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Abstract: Novel strategies to treat cancer effectively without adverse effects on the surrounding
normal tissue are urgently needed. Marine sponges provide a natural and renewable source of
promising anti-tumor agents. Here, we investigated the anti-tumor activity of Aerothionin and
Homoaerothionin, two bromotyrosines isolated from the marine demosponge Aplysina cavernicola,
on two mouse pheochromocytoma cells, MPC and MTT. To determine the therapeutic window
of these metabolites, we furthermore explored their cytotoxicity on cells of the normal tissue.
Both metabolites diminished the viability of the pheochromocytoma cell lines significantly from
a concentration of 25 µM under normoxic and hypoxic conditions. Treatment of MPC cells leads
moreover to a reduction in the number of proliferating cells. To confirm the anti-tumor activity of these
bromotyrosines, 3D-pheochromocytoma cell spheroids were treated with 10 µM of either Aerothionin
or Homoaerothionin, resulting in a significant reduction or even complete inhibition of the spheroid
growth. Both metabolites reduced viability of normal endothelial cells to a comparable extent at
higher micromolar concentration, while the viability of fibroblasts was increased. Our in vitro results
show promise for the application of Aerothionin and Homoaerothionin as anti-tumor agents against
pheochromocytomas and suggest acceptable toxicity on normal tissue cells.

Keywords: marine sponges; Aplysina cavernicola; pheochromocytoma and paraganglioma; fibroblasts;
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1. Introduction

Cancer is one of the main causes of death in this century and there is a continuing need for the
identification and the development of new anti-tumor drugs. The clinical use of new drugs is thereby
often limited by their low specificity towards the tumor tissue, leading to simultaneous damage of the
surrounding normal tissue and restricting the dose that can be administered (therapeutic window).

Natural resources provide a virtually inexhaustible source of bioactive compounds. Especially
the oceans, which cover the majority of our planet, make the marine environment the largest habitat
on earth hosting high and largely-unexplored biodiversity [1]. Marine sponges are mostly of sessile
nature and lack effective morphological defense mechanisms; nonetheless, their survival is ensured
by the development of chemical defense strategies by the production of secondary metabolites with
various bioactivities [2,3]. These secondary metabolites have also shown the potential to inhibit
tumor cell growth [4,5]. Already six decades ago, isolation of C-nucleosides from the Caribbean
sponge, Cryptotheca crypta, provided the basis for the synthesis of Cytarabine, the first sponge-derived
anti-tumor drug in clinical use [6]. Eribulin (Halaven®), a synthetic derivative based on the structure
of halichondrin B isolated from the demosponge Halichondia okadai, is also in clinical application for
the treatment of metastatic breast cancer [4,7]. These data underline the potential of sponge-derived
secondary metabolites as anti-tumor drugs.

Sponges of the Verongiida order, such as Aplysina aerophoba and A. cavernicola, are characterized by
the synthesis of brominated tyrosine derivatives (bromotyrosines) with, e.g., cytotoxic and multi-target
activities [8]. According to the modern view, bromotyrosines can be produced by spherulocytes—specialized
cells located within chitinous skeletal fibers of verongiids [9]. Two corresponding representatives
are Aerothionin and Homoaerothionin, two tetrabromo spirocyclohexadienylisoxazoles with a wide
range of biological activity (Figure 1) [10]. Aerothionin displayed a cytotoxic activity towards the
cervical cancer (HeLa) [11,12] as well as breast cancer (MCF-7) cells [13] and was able to inactivate
multidrug-resistant clinical isolates of Mycobacterium tuberculosis [14]. Moreover, Aerothionin showed
the potential to inhibit the adenosine A1 receptor [12]. Both sponge-derived metabolites inhibit
voltage-dependent calcium channels [15] and furthermore showed promising activity against the
chloroquine-resistant strain of Plasmodium falciparum, the carrier of malaria [13]. Demosponges of the
order Verongiida can be cultivated and represent renewable sources of unique 3D chitinous scaffolds [16,
17], which are ready-to-use for various biomedical [18,19] and technological applications [9,20–24].
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Figure 1. Schematic view: fresh collected A. cavernicola demosponge (the diameter of the sponge’s
finger-like bodies is about 2 cm) and the chemical structure of two isolated secondary metabolites,
Aerothionin and Homoaerothionin.

We previously showed that marine sponges provide a renewable natural source of potential
anti-tumor and anti-metastatic drugs for the treatment of adrenal pheochromocytomas and extra-adrenal
paragangliomas (PPGLs) [25]. These neural crest-derived tumors with variable disease aggressiveness
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provide a good model for investigating the anti-tumor activity of new sponge-derived metabolites;
in addition, effective treatment strategies for these rare tumors are still lacking [26]. This prompted us
to investigate the anti-tumor activity of Aerothionin and Homoaerothionin against pheochromocytoma
cells. In this regard, we also evaluate the normal tissue toxicity of both metabolites using fibroblasts
and endothelial cells to determine the therapeutic window and to predict undesirable side effects on
the normal tissue.

2. Results

2.1. Anti-Tumor Activity of Aerothionin and Homoaerothionin In Vitro

To evaluate the therapeutic window of Aerothionin and Homoaerothionin, we started with the
determination of the anti-tumor activity of both compounds. Therefore, two different pheochromocytoma
cell lines were used as models. Tumor cell hypoxia is commonly known to induce therapy resistance. To
simulate hypoxic conditions characterized by a reduced oxygen partial pressure, we cultivated both cell
lines under extrinsic hypoxia (≤1% O2) or spheroid conditions as 3-dimentional model characterized by
intrinsic hypoxia [27].

2.1.1. Aerothionin and Homoaerothionin Decreased Proliferating Cell Characteristics

Aerothionin reduced the relative viability (RV) of MPC mouse pheochromocytoma cells after
24 h treatment, significantly starting with a concentration of 25 µM (RV25µM = 83.7 ± 1.7%;
RV50µM = 55.1 ± 2.2%; Figure 2A). Under hypoxic conditions, Aerothionin was less effective in
decreasing MPC cell viability (RV25µM = 93.2 ± 3.0%; RV50µM = 70.4 ± 3.7%). Treatment with 10 µM
Aerothionin diminished the number of proliferating cells under normoxic conditions significantly,
while MPC cells under hypoxic conditions were not additionally affected (Figure 2B). As already shown
in our previous work, cultivation under hypoxia resulted in growth inhibition of these cells [25].

The second sponge-derived drug, Homoaerothionin, was less effective in diminishing the
proliferating properties of these cells. Homoaerothionin reduced RV under normoxic conditions from
25 µM (RV25µM = 88.6 ± 4.0%; RV50µM = 61.3 ± 1.7%), but under hypoxic conditions a concentration
of 50 µM (RV25µM = 102.3 ± 3.1%; RV50µM = 74.1 ± 4.0%) was needed to decrease RV significantly
(Figure 2A). Under normoxic conditions, treatment with 10 µM Homoaerothionin diminished the
number of proliferating MPC cells significantly, while no additional effect could be detected under
hypoxic conditions (Figure 2B).

For confirmation purposes, we used a second pheochromocytoma cell line, named MTT that shows
a more aggressive cell behavior. Treatment with at least 25 µM Aerothionin (RV25µM = 82.8 ± 3.9%;
RV50µM = 48.3 ± 4.0%; Figure 3A) diminished RV under normoxic conditions significantly resulting in
a half-maximal effective concentration (EC50) of 48.1 µM in these cells. Cultivation under hypoxia just
slightly impaired the cellular response of the MTT cells towards Aerothionin (RV25µM = 84.5 ± 3.7%;
RV50µM = 58.2 ± 2.0%). The number of proliferating MTT cells was not affected by the treatment with
Aerothionin under normoxic and hypoxic conditions (Figure 3B). Homoaerothionin reduced the RV
under normoxia (RV25µM = 83.3 ± 5.4%; RV50µM = 55.7 ± 5.7%) and hypoxia (RV25µM = 94.2 ± 3.9%;
RV50µM = 60.3 ± 4.1%) to a comparable extent (Figure 3A). Similar to Aerothionin, treatment with
Homoaerothionin (10 µM) had no effect on the number of proliferating MTT cells (Figure 3B).

2.1.2. Aerothionin and Homoaerothionin Diminished Spheroid Growth

For a better simulation of the in vivo tumor situation, we used 3D-pheochromocytoma cell
spheroids characterized by an oxygen and nutrient gradient that led to the formation of three different
zones: (1) the outer layer with proliferating cells; (2) a hypoxic area; and (3) the necrotic core [27].
A single treatment with 10 µM Aerothionin or Homoaerothionin at day four after spheroid generation
decelerated MPC cell spheroid growth from day 11 onwards significantly (Figure 4A). In clinical
treatment regimes, drugs are often administered in recurring cycles. Therefore, we treated our
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MPC cell spheroids at days four, eight, 11, and 15 after spheroid generation, and monitored their
growth. In contrast to the single treatment, a fractionated treatment regime with Aerothionin or
Homoaerothionin resulted in complete inhibition of the MPC cell spheroid growth (Figure 4A).
Comparable results were also obtained for the more aggressive MTT cell spheroids characterized in
this model by a larger spheroid diameter (diameterday18 = 568.0 ± 34.8 µm) compared to the MPC cell
spheroids (diameterday18 = 469.1 ± 19.5 µm). Four days after single treatment with either Aerothionin
or Homoaerothionin the MTT spheroid growth diminished significantly and a fractionated treatment
inhibited the growth completely over the observation time.Mar. Drugs 2020, 18, x 4 of 13 
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Figure 2. The impact of Aerothionin and Homoaerothionin on MPC cell proliferating properties.
The impact of Aerothionin and Homoaerothionin on (A) MPC cell viability and (B) the number of
proliferating MPC cells under normoxic and hypoxic conditions is shown. Four to five independent
experiments were performed (n = 15–32). Mean±SEM; ANOVA and Bonferroni post hoc test comparison
vs. control * p < 0.05, ** p < 0.001.

2.2. Effects of Aerothionin and Homoaerothionin on Cells of the Normal Tissue

For the development of a novel therapeutic strategy, the therapeutic window of a drug is of great
importance. It is defined as the range of drug dosages that can treat disease effectively without having
side effects mainly associated with a toxicity on cells of the normal tissue. Therefore, we investigated the
therapeutic effective concentration of 10 µM Aerothionin and Homoaerothionin (anti-tumor activity)
regarding a possible cytotoxic effect on endothelial cells and fibroblasts of normal tissue.

2.2.1. Effects of Aerothionin and Homoaerothionin on Endothelial Cells

Treatment with 25 to 50 µM Aerothionin (RV25µM = 77.7 ± 4.6%; RV50µM = 60.4 ± 8.5%) or
Homoaerothionin (RV25µM = 75.9 ± 2.8%; RV50µM = 59.2 ± 6.0%) significantly reduced the viability
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of mouse endothelial cells (MS1) isolated from the islet of Langerhans from the pancreas (Figure 5A).
The cytotoxic effect of both compounds was thereby comparable. Generation of MS1 cells spheroids was not
successful to study long-time effects of Aerothionin and Homoaerothionin. To confirm these results, we used
primary human umbilical vein endothelial cells (HUVECs) [28]. Aerothionin (RV25µM = 74.0 ± 16.1%;
RV50µM = 45.8 ± 13.7%) or Homoaerothionin (RV25µM = 63.7 ± 18.9%; RV50µM = 35.5 ± 7.3%) diminished
the viability of these cells at a concentration of 50 µM (Figure 5B). The half-maximal effective concentration
was determined in the middle micromolar range (EC50,Aerothionin = 43.8 µM; EC50,Homoaerothionin = 34.5 µM)
for the HUVECs.
Mar. Drugs 2020, 18, x 5 of 13 
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2.2.2. Aerothionin and Homoaerothionin Stimulated the Viability of Normal Fibroblasts

Asa secondcell typeof thenormal tissue, we investigated theeffect ofAerothioninand Homoaerothionin
on mouse fibroblasts, 3T3. Fibroblasts are crucial for synthesizing the structural framework of tissues.
Treatment with up to a concentration of 25 µM Aerothionin (RV25µM = 116.6± 4.0%; RV50µM = 100.8± 6.4%)
stimulated the viability of 3T3 cells significantly (Figure 6A). Homoaerothionin even showed this stimulating
effect on 3T3 viability up to a concentration of 50 µM (RV25µM = 116.4 ± 0.8%; RV50µM = 102.3 ± 1.0%).
To investigate long-time effects, we treat 3T3 cell spheroids with 10 µM Aerothionin or Homoaerothionin
(Figure 6B). The same concentration of Aerothionin or Homoaerothionin, that resulted before in a significant
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reduction or even a complete inhibition of the tumor cell spheroid growth, showed no measurable effect on
the 3T3 spheroid growth after single and fractionated treatment.Mar. Drugs 2020, 18, x 6 of 13 
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3. Discussion

The development of novel therapeutic approaches to cure cancer without side effects on healthy
tissues is urgently needed. In our present study, we investigated the therapeutic window of two
secondary metabolites, Aerothionin and Homoaerothionin, isolated from the marine demosponge
A. cavernicola for the first time. Both metabolites showed a significant anti-tumor activity towards
pheochromocytoma cells, while cells of the normal tissue were either stimulated (in the case
of fibroblasts) or reacted with a reduction of viability at higher concentrations (in the case of
endothelial cells).

Previously, we have already demonstrated the anti-tumor and anti-metastatic activity of
Aeroplysinin-1, a secondary metabolite isolated from the marine demosponge A. aerophoba, in our
pheochromocytoma cell models [25], and furthermore investigated the anti-tumor activity in cells of
more common tumor entities such as melanoma and breast cancer [29]. Aeroplysinin-1 diminished the
cell viability of MPC and MTT cells in a micromolar concentration (EC50,Aeroplysinin-1 = 9.6–11.4 µM) [25],
while Aerothionin and Homoaerothionin reduced the viability of these cells only from a
higher concentration of 25 µM. All three secondary metabolites reduced or even inhibited the
pheochromocytoma spheroid growth to a comparable extent. This is furthermore in line with the
anti-tumor effects of Aerothionin on HeLa cells in a micromolar range [11,12]. In the literature, it is
discussed whether Aerothionin and Homoaerothionin are only weakly active precursors, which are
converted into the active form, Aeroplysinin-1, by an enzymatic biotransformation following the
breakdown of the cellular compartmentation of the sponge [30,31]. Another reason for the slightly
diminished anti-tumor activity of Aerothionin and Homoaerothionin might be thereduced availability
of these compounds in the cells. Structural differences in comparison to Aeroplysinin-1 indicate a higher
hydrophobicity of Aerothionin and Homoaerothionin, possibly leading to a stronger accumulation of
these compounds in the hydrophobic cell membrane.
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The clinical application of novel drugs is often limited by their unspecific toxicity towards the
normal tissue and the associated short- and long-term side effects. At high concentrations of 25–50 µM,
Aerothionin and Homoaerothionin diminished viability of mouse (MS1) and primary human (HUVEC)
endothelial cells. An EC50 of 43.8 µM for Aerothionin and 34.5 µM for Homoaerothionin could
only be determined for the HUVECs. Aeroplysinin-1 showed increased cytotoxicity on the MS1 cell
(EC50 = 18.1 µM) [29], while for Aerothionin and Homoaerothionin no EC50 value could be detected.
With regard to undesirable toxicity towards the endothelium, Aerothionin and Homoaerothionin
appear to be safer than Aeroplysinin-1, with a comparable anti-tumor activity in vitro. Inhibition
of tumor angiogenesis is also discussed as a promising therapeutic approach to treat cancer [32].
Nothing is known about the anti-angiogenic activity of Aerothionin and Homoaerothionin, but the
anti-angiogenic activity of Aeroplysinin-1, which reduces the growth, migration, and invasion of
endothelial cells [33] is well described and also suggests an anti-angiogenetic activity of Aerothionin
and Homoaerothionin.

Another cell type of normal tissue is fibroblasts, which are crucial for the formation of the connective
tissue and are key players for maintaining skin homeostasis and orchestrating physiological tissue
repair [34]. Aerothionin and Homoaerothionin did not show any short-term and long-term cytotoxic
effects on fibroblasts; on the contrary, the treatment of both compounds resulted in stimulation
of fibroblast viability. In comparison, Aeroplysinin-1 reduced the viability of the 3T3 fibroblasts
significantly (EC50 = 40.1 µM) [29]. The potential fibroblast stimulating effects of Aerothionin and
Homoaerothionin should be investigated further, especially with regard to a potential application to
induce wound-healing and tissue renewal [35]. Overall, our in vitro data indicates that Aerothionin and
Homoaerothionin have a wider therapeutic window than Aeroplysinin-1, demonstrating a comparable
anti-tumor activity with simultaneously-reduced toxicity on cells of normal tissue.

Moreover, dose-limiting side effects on the normal tissue and the potentially limited bioavailability
of Aerothionin and Homoaerothionin could, for example, be improved by targeting chemical
modification of the molecule structure or an encapsulation of the drug [36–38]. We previously
demonstrated that a targeted release of nitric oxide could diminish cytotoxic effects on endothelial cells
induced by selective estrogen receptor modulators (SERMs) and could thereby improve the therapeutic
index of these drugs [38]. The diverse effects on different types of cells indicate a cell-specific target
resulting in the anti-tumor activity of these metabolites. Kalaitzis et al. already demonstrated an
inhibitory activity of Aerothionin on the adenosine A1 receptor [12]. An effect on voltage-dependent
calcium channels was furthermore discussed for both metabolites [15]. Continuative investigations
on Aerothionin and Homoaerothionin should therefore focus on the identification of the precise
mechanism of action leading to the anti-tumor activity of these bromotyrosines.

In the present study, we demonstrated the anti-tumor activity of Aerothionin and Homoaerothionin
on pheochromocytoma cells. For non-metastatic pheochromocytomas and paragangliomas, surgery is
the treatment of choice, but if metastases already occur treatment is challenging [39]. Combination
therapy with BYL719, a phosphatidylinositol-3-kinase α inhibitor, and everolimus, a mammalian target
of rapamycin inhibitor, showed synergistic effects on PPGLs in vitro [40]. The presence of different
secondary metabolites in the sponge also implies that the extent of the chemical defense mechanism
might be due to the combination of different metabolites. Therefore, it would be interesting for further
studies to examine whether Aerothionin and Homoaerothionin might also have a synergistic anti-tumor
effect either with other sponge-derived secondary metabolites or common chemotherapeutic agents
(chemosensitizing effect).

Our in vitro investigations showed promise for the application of Aerothionin and
Homoaerothionin as anti-tumor drugs against PPGLs. The therapeutic application of these precursors
of Aeroplysinin-1 seems to have a better therapeutic window than the active compound showing
a comparable anti-tumor activity by reduced toxicity on cells of normal tissue. The application of
Aerothionin and Homoaerothionin, as well as other sponge-derived secondary metabolites, provides a
promising therapeutic approach to treat cancer alone or perhaps also in combination with other drugs.
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4. Materials and Methods

Aerothionin and Homoaerothionin were kindly provided by BromMarin GmbH (Freiberg,
Germany) with the a purity grade of >99%.

4.1. Cell Culture

The mouse pheochromocytoma cells (MPC) generated from heterozygous neurofibromatosis
knockout mice, and its more aggressive derivate, the tumor tissue-derived (MTT) cells, were acquired
from Arthur Tischler [41–43] and cultivated as previously described [25]. Mouse fibroblasts 3T3
isolated from embryo tissue and the mouse endothelial cells, Mile sven 1 (MS1), were obtained from
the American Type culture collection and cultivated using Dulbecco’s Modified Eagle’s Medium
(DMEM) with 10% fetal calf serum (FCS) plus 1 mM glutaMax and sodium pyruvate. Primary human
umbilical vein endothelial cells (HUVECs) were isolated and cultivated as previously described [28].
All cells were cultivated under normoxic conditions in a CO2 incubator. To simulate hypoxic conditions
(extrinsic hypoxia), cells were cultivated at reduced oxygen partial pressure (≤1% O2) in a special
incubator equipped with an oxygen-sensor (Gasboy, Labotect, Rosdorf, Germany). In all cases,
cultivation took place at 37 ◦C, 5% CO2, and 95% humidity. All cell lines were routinely tested
to be mycoplasma-free using MycoAlert Mycoplasma Detection Kit (Lonza, Basel, Switzerland).
After trypsinization (trypsin/EDTA; 0.05%/0.02%) cells were diluted with complete medium and
counted using C-CHIPs (Neubauer improved). All experiments were performed after at least one
passage after re-cultivation. In the case of the pheochromocytoma cells, cultivation and the experimental
work were performed by using collagen A coated cell culture dishes. For the primary HUVEC cells,
cell culture dishes were coated with gelatin (0.5%).

4.2. Viability Assay

To investigate the anti-tumor activity of Aerothionin and Homoaerothionin, the CellTiter
96® AQueous One Solution Cell Proliferation Assay (Promega, Walldorf, Germany) was used as
previously described [25]. Both compounds were used at a concentration of 0.4 to 50 µM and
the relative viability was calculated using the analyzed absorbance at 490 nm ([absorbancetreated ×

100%]/absorbanceDMSOcontrol). The half-maximal effective concentration (EC50) was calculated from
the dose-response curve by using the dose-response fit model of the SigmaPlot software package.

4.3. Proliferation Assay

Cells (1.5 × 105) were seeded in 6-well plates, allowed to attach for 24 h and treated with
10 µM Aerothionin and Homoaerothionin. Afterwards, cells were incubated for 48 h, 72 h, or 144 h
under normoxic or hypoxic conditions. Cells were washed with PBS, trypsinized, and after careful
resuspension in medium (total volume: 1 mL) cells were counted using the cell counting application of
the Spark® multimode microplate reader (Tecan Trading AG, Männedorf, Switzerland). Each well was
counted in duplicate.

4.4. Generation and Cultivation of Tumor Cell Spheroids

Pheochromocytoma cell spheroids were generated as previously described [25,27].

4.5. Generation and Cultivation of Fibroblast Spheroids

The 3T3 cells (5 × 102) were resuspended in complete DMEM containing 20% of a 1.2%
methylcellulose solution (0.24% (w/v), prepared in serum-free DMEM + Glutamax) and seeded
in non-adherent round-bottom 96-well plates for suspension culture (Greiner Bio-One, Kremsmünster,
Austria). After 3–4 days of cultivation, the consumed medium was replaced.
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4.6. Spheroid Treatment and Growth Measurement

To determine the influence of Aerothionin and Homoaerothionin, four-day-old spheroids were
treated with 10 µM of the sponge-derive secondary metabolites. Two different experimental settings
were performed. For the first one, treatment took place once at day four (single treatment). During the
second setting, spheroids were treated 4, 8, 11, and 15 days after generation (fractionated treatment).
Afterward, the size of each spheroid was measured by using an inverse microscope Axiovert 200M
(Zeiss, Software: AxioVision 4.8). The area (A) of each spheroid was analyzed using the software
package Fiji (ImageJ). The diameter (d) was calculated under the assumption of an approximately
spherical form of the spheroids (d = 2 ×

√
(A/π)).

4.7. Statistical Analysis

Descriptive data were expressed as mean ± SEM. The number of n represents the number of
technical and biological replicates within the independent experiments. Statistical analysis was carried
out using one-way analysis of variance with post hoc Bonferroni with SigmaPlot 12.5 (Systat Software
GmbH, Erkrath, Germany).
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21. Shaala, L.A.; Asfour, H.Z.; Youssef, D.T.; Żółtowska-Aksamitowska, S.; Wysokowski, M.; Tsurkan, M.;
Galli, R.; Meissner, H.; Petrenko, I.; Tabachnick, K.; et al. New source of 3d chitin scaffolds: The red sea
demosponge pseudoceratina arabica (pseudoceratinidae, verongiida). Mar. Drugs 2019, 17, 92. [CrossRef]

22. Schubert, M.; Binnewerg, B.; Voronkina, A.; Muzychka, L.; Wysokowski, M.; Petrenko, I.; Kovalchuk, V.;
Tsurkan, M.; Martinovic, R.; Bechmann, N.; et al. Naturally prefabricated marine biomaterials: Isolation and
applications of flat chitinous 3d scaffolds from ianthella labyrinthus (demospongiae: Verongiida). Int. J.
Mol. Sci. 2019, 20, 5105. [CrossRef]
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