	C17	C25	05	9.3(5)	C20	C8	C17	C25	-67.6(3)
C8	C17	C13	C12	32.1(3)	C20	C8	C17	C13	57.2(3)
C8	C17	C13	C14	146.2(3)	C20	C8	C7	C6	-84.5(3)
C8	C17	C13	C23	-95.4(4)	C26	O2	C3	C4	-129.4(3)
C21	O3	C6	C5	28.6(3)	C26	O2	C3	C2	107.3(4)
C21	O3	C6	C7	-91.7(3)	C19	C4	C3	O2	52.9(3)
C21	C10	C1	C2	73.7(3)	C19	C4	C3	C2	173.2(3)
C16	C17	C25	06	-46.0(3)	C28	06	C25	05	2.7(5)
C16	C17	C25	05	132.7(4)	C28	06	C25	C17	-178.5(3)
C16	C17	C13	C12	-91.5(3)	C23	C13	C12	C11	129.8(3)
C16	C17	C13	C14	22.7(3)	C23	C13	C12	C22	-50.8(4)
C16	C17	C13	C23	141.1(3)	C23	C13	C14	07	31.9(6)
C6	O3	C21	O4	178.9(3)	C23	C13	C14	C15	-151.4(3)
C6	03	C21	C10	-0.3(3)	C22	C12	C11	С9	-177.8(4)
C6	C5	C10	C9	-71.1(2)					

· /				
Atom	x	у	Ζ	U(eq)
Н9	4291.59	3117.94	6949.8	136
H9A	6819.13	3391.09	6423.8	48
Н5	6771.88	3863.86	5499.43	44
H6	8741.27	3096.01	4875.94	51
H10A	3106.15	4058.2	6280.6	155
H10B	4130.61	4717.43	6453.71	155
Н3	7364.54	6519.41	5066.96	64
H7A	8924.41	1686.91	5484.97	53
H7B	7305.87	2061.99	5503.78	53
H1A	7025.13	5280.16	6498.84	59
H1B	8660.41	5470.21	6657.78	59
H2A	7618.43	6778.02	6075.25	71
H2B	9063.32	6340.09	5813.57	71
H11	8342.85	4155.77	7270.63	68
H18A	9994.51	5439.39	5104.26	93
H18B	9303.19	5780.63	4508.96	93
H18C	9765.71	4653.34	4599.95	93
H20A	10652.21	2412.51	6200.36	89
H20B	10148.98	1405.33	6497.47	89
H20C	10170.37	2410.6	6858.66	89
H19A	7265.84	4141.41	4312.01	99
H19B	6872.93	5283.82	4232.29	99
H19C	5908.03	4595.61	4633.26	99
H24A	3061.1	1172.4	7456.04	136
H24B	3837	449.76	7011.48	136
H24C	2904.18	1356.8	6781.15	136
H28A	6542.21	-1246.22	6132.64	144
H28B	5781.52	-1481.43	6731.53	144
H28C	7482.89	-1415.81	6696.63	144
H23A	8435.61	271.72	7444.54	130
H23B	8449.95	914.06	8020.65	130
H23C	9591.88	1129.71	7526.38	130
H27A	3016.28	5630.37	5145.14	127
H27B	2623.78	6736.04	5330.14	127
H27C	3145.55	5958.14	5802.42	127
H22A	7273.49	2722.18	8362.3	156
H22B	8214.41	3680.09	8225.8	156
H22C	8965.94	2625.43	8295.83	156

Table S₂₁. Hydrogen atom coordinates (Å×10⁴) and isotropic displacement parameters (Å²×10³) for andrastone B (**2**).