Supplementary Materials

Syntheses, Glycosidase Inhibitory Activities, and *in silico* Docking Studies of Pericosine E Analogs Methoxy-Substituted at C6

Yoshihide Usami *, Megumi Higuchi, Koji Mizuki, Mizuki Yamamoto, Mao Kanki, Chika Nakasone, Yuya Sugimoto, Makio Shibano, Yoshihiro Uesawa, Junko Nagai, Hiroki Yoneyama and Shinya Harusawa

Osaka University of Pharmaceutical Sciences, Meiji Pharmaceutical University

Contents

Synthesis of new compound (-)-15Page SM ¹ H- and ¹³ C-NMR spectra of new compoundsPage SMFigure S1: ¹ H- NMR Spectrum of (-)-15Figure S2: ¹³ C-NMR Spectrum of (-)-15	-3 -4-SM-61 Page SM-4
¹ H- and ¹³ C-NMR spectra of new compoundsPage SMFigure S1: ¹ H- NMR Spectrum of (-)-15Figure S2: ¹³ C-NMR Spectrum of (-)-15	-4-SM-61 Page SM-4
Figure S1: ¹ H- NMR Spectrum of (-)- 15 Figure S2: ¹³ C-NMR Spectrum of (-)- 15	Page SM-4
Figure S2: ¹³ C-NMR Spectrum of (-)- 15	Dage CM E
	Page SM-5
Figure S3: ¹ H- NMR Spectrum of (+)- 14	Page SM-6
Figure S4: ¹³ C-NMR Spectrum of (+)- 14	Page SM-7
Figure S5: ¹ H- NMR Spectrum of (+)- 12	Page SM-8
Figure S6: ¹³ C-NMR Spectrum of (+)- 12	Page SM-9
Figure S7: ¹ H- NMR Spectrum of (-)- 16	Page SM-10
Figure S8: ¹³ C-NMR Spectrum of (-)- 16	Page SM-11
Figure S9: ¹ H- NMR Spectrum of (+)- 16	Page SM-12
Figure S10: ¹³ C-NMR Spectrum of (+)- 16	Page SM-13
Figure S11: ¹ H- NMR Spectrum of (-)- 19	Page SM-14
Figure S12: ¹³ C-NMR Spectrum of (-)- 19	Page SM-15
Figure S13: ¹ H- NMR Spectrum of (+)-19, Figure S14: ¹³ C-NMR Spectrum of (+)-19	Page SM-16
Figure S15: ¹ H- NMR Spectrum of (-)- 22	Page SM-17
Figure S16: ¹³ C-NMR Spectrum of (-)- 22	Page SM-18
Figure S17: ¹ H- NMR Spectrum of (+)-22, Figure S18: ¹³ C-NMR Spectrum of (+)-22	Page SM-19
Figure S19: ¹ H- NMR Spectrum of (+)- 13	Page SM-20
Figure S20: ¹³ C-NMR Spectrum of (+)- 13	Page SM-21
Figure S21: ¹ H- NMR Spectrum of (-)- 13	Page SM-22
Figure S22: ¹³ C-NMR Spectrum of (-)- 13	Page SM-23
Figure S23: ¹ H- NMR Spectrum of (+)- 17	Page SM-24
Figure S24: ¹³ C-NMR Spectrum of (+)- 17	Page SM-25
Figure S25: ¹ H- NMR Spectrum of (-)- 17	Page SM-26
	 Figure 52: "-C-NMR Spectrum of (+)-13 Figure 53: ¹H- NMR Spectrum of (+)-14 Figure 54: ¹³C-NMR Spectrum of (+)-12 Figure 56: ¹³C-NMR Spectrum of (+)-12 Figure 57: ¹H- NMR Spectrum of (-)-16 Figure 58: ¹³C-NMR Spectrum of (+)-16 Figure 510: ¹³C-NMR Spectrum of (+)-16 Figure 511: ¹H- NMR Spectrum of (-)-19 Figure 512: ¹³C-NMR Spectrum of (-)-19 Figure 513: ¹H- NMR Spectrum of (-)-19 Figure 515: ¹H- NMR Spectrum of (-)-19 Figure 515: ¹H- NMR Spectrum of (-)-22 Figure 516: ¹³C-NMR Spectrum of (-)-22 Figure 517: ¹H- NMR Spectrum of (+)-22 Figure 519: ¹H- NMR Spectrum of (+)-13 Figure 520: ¹³C-NMR Spectrum of (+)-13 Figure 521: ¹⁴H- NMR Spectrum of (-)-13 Figure 521: ¹⁴H- NMR Spectrum of (-)-17 Figure 521: ¹⁴H- NMR Spectrum of (-)-17

Figure S26: ¹³ C-NMR Spectrum of (-)-17	Page SM-27
Figure S27: ¹ H- NMR Spectrum of (-)- 20	Page SM-28
Figure S28: ¹³ C-NMR Spectrum of (-)- 20	Page SM-29
Figure S29: ¹ H- NMR Spectrum of (+)- 20 , Figure S30: ¹³ C-NMR Spectrum of (+)- 20	Page SM-30
Figure S31: ¹ H- NMR Spectrum of (+)-23	Page SM-31
Figure S32: ¹³ C-NMR Spectrum of (+)-23	Page SM-32
Figure S33: ¹ H- NMR Spectrum of (-)-23, Figure S34: ¹³ C-NMR Spectrum of (-)-23	Page SM-33
Figure S35: ¹ H- NMR Spectrum of (+)-6	Page SM-34
Figure S36: ¹³ C-NMR Spectrum of (+)-6	Page SM-35
Figure S37: ¹ H- NMR Spectrum of (-)-6	Page SM-36
Figure S38: ¹³ C-NMR Spectrum of (-)-6	Page SM-37
Figure S39: ¹ H- NMR Spectrum of (+)- 14	Page SM-38
Figure S40: ¹³ C-NMR Spectrum of (+)-14	Page SM-39
Figure S41: ¹ H- NMR Spectrum of (-)- 14	Page SM-40
Figure S42: ¹³ C-NMR Spectrum of (-)-14	Page SM-41
Figure S43: ¹ H- NMR Spectrum of (+)-7	Page SM-42
Figure S44: ¹³ C-NMR Spectrum of (+)-7	Page SM-43
Figure S45: ¹ H- NMR Spectrum of (-)-7	Page SM-44
Figure S46: ¹³ C-NMR Spectrum of (-)-7	Page SM-45
Figure S47: ¹ H- NMR Spectrum of (-)-18	Page SM-46
Figure S48: ¹³ C-NMR Spectrum of (-)-18	Page SM-47
Figure S49: ¹ H- NMR Spectrum of (+)-18	Page SM-48
Figure S50: ¹³ C-NMR Spectrum of (+)-18	Page SM-49
Figure S51: ¹ H- NMR Spectrum of (-)-8	Page SM-50
Figure S52: ¹³ C-NMR Spectrum of (-)-8	Page SM-51
Figure S53: ¹ H- NMR Spectrum of (+)-8, Figure S54: ¹³ C-NMR Spectrum of (+)-8	Page SM-52
Figure S55: ¹ H- NMR Spectrum of (-)-21	Page SM-53
Figure S56: ¹³ C-NMR Spectrum of (-)-21	Page SM-54
Figure S57: ¹ H- NMR Spectrum of (+)- 21 , Figure S58: ¹³ C-NMR Spectrum of (+)- 21	Page SM-55
Figure S59: ¹ H- NMR Spectrum of (-)-24	Page SM-56
Figure S60: ¹³ C-NMR Spectrum of (-)-24	Page SM-57
Figure S61: ¹ H- NMR Spectrum of (+)-24, Figure S62: ¹³ C-NMR Spectrum of (+)-24	Page SM-58
Figure S63: ¹ H- NMR Spectrum of (-)-9	Page SM-59
Figure S64: ¹³ C-NMR Spectrum of (-)-9	Page SM-60
Figure S65: ¹ H- NMR Spectrum of (+)-9. Figure S66: ¹³ C-NMR Spectrum of (+)-9	Page SM-61

1. Modified preparation of anti-epoxide (-)-11 by TFDO oxidation of diene (-)-SI-1

To a solution of diene (-)-**SI-1** (108.6 mg, 0.43 mmol) in CH₃CN (7.0 mL) and H₂O (7.0 mL) included in a micro-wave vial (10-20 mL), was added powdered NaHCO₃ (364 mg, 4.3 mmol) with stirring. The reaction vial was cooled at -15 °C, then 1,1,1-trifluoroacetone (0.31 mL, 3.4 mmol) and Oxone (320 mg, 0.52 mmol) were added successively without stirring. After sealing the vial, the reaction mixture was kept at -15 °C for 3 h with stirring vigorously. The reaction mixture was poured into a beaker including 20 mL of *tert*-butyl methyl ether (TBME) to make a suspension. After filtration over celite under reduced pressure, saturated aqueous NaHCO₃ (50 mL) was added to the filtrate. The mixture was extracted with TBME, then the organic layer was dried over MgSO₄, filtered, and evaporated to give a residue, which was purified by silica gel column chromatography (eluent; Hexane : AcOEt = 19:1) to afford (-)-**11** (83.9 mg, 0.32 mmol) in 74% yield.

*This procedure reduced cost of this step to 1/6 compared to the previous method [10, 11].

2. Synthesis of (-)-15

Anti-epoxide (+)-**11** (107.3 mg, 0.40 mmol) was converted to (-)-**15** (57.4 mg, 46% in 3 steps) by the same procedure in the literature [13]. (-)-**15**: Colorless oil; [α]_D²⁰ -15.1 (*c* 0.49, CHCl₃); IR ν_{max} (film) 3497 (OH), 1724 (C=O), 1653 (C=C) cm⁻¹; ¹H-NMR (300 MHz; CDCl₃) δ 1.25-1.70 (10H, m), 3.17 (1H, *d*, *J* =11.5 Hz, 5-OH), 3.58 (3H, s, 6-OMe), 3.82 (3H, s, COOMe), 3.83 (1H, m, H-5), 4.28 (1H, d, *J* = 5.2 Hz, H-6), 4.48 (1H, dd, *J* = 5.6, 3.2 Hz, H-3), 4.66 (1H, ddd, *J* = 5.6, 3.5, 0.6 Hz, H-4), 6.83 (1H, dd, *J* = 3.2, 0.9 Hz, H-2); ¹³C-NMR (75.5 MHz; CDCl₃) δ 23.7, 23.9, 24.9, 35.7, 37.2, 52.2, 61.2, 68.0, 72.1, 72.9, 74.2, 111.7, 130.0, 137.8, 166.7; HREIMS *m*/*z* calcd for C₁₅H₂₂O₆ (M)⁺ 298.1416, found 298.1420.

3. ¹H- and ¹³C-NMR spectra of new compounds

Figure S1: ¹H- NMR spectrum of (-)-15 in CDCl₃ (300 MHz,)

NULLA	E LEIGORNC T	E E FL	UPTOUT
1	2181.1	7.268	134.4
2	2051.5	6.836	70.2
3	2050.6	6.833	71.7
4	2048.3	6.825	73.8
5	2047.4	6.822	67.7
6	1402.8	4.674	33.3
7	1402.2	4.672	33.9
8	1399.5	4.664	36.8
9	1398.6	4.661	38.2
10	1397.2	4.656	45.1
11	1396.3	4.653	42.8
12	1393.7	4.644	40.8
13	1393.1	4.642	39.9
14	1350.3	4.499	39.6
15	1347.1	4.489	41.7
16	1344.7	4.481	34.7
17	1341.5	4.470	33.2
18	1287.5	4.290	62.0
19	1282.3	4.273	66.9
20	1145.7	3.818	767.6
21	1141.0	3.802	41.0
22	1074.7	3.581	690.1
23	494.8	1.649	37.7
24	485.5	1.618	89.3
25	482.8	1.609	86.0
26	476.4	1.587	149.8
27	473.4	1.578	142.7
28	471.7	1.572	152.3
29	462.9	1.542	56.1
30	459.4	1.531	42.0
31	421.3	1.404	23.8
32	417.5	1.391	22.9
33	406.0	1.353	22.0
34	376.1	1.253	37.7
35	21.1	0.070	60.0
36	-0.0	-0.000	129.0

Figure S2: ¹³C- NMR spectrum of (-)-15 in CDCl₃ (75.5 MHz)

Figure S3: 1H- NMR Spectrum of (-)-12 in acetone-d6 (400 MHz)

11 1912.0 4.782 8.5 46 1622.9 4.059 9.2 81 -0.0 -0.000 55.7 12 1911.1 4.780 8.9 47 1621.5 4.055 11.0 13 1909.1 4.775 16.3 48 1619.8 4.051 10.2 14 1907.9 4.772 17.5 1616.3 4.042 6.2 49 1906.4 4.768 1614.3 15 17.2 50 4.037 4.3 16 1905.2 4.765 51 1519.8 3.801 3.4 16.1 1898.3 4.748 19.2 4.7 17 52 1510.6 3.778 18 1896.0 4.742 17.8 53 1508.7 3.773 3.9 19 1892.7 4.734 9.7 54 1507.1 3.769 3.7 20 21 1890.7 4.729 9.4 55 1498.5 3.748 252.8 3.727 1885.2 4.715 10.9 56 1490.3 252.4 22 1884.3 4.713 57 1445.3 3.615 11.4 3.5 23 1881.5 4.706 11.9 1363.5 3.410 265.2 58 24 1880.4 4.703 13.0 1132.1 90.4 59 2.831 25 1879.2 4.700 13.5 1118.6 2.798 12.3 60 26 1878.2 4.697 12.4 61 825.5 2.065 17.1 27 1875.3 4.690 11.7 62 823.4 2.059 33.8 28 1874.5 4.688 11.3 63 821.2 2.054 48.4 29 1834.4 4.588 28.4 64 819.1 2.049 32.5 17.0 30 1831.1 4.579 29.2 65 816.7 2.043 1751.6 4.381 17.1 674.3 31 66 1.686 4.2 12.2 32 1746.2 4.367 18.5 67 665.3 1.664 1705.9 15.7 33 4.266 68 660.6 1.652 18.8 34 1699.2 4.250 27.2 69 653.8 1.635 43.7 35 1696.3 4.242 9.0 70 648.7 1.622 32.1

NDEX	FREOUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	16833.6	167.432	9.3	36	2464.4	24.511	28.7
2	16829.8	167.394	10.9	37	2460.5	24.473	29.0
3	13681.1	136.077	15.2				
4	13549.1	134.764	11.2				
5	13414.1	133.421	15.0				
6	13410.3	133.383	15.3				
7	11194.7	111.346	18.5				
8	11169.5	111.096	16.3				
9	8091.0	80.476	18.7				
10	7746.2	77.046	20.1				
11	7661.5	76.204	21.4				
12	7632.5	75.916	21.7				
13	7437.2	73.973	23.4				
14	7315.9	72.766	16.5				
15	7292.2	72.531	21.7				
16	7197.6	71.590	21.1				
17	6066.2	60.336	13.3				
18	5529.1	54.994	8.9				
19	5239.9	52.118	18.3				
20	5232.3	52.042	21.0				
21	3894.9	38.740	26.5				
22	3783.5	37.632	21.2				
23	3649.2	36.296	27.8				
24	3594.3	35.750	20.1				
25	3060.2	30.438	82.5				
26	3041.1	30.248	264.7				
27	3022.1	30.059	484.7				
28	3002.2	29.861	587.1				
29	2983.2	29.672	523.4				
30	2964.1	29.482	230.4				
31	2944.3	29.285	86.6				
32	2593.3	25.794	27.1				
33	2584.9	25.710	24.8				
34	2485.0	24.716	33.4				
35	2482.7	24.694	32.1				

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	3934.4	6.558	26.0	51	2531.2	4.219	38.0	101	956.6	1.595	48.7
2	3933.0	6.556	26.6	52	2528.3	4.214	35.4	102	951.9	1.587	62.4
3	3930.6	6.552	27.3	53	2524.4	4.208	11.1	103	949.6	1.583	49.5
4	3929.4	6.550	27.0	54	2521.8	4.204	13.0	104	945.2	1.576	50.0
5	3898.6	6.499	16.2	55	2452.0	4.087	9.6	105	939.3	1.566	39.3
6	3897.7	6.497	26.9	56	2448.4	4.081	10.2	106	932.0	1.554	21.3
7	3896.9	6.496	18.3	57	2446.4	4.078	10.7	107	927.0	1.545	11.1
8	3896.0	6.494	17.5	58	2445.2	4.076	11.0	108	921.4	1.536	5.0
9	3894.8	6.492	24.8	59	2442.9	4.072	10.4	109	846.9	1.412	7.0
10	3893.9	6.491	15.0	60	2441.7	4.070	10.1	110	844.2	1.407	7.5
11	3373.1	5.623	21.6	61	2439.6	4.067	9.7	111	827.5	1.379	17.4
12	2869.2	4.783	10.9	62	2436.4	4.061	9.6	112	823.4	1.373	15.7
13	2868.1	4.781	11.7	63	2266.5	3.778	4.2	113	775.6	1.293	2.6
14	2866.6	4.778	11.0	64	2263.6	3.773	3.6	114	727.1	1,212	2.6
15	2865.1	4.776	11.0	65	2250.7	3.752	13.3	115	720.1	1.200	6.4
16	2863.7	4.774	18.3	66	2248.3	3.748	354.0	116	713.1	1.189	3.1
17	2862.2	4.771	18.9	67	2236.6	3.728	418.9	117	677.0	1.128	15.6
18	2860.7	4.769	18.7	68	2167.6	3.613	3.1	118	77.2	0.129	3.5
19	2859.6	4.767	18.3	69	2045.9	3.410	368.3	119	0.0	0.000	91.3
20	2847.5	4.747	17.3	70	1954.9	3.259	3.0				
21	2846.9	4.746	18.9	71	1875.7	3.127	4.6				
22	2844.9	4.742	17.3	72	1741.0	2.902	6.2				
23	2844.0	4.741	18.0	73	1709.0	2.849	2887.4				
24	2841.9	4.737	10.9	74	1693.1	2.822	4.2				
25	2841.1	4.736	10.9	75	1689.0	2.816	40.6				
26	2839.0	4.732	10.9	76	1254.2	2.091	6.2				
27	2838.4	4.732	10.4	77	1253.3	2.089	3.4				
28	2825.5	4.710	11.1	78	1252.4	2.088	3.2				
29	2824.6	4.709	11.7	79	1245.6	2.076	3.0				
30	2822.0	4.704	11.7	80	1244.8	2.075	7.5				
31	2820.8	4.702	12.7	81	1242.4	2.071	8.5				
32	2819.6	4.700	13.0	82	1241.2	2.069	3.3				
33	2818.5	4.698	12.4	83	1240.4	2.068	7.9				
34	2815.8	4.694	12.2	84	1236.8	2.062	99.3				
35	2814.7	4.692	12.2	85	1234.8	2.058	182.3				
36	2763.0	4.606	48.1	86	1232.4	2.054	295.5				
37	2759.5	4.600	46.4	87	1230.4	2.051	180.6				
38	2627.7	4.380	19.6	88	1228.0	2.047	98.3				
39	2626.6	4.378	12.7	89	1180.2	1.967	10.0				
40	2623.3	4.373	12.4	90	1008.0	1.680	3.6				
41	2622.2	4.371	20.9	91	1001.8	1.670	6.6				
42	2621.0	4.369	12.9	92	996.5	1.661	13.6				
43	2557.3	4.263	20.1	93	988.6	1.648	17.3				
44	2550.9	4.252	31.5	94	987.1	1.645	17.8				
45	2544.4	4.241	23.9	95	984.2	1.641	23.0				
46	2542.6	4.238	13.2	96	980.1	1.634	26.4				
47	2541.5	4.236	6.8	97	976.6	1.628	21.3				
48	2537.1	4.229	22.6	98	970.7	1.618	19.2				
49	2535.9	4.227	37.5	99	965.1	1.609	17.6				
50	2534.7	4.225	22.5	100	961.9	1.603	25.3				

32 33

34

35

36

37

3889.8

3878.3

3725.7

3723.4

3696.8

3691.0

25.787

25.710

24.699

24.684

24.507

24.469

60.6

60.2

71.2

69.1

53.1

50.7

Figure S7: 1H- NMR Spectrum of (-)-16 in C6D6 (300 MHz)

Figure S8: ¹³C-NMR Spectrum of (-)-16 in C₆D₆ (75.5 MHz)

Figure S9: 1H- NMR Spectrum of (+)-16 in C6D6 (600 MHz)

4.307 4.220 4.217 24.4 18.0 12.5 25.9 927.9 922.3 918.5 1.547 1.537 1.531 1.525 12.6 10.1 10.1 13.3 10.8 11.6 8.7 27.8 25.4 24.5 23.2 914.9 910.5 908.2 902.9 4.209 4.206 4.194 4.155 1.518 1.514 1.505 27.9 20.8 35.5 40.1 37.4 32.0 9.4 9.0 32.7 33.3 4.150 750.9 1.252 4.148 4.143 4.070 747.7 682.0 677.5 1.246 1.137 1.129 4.069 0.0 0.000 74.3 4.055 4.055 4.044 94.6 7.9 500.7 532.5 4.033 3.659 3.356 492.6 8.0 1.848

2525.0

2523.0 2516.2 2492.8

2489.8 2488.4 2485.1 2441.7

2440.8 2433.5 2432.6

2426.1 2419.4

2195.2 2031.5

2013.3

1111.8

1108.3

Figure S10: ¹³C-NMR Spectrum of (+)-16 in C₆D₆ (150 MHz)

10	19315.1	128.047	729.3
11	19302.4	127.963	26.0
12	19290.8	127.886	738.7
13	16947.7	112.352	44.8
14	16811.3	111.448	48.8
15	11897.2	78.871	49.5
16	11683.4	77.453	51.1
17	11535.4	76.473	63.1
18	11195.6	74.220	62.1
19	11019.9	73.055	51.8
20	10980.5	72.794	46.3
21	10791.0	71.537	54.1
22	10772.5	71.415	52.7
23	9305.5	61.690	57.4
24	7783.1	51.597	55.7
25	7777.4	51.559	57.0
26	5782.2	38.332	44.9
27	5708.2	37.842	49.6
28	5443.5	36.087	49.2
29	5399.5	35.795	43.0
30	3836.7	25.435	52.3
31	3795.0	25.159	43.8
32	3677.1	24.377	44.8
33	3658.6	24.254	45.0
34	3640.1	24.132	82.3
35	0.0	0.000	10.6

Figure S11: 1H- NMR Spectrum of (-)-19 in CDCl3 (600 MHz)

OC16e	y75		
INDEX	FREQUENCY	PPM	HEIGHT
1	25141.0	166.669	16.9
2	25078.5	166.255	24.0
3	20494.0	135.862	28.6
4	20425.8	135.410	35.5
5	20013.1	132.674	29.4
6	19687.1	130.513	36.4
7	16844.6	111.669	41.3
8	16712.8	110.795	33.6
9	12362.9	81.958	31.6
10	12070.4	80.019	50.0
11	11646.2	77.207	784.7
12	11613.8	76.992	708.7
13	11582.6	76.785	780.7
14	11554.9	76.602	53.3
15	11420.8	75.713	43.1
16	11380.3	75.444	43.8
17	11077.5	73.437	51.5
18	10916.8	72.371	49.4
19	10659.0	70.662	47.5
20	9329.6	61.850	33.0
21	7855.8	52.079	43.7
22	7851.1	52.048	41.5
23	5748.4	38.109	43.8
24	5614.3	37.220	41.2
25	5404.0	35.825	38.6
26	5298.8	35.127	46.5
27	3766.0	24.966	47.3
28	3761.3	24.935	39.6
29	3612.2	23.947	46.5
30	3607.6	23.916	43.1
31	3584.5	23.763	36.5
32	3562.5	23.617	43.3

Figure S13: 1H- NMR Spectrum of (+)-19 in CDCl₃ (400 MHz)

SM-16

Figure S15: 1H- NMR Spectrum of (-)-22 in CDCl3 (600 MHz)

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	4357.9	7.264	454.2	51	2256.0	3.761	368.6
2	4185.9	6.978	36.4	52	2245.7	3.743	10.8
3	4185.0	6.976	36.9	53	2094.3	3.491	357.7
4	4182.1	6.971	37.7	54	1983.1	3.306	380.3
5	4181.5	6.970	33.1	55	1244.2	2.074	29.4
6	4028.3	6.715	29.4	56	1231.9	2.053	10.1
7	4026.3	6.712	30.2	57	1227.5	2.046	45.0
8	4024.5	6.709	29.6	58	1041.7	1.736	12.2
9	4022.5	6.705	28.9	59	1034.4	1.724	18.3
10	3180.3	5.301	389.7	60	1031.4	1.719	27.5
11	2894.8	4.825	24.8	61	1029.1	1.715	26.8
12	2889.5	4.817	52.6	62	1024.4	1.708	39.7
13	2845.5	4.743	20.9	63	1015.9	1.693	27.9
14	2841.7	4.737	21.3	64	1003.9	1.673	15.2
15	2839.6	4.733	23.1	65	991.8	1.653	33.1
16	2835.8	4.727	21.0	66	983.6	1.640	66.2
17	2799.1	4.666	13.4	67	970.7	1.618	44.6
18	2797.9	4.664	13.6	68	962.5	1.604	362.0
19	2794.1	4.658	15.1	69	946.3	1.578	19.7
20	2792.4	4.655	16.0	70	932.3	1.554	28 2
21	2791.5	4.653	14.9	71	928.7	1.548	25.6
22	2788.5	4.648	14.9	72	923.7	1 540	27 7
23	2787.4	4.646	14.1	73	920 5	1 534	31 1
24	2715.2	4.526	16.7	74	916.1	1.527	22.8
25	2714.0	4.524	14.5	75	911.1	1.519	28.8
26	2712.2	4 521	17.0	76	908 5	1 514	28 5
27	2709 3	4 516	15 6	77	898 8	1 498	21 0
28	2708.1	4.514	13 1	78	890.0	1 484	11 3
29	2707.6	4.513	13.3	79	853.3	1.422	10.1
30	2705 4	4 511	14 8	80	826 0	1 377	7.0
31	2532 1	4 221	26.4	81	817 5	1 363	10.2
32	2525 3	4 210	41 0	82	808 1	1 347	8 3
33	2523 0	4 206	39 1	83	804 9	1 342	8.0
34	2515 9	4 194	44 8	84	763 2	1 272	15.8
35	2476 6	4 128	9.7	85	755.9	1.260	41 6
36	2469.6	4.117	9.5	86	752.7	1.255	33.3
37	2442.5	4.072	21.7	87	748.9	1.248	19.9
38	2439.6	4.067	25.3	88	738.0	1.230	8.6
39	2438.5	4.065	24.5	89	735.1	1.225	7.8
40	2435.5	4.060	20.5	90	727.1	1.212	7.5
41	2334.6	3.892	10.5	91	724.8	1.208	6.8
42	2328.7	3.882	15.3	92	591.3	0.986	7.1
43	2320.2	3.868	26.3	93	528.2	0.880	9.6
44	2311.7	3.854	12.6	94	521.1	0.869	6.6
45	2311.1	3.853	12.5	95	42.0	0.070	18.8
46	2297.6	3.830	11.0	96	3.2	0.005	10.2
47	2296.4	3.828	7.4	97	-0.0	-0.000	327.1
48	2290.0	3.817	431.9	98	-3.2	-0.005	12.6
49	2282.9	3,806	7.5				
50	2261.8	3.770	30.0				

OCTO-MK-32

Figure S16: ¹³C-NMR Spectrum of (-)-22 in CDCl₃ (150 MHz)

	•		
OCI	8 -	MK-	32

0010	MAC J2		
NDEX	FREQUENCY	PPM	HEIGHT
1	25186.0	166.968	21.9
2	25078.5	166.255	20.1
3	21195.6	140.514	12.0
4	20475.5	135.739	15.5
5	19978.4	132.444	31.1
6	19473.2	129.095	13.4
7	16900.0	112.037	34.9
8	16839.9	111.638	34.7
9	11848.5	78.548	34.6
10	11820.7	78.364	20.4
11	11646.2	77.207	963.6
12	11615.0	77.000	962.6
13	11582.6	76.785	1009.2
14	11457.7	75.958	31.9
15	11079.7	73.452	39.7
16	11026.6	73.099	37.0
17	10965.3	72.693	30.2
18	10682.1	70.816	42.2
19	10337.6	68.532	10.2
20	8462.6	56.102	27.3
21	8055.7	53.404	11.6
22	7898.5	52.362	37.2
23	7843.0	51.994	34.7
24	7674.3	50.876	20.8
25	5701.0	37.794	33.2
26	5588.9	37.051	29.1
27	5386.6	35.710	33.6
28	5306.8	35.181	29.4
29	3770.6	24.996	43.0
30	3608.7	23.924	56.8
31	3568.3	23.655	32.2
32	3557.9	23.586	34.4

Figure S18: ¹³C-NMR Spectrum of (+)-22 in CDCl₃ (100 MHz)

Figure S19: 1H- NMR Spectrum of (+)-13 in CDCl₃ (300 MHz)

2767.4 2766.2

2762.1

2762.1 2731.6 2726.6 2680.0 2678.8 2677.9 2677.0

2675.9

2674.4

2671.5

 $\begin{array}{r} 4.604\\ 4.553\\ 4.545\\ 4.467\\ 4.465\\ 4.464\\ 4.463\\ 4.461\\ 4.458\\ 4.458\\ 4.453\end{array}$

23.5 25.3 22.9

981.3 975.1

975.1 967.8 961.6 955.4 948.1 942.5 935.2 935.2

915.8

913.5 909.7

1.523

5.8

5.1 34.3 36.0 17.6 12.9 13.2 17.9

13.4

16.4

100

OC15CN60	

INDEX	FREQUENCY	PPM	HEIGHT
1	25145.6	166.699	20.6
2	25137.5	166.646	20.7
3	20771.4	137.701	39.5
4	20763.3	137.648	25.9
5	19810.8	131.333	20.0
6	19573.8	129.762	26.5
7	16857.3	111.753	34.8
8	16711.6	110.788	33.2
9	12006.9	79.598	30.8
10	11646.2	77.207	2305.3
11	11615.0	77.000	2467.8
12	11582.6	76.785	2471.3
13	11270.5	74.716	37.9
14	11263.6	74.670	47.3
15	11054.3	73.283	29.6
16	11046.2	73.230	47.2
17	10920.2	72.394	39.9
18	10783.8	71.490	46.3
19	10275.2	68.118	20.4
20	8942.4	59.282	32.5
21	7884.7	52.270	49.4
22	7819.9	51.841	39.1
23	5673.3	37.610	42.9
24	5436.3	36.039	34.3
25	5394.7	35.764	43.2
26	5133.5	34.032	39.0
27	3779.8	25.058	45.3
28	3766.0	24.966	47.1
29	3608.7	23.924	43.8
30	3597.2	23.847	46.2
31	3579.8	23.732	43.8
22	2570 6	22 671	41 7

Figure S25: 1H- NMR Spectrum of (-)-17 in acetone-d₆ (600 MHz)

00151	567 in aceto	ne									
INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	4061.8	6.771	36.8	51	2364.5	3.942	17.3	101	897.6	1.496	14.1
2	4060.6	6.769	38.1	52	2361.0	3.936	10.1	102	894.4	1.491	9.0
3	4058.5	6.765	36.3	53	2358.4	3.931	10.2	103	889.4	1.483	7.6
4	4057.7	6.764	34.8	54	2355.7	3.927	10.8	104	860.9	1.435	8.1
5	4011.9	6.688	43.7	55	2280.0	3.801	21.8	105	858.0	1.430	9.3
6	4011.0	6.686	44.6	56	2270.6	3.785	566.7	106	854.2	1.424	12.6
7	4008.4	6.682	45.6	57	2258.9	3.765	21.4	107	851.0	1.419	12.9
8	4007.5	6.680	42.2	58	2250.4	3.751	488.9	108	847.7	1.413	15.5
9	3373.7	5.624	65.9	59	2176.1	3.628	14.8	109	844.8	1.408	13.9
10	2974.6	4.958	13.8	60	2069.0	3.449	437.3	110	841.3	1.402	14.1
11	2973.1	4.956	12.6	61	2042.9	3.405	19.9	111	834.5	1.391	12.3
12	2971.6	4.954	14.3	62	1690.2	2.817	370.9	112	827.5	1.379	8.9
13	2969.6	4.950	12.4	63	1670.0	2.784	80.7	113	822.2	1.371	7.7
14	2968.4	4.948	16.3	64	1395.0	2.325	7.6	114	815.8	1.360	13.1
15	2967.0	4.946	14.5	65	1366.8	2.278	9.0	115	809.0	1.349	19.8
16	2965.5	4.943	16.2	66	1243.9	2.073	16.6	116	806.4	1.344	24.4
17	2893.0	4.822	21.7	67	1241.5	2.070	18.5	117	801.7	1.336	28.3
18	2892.4	4.822	22.1	68	1239.5	2.066	17.2	118	797.9	1.330	30.9
19	2889.5	4.817	22.4	69	1236.0	2.060	221.5	119	793.2	1.322	33.4
20	2888.9	4.816	22.6	70	1233.9	2.057	433.0	120	776.1	1.294	101.4
21	2886.8	4.812	19.5	71	1231.6	2.053	657.5	121	760.3	1.267	8.0
22	2886.3	4.811	19.5	72	1229.5	2.050	433.2	122	727.1	1.212	8.9
23	2882.7	4.805	19.0	73	1227.2	2.046	222.6	123	719.8	1.200	20.8
24	2852.5	4.755	18.0	74	1223.9	2.040	7.9	124	712.8	1.188	11.6
25	2851.6	4.754	19.3	75	1179.6	1.966	30.9	125	707.2	1.179	8.7
26	2849.6	4.750	19.6	76	1001.2	1.669	7.8	126	537.3	0.896	14.8
27	2848.7	4.749	20.0	77	995.6	1.660	20.7	127	535.2	0.892	12.7
28	2847.2	4.746	21.5	78	994.5	1.658	19.2	128	531.7	0.886	21.1
29	2846.4	4.745	20.8	79	989.8	1.650	28.2	129	530.5	0.884	25.6
30	2844.3	4.741	19.7	80	985.7	1.643	28.7	130	529.1	0.882	21.2
31	2843.4	4.740	18.8	81	982.1	1.637	41.6	131	528.2	0.880	24.0
32	2753.6	4.590	28.4	82	978.0	1.630	37.9	132	527.0	0.879	15.5
33	2748.6	4.582	26.3	83	973.6	1.623	39.2	133	525.0	0.875	19.6
34	2715.8	4.527	16.0	84	969.5	1.616	39.3	134	522.9	0.872	14.2
35	2713.4	4.523	16.1	85	965.4	1.609	30.1	135	520.9	0.868	14.9
36	2710.5	4.518	15.4	86	960.7	1.601	32.6	136	518.5	0.864	10.4
37	2708.1	4.514	14.7	87	956.6	1.595	38.8	137	77.5	0.129	341.5
38	2524.2	4.208	19.2	88	952.8	1.588	39.3	138	75.7	0.126	60.6
39	2523.0	4.206	25.8	89	947.2	1.579	47.3	139	74.8	0.125	59.0
40	2522.1	4.204	21.3	90	942.5	1.571	44.9	140	73.7	0.123	50.2
41	2519.8	4.200	25.9	91	939.0	1.565	46.5	141	69.8	0.116	14.0
42	2518.9	4.199	33.1	92	935.8	1.560	49.9	142	3.5	0.006	8.0
43	2494.8	4.159	24.5	93	931.4	1.553	59.9	143	0.0	0.000	385.6
44	2491.9	4.154	26.4	94	927.0	1.545	57.8	144	-3.2	-0.005	11.9
45	2490.7	4.152	27.9	95	924.0	1.540	34.9				
46	2487.8	4.147	18.9	96	919.0	1.532	20.6				
47	2377.1	3.963	21.6	97	914.9	1.525	19.0				
48	2371.9	3.954	14.2	98	910.5	1.518	21.5				
49	2369.5	3.950	13.9	99	906.4	1.511	11.1				
50	00000	2 010		100	0.0.7 4						

Figure S26: ¹³C-NMR Spectrum of (-)-17 in acetone-d₆ (150 MHz)

OCIEY	567		
INDEX	FREOUENCY	PPM	HEIGHT
1	31112.9	206.258	68.6
2	31093.3	206.128	5439.8
3	31072.4	205.990	77.0
4	25268.3	167.512	20.9
5	25163.1	166.815	26.8
6	20987.8	139.135	52.6
7	20715.0	137.327	62.7
8	19849.1	131.587	21.0
9	19668.8	130.391	23.1
10	16884.1	111,930	25.0
11	16844.8	111.670	38.1
12	12101.8	80.227	41.7
13	11434.8	75.805	65.5
14	11110.0	73.652	63.1
15	11069.6	73.384	51.3
16	11037 2	73 169	58 2
17	10935.5	72.495	52.3
18	10884 6	72 158	20.2
19	10881.1	72 135	37.8
20	10187 6	67 537	46 5
21	10171 4	67.429	17 4
22	9261.6	61.398	54.9
23	7910.3	52.440	58.3
24	7875.6	52.210	48.6
25	5796.0	38.424	53.1
26	5756.7	38,163	56.9
27	5471.2	36.270	58.5
28	5444.6	36.094	49.4
29	4924.4	32.646	10.6
30	4584.6	30.393	33.0
31	4577.6	30.347	32.7
32	4559.1	30.224	565.7
33	4540.6	30.101	1492.4
34	4521.0	29.971	3756.1
35	4501.3	29.841	4543.1
36	4481.7	29.711	3261.1
37	4463.2	29.588	1537.3
38	4443.5	29.458	638.3
39	3888.7	25.779	75.9
40	3884.1	25.749	66.0
41	3737.2	24.775	68.9
42	3717.6	24.645	75.2
43	3708.3	24.584	53.2
44	3693.3	24.484	69.6
45	3519.9	23.335	11.4
46	2165.1	14.353	8.9
47	2167.4	14.369	9.9
48	212.7	1.410	74.8
49	-0.0	-0 000	21.0

37.451 37.175

35.528

35.444

29.321

29.198

29.068

28.937

28.807

28.685

28.554

24.807

24.776

23.765

23.611

23.596

43.6

41.8

39.8

126.2

313.8

808.9

1004.1

741.2

323.3

137.2

47.8

45.3

62.3

47.5

43.5

5607.7

5359.2

5346.5

4422.8

4404.4

4384.7

4365.1

4345.4

4326.9

4307.3

3742.0

3737.4

3584.8

3561.7

3559.3

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Figure S29: 1H- NMR Spectrum of (+)-20 in acetone-d₆ (400 MHz)

Figure S29: ¹³C-NMR Spectrum of (+)-20 in acetone-d₆ (100 MHz)

OC17MY88	INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT	INDEK	FREQUENCY	PPM	HEIGHT
	1	18773.4	186.727	2.2	36	7765.0	77.233	-1.9	71	2928.7	29.130	438.4
	2	18153.9	180.565	1.8	37	7738.3	76.968	5.6	72	2908.9	28.933	524.2
Sample Name:	3	17864.8	177.689	1.7	38	7627.7	75.867	-1.8	73	2889.8	28.743	461.2
	4	16754.7	166.648	2.1	39	7562.8	75.222	5.4	74	2870.7	28.553	204.9
Data Collected on:	5	16694.4	166.048	2.1	40	7521.6	74.812	-2.4	75	2850.9	28.356	75.5
baca corrected on.	0 7	14790.2	142 502	-1.0	42	7323.3	72.639	5.0	70	2/01./	27.309	-2.0
Agilenc-mak-vimrs400		13015 0	139 411	-1.7	43	7272 1	72 321	-1.0	79	2401 6	24 702	-2.3
Archive directory:	9	13849.4	137.751	3.9	44	7267.6	72.285	6.1	79	2488.5	24.751	6.6
	10	13759.4	136.856	-2.1	45	7144.0	71.056	3.3	80	2388.6	23.757	12.1
Sample directory:	11	13626.7	135.535	-1.8	46	6971.5	69.341	-1.7	81	2371.0	23.583	7.6
	12	13603.0	135.300	3.6	47	6884.6	68.476	4.7	82	2372.5	23.598	8.4
FidFile: CARBON	13	13503.8	134.313	-1.7	48	6727.4	66.913	-1.8	83	2123.8	21.124	-1.8
	14	13359.6	132.879	2.6	49	6596.2	65.608	-2.0	84	1956.0	19.455	-2.0
Pulse Sequence: CARBON (s2pul)	15	13334.5	132.629	-1.6	50	6355.1	63.210	-2.1	85	1837.7	18.279	-1.9
Solvent: acetone	16	13003.3	129.335	2.5	51	6214.7	61.813	2.7	86	1729.4	17.201	-1.7
Data collected on: May 11 2018	17	11841.4	117.778	-1.8	52	6038.5	60.060	-1.7	87	1558.5	15.501	-1.9
and the second se	18	11306.6	112.459	-2.0	53	5671.5	56.410	-2.1	88	1284.6	12.777	-2.1
	19	11139.5	110.797	4.4	54	5541.0	55.113	-1.7	89	1227.4	12.208	-2.1
Temp. 19.6 C / 292.8 K	20	10002 0	109.090	4.4	55	5451.9	54.457	-1.9	90	1049.0	10.440	-4.4
Operator: vnmr1	22	10540 6	104 940	-1.7	57	5149 9	51 212	4 3	91	954.2	9.491	-2.1
	23	10236.9	101.820	-1.7	58	5085.6	50.583	-1.9	93	663.6	5.600	-2.4
Relax. delay 1.689 sec	24	10109.5	100.552	-1.9	59	4926.1	48.997	-2.1	94	25.7	0.256	-2.2
Pulse 45.0 degrees	25	10043.9	99.900	-1.8	60	4366.9	43.434	-2.0	95	-92.5	-0.920	2.1
Acg. time 1.311 sec	26	9665.5	96.136	-1.8	61	4215.8	41.932	-2.1	96	-307.7	-3.060	-2.5
Width 25000.0 Hz	27	9468.6	94.178	-1.7	62	4019.7	39.981	-2.0	97	-394.6	-3.925	-2.4
1280 repetitions	28	9256.5	92.069	-1.9	63	3764.9	37.447	5.9				
OPCEPTE C12 100 E206866 MT-	29	9012.4	89.640	-2.0	64	3737.4	37.174	5.6				
DEGOVDER W1 200 0412576 MHz	30	8639.3	85.929	-1.9	65	3629.1	36.096	-2.0				
DECOUPLE HI, 399.8413576 MHZ	31	8402.0	83.569	-2.3	66	3571.1	35.519	6.8				
Power 36 dB	32	8370.0	83.251	-2.2	67	3563.5	35.444	5.3				
continuously on	33	8311.3	82.000	-1.8	68	3201.9	31.847	-1.8				
WALTZ-16 modulated	34	7965 6	70 220	-1 0	09	2900.9	29.509	220 0				
DATA PROCESSING	55	1305.0	13.663	-1.0	10	2347.0	43.320	455.0				
Line broadening 1.0 Hz												
FT size 65536												
Total time 1 hr, 42 min												
									1			
									1			
								¥ 1		1		
alles and the second		11					1		1			
	tenden angelikeren eine beine bei	the production of the providence	A PROPERTY AND A PROPERTY AND	AL ANTIN MARKA	A STATE OF STATE		Nin Adda	and adapted	HANNAH .	and subscription of the state	Antis & Antistic March	air a satural service satura
			the second se							den el complete e el complete	Total Pages 4-1	a feili setere
180 160	140 120	1	00	8	0	60		40		20		0 000
		- the		-		00						The Parass

Figure S31: ¹H- NMR Spectrum of (+)-23 in CDCl₃ (600 MHz)

OC18-MK-37 fr21-23

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	4356.7	7.262	748.4	51	1227.2	2.046	101.8
2	4162.7	6.939	32.1	52	1025.0	1.709	39.5
3	4161.8	6.938	35.2	53	1017.4	1.696	45.1
4	4158.9	6.933	35.7	54	1005.0	1.675	80.8
5	4158.0	6.931	32.6	55	1001.5	1.669	83.1
6	4118.4	6.865	27.2	56	988.9	1.648	63.5
7	4117.8	6.864	29.2	57	984.5	1.641	68.2
8	4115.2	6.860	29.3	58	980.7	1.635	67.9
9	4114.3	6.858	28.2	59	976.9	1.628	68.2
10	3179.7	5.300	160.6	60	971.0	1.619	66.9
11	2857.2	4.763	16.7	61	967.5	1.613	78.9
12	2852.8	4.756	16.8	62	962.5	1.604	82.1
13	2835.8	4.727	19.7	63	948.4	1.581	34.3
14	2832.3	4.721	20.6	64	941.1	1.569	28.1
15	2830.2	4.718	23.1	65	936.7	1.561	31.3
16	2826.4	4.711	21.9	66	930.2	1.551	40.0
17	2786.5	4.645	29.5	67	923.7	1.540	42.0
18	2781.2	4.636	35.2	68	921.1	1.535	42.7
19	2776.8	4.629	19.3	69	917.9	1.530	36.2
20	2775.0	4.626	20.0	70	911.7	1.520	49.4
21	2771.5	4.620	18.5	71	900.6	1.501	15.2
22	2749.8	4.584	17.1	72	853.0	1.422	11.2
23	2746.6	4.578	18.0	73	845.1	1.409	10.5
24	2743.6	4.574	15.5	74	841.3	1.402	10.6
25	2740.7	4.569	14.8	75	838.4	1.397	9.4
26	2612.5	4.355	15.7	76	808.4	1.348	26.6
27	2609.5	4.350	16.7	77	791.7	1.320	10.6
28	2606.6	4.345	15.3	78	770.6	1.285	8.6
29	2603.7	4.340	14.4	79	762.6	1.271	35.5
30	2483.7	4.140	7.4	80	755.6	1.260	78.2
31	2476.3	4.128	22.9	81	752.7	1.255	39.0
32	2469.3	4.116	22.8	82	748.6	1.248	32.8
33	2461.9	4.104	7.3	83	714.2	1.191	31.2
34	2397.7	3.997	21.4	84	527.9	0.880	10.7
35	2394.7	3.992	23.9	85	520.9	0.868	7.6
36	2393.0	3.989	24.0	86	41.4	0.069	43.2
37	2390.3	3.985	20.0	87	3.2	0.005	20.5
38	2292.9	3.822	28.3	88	-0.3	-0.000	596.1
39	2289.4	3.816	338.2	89	-3.5	-0.006	20.7
40	2283.5	3.807	7.4				
41	2273.3	3.789	25.2				
42	2269.2	3.783	375.1				
43	2258.6	3.765	8.5				
- 44	2255.7	3.760	13.4				
45	2252.4	3.755	17.2				
46	2248.9	3.749	12.2				
47	2133.0	3.556	21.3				
48	2094.3	3.491	29.2				
49	2065.5	3.443	355.8				
50	1928.5	3.215	9.9				

Figure S32: ¹³C-NMR Spectrum of (+)-23 in CDCl₃ (150 MHz)

OC18-	MK-37 fr21-2	23	
INDEX	FREQUENCY	PPM	HEIGHT
1	25202.2	167.075	15.9
2	25173.3	166.883	26.8
3	20969.1	139.012	16.1
4	19667.5	130.383	26.4
5	19577.3	129.785	8.4
6	16875.8	111.876	39.2
7	16872.3	111.853	20.6
8	11647.3	77.215	2319.7
9	11615.0	77.000	2418.9
10	11582.6	76.785	2144.9
11	11490.1	76.172	12.4
12	11247.4	74.563	19.3
13	11124.8	73.751	15.3
14	10958.4	72.647	26.7
15	10887.9	72.180	32.3
16	10696.0	70.908	7.4
17	10455.5	69.314	8.2
18	10314.5	68.379	37.0
19	9110.0	60.394	12.0
20	8729.7	57.872	14.0
21	8056.9	53.412	11.0
22	7890.4	52.309	38.2
23	7881.2	52.247	44.0
24	5607.4	37.174	49.4
25	5356.6	35.511	30.5
26	5345.0	35.434	45.2
27	4479.2	29.694	8.2
28	3764.8	24.958	71.6
29	3605.3	23.901	52.5
30	3589.1	23.793	44.8
31	3579.8	23.732	41.4
32	3568.3	23.655	55.0
33	2139.5	14.184	10.2

SM-33

Figure S35: ¹H- NMR Spectrum of (+)-6 in acetone-d₆ (400 MHz)

29

30

31

32

33

34

35

448.2

441.1

352.3

52.6

49.9

0.0

-3.3

1.121

1.103

0.881

0.132

0.125

0.000

-0.008

19.1

12.9

133.1

330.6

21.1

11.2

9.9

Figure S36: ¹³C-NMR Spectrum of (+)-6 in acetone-d₆ (100 MHz)

INDEX	FREQUENCY	PPM	HEIGHT
1	16838.4	167.480	9.2
2	16787.3	166.972	8.3
3	14343.6	142.666	19.1
4	14249.7	141.732	23.9
5	13115.2	130.448	11.4
6	13074.0	130.039	9.9
7	8314.1	82.694	23.8
8	7717.4	76.760	21.7
9	7658.7	76.176	27.7
10	7281.0	72.420	12.3
11	7084.2	70.462	12.4
12	6956.8	69.195	12.9
13	6837.0	68.003	13.9
14	6630.2	65.947	13.7
15	5891.7	58.601	20.1
16	5265.4	52.371	22.8
17	5240.9	52.128	23.7
18	3073.4	30.569	14.8
19	3057.4	30.410	435.5
20	3038.3	30.220	1337.8
21	3019.3	30.031	2363.7
22	2999.4	29.833	3048.0
23	2980.3	29.644	2595.9
24	2960.5	29.446	1181.0
25	2941.4	29.257	438.2
26	139.9	1.392	9.0
27	-2.0	-0.020	6.8

Figure S37: 1H- NMR Spectrum of (-)-6 in acetone-d₆ (600 MHz)

0C15C	N89 +D20		
INDEX	FREQUENCY	PPM	HEIGHT
1	4124.3	6.875	85.6
2	4119.6	6.867	89.0
3	4011.9	6.688	64.3
4	4010.7	6.686	65.5
5	3366 6	5 612	50 5
6	2710.2	4 518	48.7
7	2706 1	4 511	49 1
8	2602.5	4.338	117.6
9	2599 3	4 333	129 2
10	2532 1	4 221	45 1
11	2529 8	4 217	60.2
12	2526.8	4 212	56.0
13	2522.4	4.205	37.0
14	2475 5	4 126	21 7
15	2470 5	4 118	40 1
16	2465 8	4 110	23.3
17	2418.3	4.031	28.4
18	2367 2	3 946	33 6
19	2365 4	3 943	35 7
20	2362 2	3 938	33 5
21	2360 4	3 935	29 9
22	2278 3	3 798	1006 7
23	2249 2	3 749	18 2
24	2244 8	3 742	1202 3
25	2239 3	3 733	37 1
26	2083 1	3 472	994 9
27	2003.1	3 464	13 3
28	1971 3	3 286	39.4
29	1873 9	3 124	20 5
30	1872 2	3 1 2 1	605 7
31	1869 8	3 117	18 8
32	1856 0	3 094	608 4
33	1243 9	2 074	13 6
34	1241.9	2.074	14 3
35	1230 5	2.070	13 5
36	1236 3	2.000	224 9
37	1222 0	2.051	205 5
38	1231 9	2.053	670 6
39	1229 5	2.050	404 1
40	1227.5	2.046	222 0
41	674 6	1 125	37 0
42	672 0	1 122	2200 2
43	670 5	1 118	27 7
44	70 5	0 117	27.7
45	-4 4	-0.007	12 0
46	7.4	-0.007	402.2
-10	-7.6	-0.013	402.2

Figure S38: ¹³C-NMR Spectrum of (-)-6 in acetone-d₆ (100 MHz)

INDEX	FREQUENCY	PPM	HEIGHT
1	31114.1	206.266	24.2
2	31095.6	206.143	1652.1
3	31074.7	206.005	21.5
4	25264.8	167.489	20.2
5	25187.4	166.976	16.2
6	21517.2	142.645	28.6
7	21372.7	141.687	41.7
8	19682.7	130.483	21.9
9	19626.0	130.108	19.4
10	12477.5	82.718	33.2
11	11580.5	76.771	41.7
12	11493.8	76.196	44.0
13	10980.5	72.794	4.0
14	10925.1	72.426	11.6
15	10631.4	70.479	16.9
16	10438.4	69.200	15.0
17	10259.2	68.012	18.5
18	9952.9	65.981	14.8
19	8842.0	58.617	37.0
20	7901.0	52.379	30.2
21	7864.0	52.133	46.7
22	7439.8	49.321	13.2
23	4576.5	30.339	6.7
24	4559.1	30.224	188.9
25	4539.5	30.094	639.3
26	4519.8	29.964	1166.1
27	4500.2	29.833	1027.0
28	4481.7	29.711	1153.5
29	4462.0	29.580	639.9
30	4442.4	29.450	190.8
31	4110.6	27.251	29.0
32	-1.2	-0.008	6.8

Figure S39: ¹H-NMR Spectrum of (+)-14 in acetone-d₆ (600 MHz)

001	5CN111		
INDEX	FREQUENCY	PPM	HEIGHT
1	31164.9	206.603	12.2
2	31121.0	206.312	149.3
3	31101.3	206.181	11222.3
4	31080.5	206.044	148.2
5	25263.7	167.482	19.2
6	25197.8	167.045	13.0
7	21339.2	141.465	47.4
8	21320.7	141.342	40.8
9	19682.7	130.483	17.3
10	19665.3	130.368	21.7
11	12251.0	81.216	37.3
12	11584.0	76.794	33.9
13	11469.5	76.035	40.0
14	10608.3	70.326	36.8
15	10491.6	69.552	37.4
16	10143.6	67.246	49.0
17	10055.8	66.663	42.1
18	10004.9	66.326	50.5
19	8867.4	58.785	36.7
20	7864.1	52.134	70.2
21	4577.6	30.347	33.5
22	4559.1	30.224	938.6
23	4540.6	30.101	3422.1
24	4521.0	29.971	7618.6
25	4501.3	29.841	8161.9
26	4481.7	29.711	5330.2
27	4463.2	29.588	3519.6
28	4443.5	29.458	1282.5
29	4421.6	29.312	14.5
30	212 7	1 410	141 E

Figure S41: ¹H- NMR Spectrum of (-)-14 in acetone-d₆ (600 MHz)

00150	N81 +D20						
INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	4128.7	6.882	98.7	51	1241.8	2.070	458.2
2	4124.0	6.874	107.0	52	1099.2	1.832	11.3
3	4050.6	6.752	53.7	53	773.5	1.289	36.6
4	4048.0	6.748	52.6	54	684.0	1.140	15.4
5	2683.2	4.473	28.6	55	78.6	0.131	32.7
6	2680.0	4.467	32.6	56	3.5	0.006	15.0
7	2677.6	4.463	32.1	57	-0.0	-0.000	649.5
8	2674.4	4.458	30.9	58	-3.2	-0.005	20.2
9	2658.0	4.431	23.1				
10	2654.7	4.425	37.8				
11	2651.8	4.420	23.0				
12	2645.9	4.411	95.2				
13	2642.7	4.405	95.5				
14	2533.8	4.224	44.3				
15	2530.9	4.219	42.5				
16	2491.6	4.153	37.2				
17	2488.9	4.149	46.6				
18	2486.0	4.144	35.9				
19	2454.9	4.092	23.3				
20	2449.9	4.084	44.8				
21	2445.2	4.076	25.0				
22	2378.3	3.965	21.4				
23	2373.6	3.957	32.5				
24	2368.6	3.948	19.5				
25	2352.8	3.922	33.5				
26	2350.4	3.918	33.3				
27	2347.8	3.914	32.0				
28	2345.5	3.910	28.9				
29	2292.6	3.822	11.1				
30	2278.8	3.799	11.6				
31	2264.5	3.775	959.5				
32	2262.4	3.771	26.5				
33	2254.8	3.759	18.0				
34	2245.4	3.743	11.2				
35	2241.9	3.737	940.7				
36	2238.1	3.731	14.7				
37	2104.0	3.507	12.4				
38	2096.9	3.495	852.2				
39	2089.0	3.482	15.2				
40	2024.7	3.375	25.1				
41	2022.1	3.371	23.1				
42	2005.9	3.344	2908.0				
43	1978.9	3.299	110.1				
44	1258.3	2.097	27.6				
45	1256.2	2.094	30.4				
46	1253.9	2.090	28.9				
47	1250.6	2.085	461.1				
48	1248.6	2.081	754.4				
49	1246.2	2.077	1378.9				
50	1243.9	2.073	776.1				

Figure S42: ¹³C-NMR Spectrum of (-)-14 in acetone-d₆ (150 MHz)

OC15CN81 +D20

INDEX	FREQUENCY	PPM	HEIGHT
1	31305.9	207.538	57.1
2	31286.3	207.408	4208.6
3	31265.5	207.270	58.3
4	25282.2	167.604	14.8
5	25227.9	167.244	15.9
6	21373.9	141.695	26.9
7	21333.4	141.426	38.2
8	19663.0	130.353	21.9
9	19652.6	130.284	18.5
10	12201.3	80.886	41.4
11	11556.2	76.610	36.0
12	11463.7	75.997	44.3
13	10563.2	70.027	31.1
14	10444.2	69.238	34.3
15	10127.4	67.138	32.3
16	10035.0	66.525	38.9
17	9977.2	66.142	38.8
18	8872.1	58.816	37.4
19	7882.6	52.256	28.9
20	7874.5	52.202	29.7
21	4585.7	30.400	16.3
22	4568.4	30.285	479.1
23	4548.7	30.155	1609.1
24	4529.1	30.025	3033.9
25	4509.4	29.895	2862.9
26	4490.9	29.772	2780.6
27	4471.3	29.642	1606.1
28	4451.6	29.511	518.8
29	0.0	0.000	14.3

Figure S43: ¹H- NMR Spectrum of (+)-7 in acetone-d₆ (400 MHz)

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	2730.5	6.829	33.2	36	1639.9	4.101	25.3	71	1385.6	3.465	393.1
2	2729.2	6.826	37.1	37	1637.6	4.096	27.2	72	1132.3	2.832	349.8
3	2728.0	6.823	37.2	38	1636.0	4.092	26.1	73	1119.8	2.801	21.9
4	2726.6	6.819	33.3	39	1633.9	4.086	23.1	74	1118.8	2.798	27.5
5	2693.0	6.735	32.2	40	1611.4	4.030	8.1	75	1117.8	2.796	22.0
6	2691.6	6.732	34.9	41	1610.2	4.027	8.1	76	825.5	2.065	57.0
7	2690.4	6.729	36.0	42	1606.1	4.017	50.9	77	823.4	2.059	115.1
8	2689.3	6.726	32.4	43	1601.8	4.006	14.3	78	821.2	2.054	166.1
9	2250.3	5.628	8.4	44	1600.6	4.003	13.4	79	819.1	2.049	108.6
10	1875.5	4.691	24.4	45	1599.4	4.000	14.4	80	816.7	2.043	57.3
11	1869.2	4.675	33.5	46	1598.5	3.998	14.7	81	3.1	0.008	8.2
12	1867.2	4.670	35.4	47	1596.3	3.992	35.0	82	-0.0	-0.000	253.4
13	1865.1	4.665	34.8	48	1580.8	3.954	42.4	83	-3.3	-0.008	7.6
14	1791.5	4.481	7.2	49	1571.1	3.929	35.9				
15	1790.2	4.477	7.5	50	1559.1	3.899	32.0				
16	1786.5	4.468	11.5	51	1551.7	3.881	24.2				
17	1785.1	4.464	12.2	52	1542.1	3.857	11.4				
18	1782.7	4.459	11.8	53	1540.0	3.851	11.5				
19	1781.6	4.456	11.9	54	1538.0	3.847	12.2				
20	1780.2	4.452	12.1	55	1535.7	3.841	13.8				
21	1728.4	4.323	27.5	56	1533.9	3.836	15.0				
22	1724.4	4.313	30.0	57	1531.7	3.831	14.5				
23	1707.0	4.269	13.0	58	1529.8	3.826	14.8				
24	1705.9	4.266	14.3	59	1527.6	3.821	11.9				
25	1704.3	4.262	15.7	60	1516.9	3.794	469.0				
26	1702.7	4.259	15.4	61	1507.9	3.771	469.7				
27	1701.4	4.255	15.7	62	1499.3	3.750	13.3				
28	1699.8	4.251	16.4	63	1498.7	3.748	11.7				
29	1698.6	4.248	20.1	64	1490.9	3.729	6.8				
30	1697.2	4.245	22.4	65	1475.2	3.690	23.6				
31	1696.1	4.242	24.0	66	1461.7	3.656	8.8				
32	1694.5	4.238	25.4	67	1436.5	3.593	6.1				
33	1691.6	4.231	21.4	68	1416.7	3.543	7.8				
34	1679.2	4.200	27.4	69	1398.1	3.497	6.3				
35	1670.4	4.178	23.7	70	1396.0	3.491	23.4				

INDEX	FREQUENCY	PPM	HEIGHT
1	16730.8	166.410	8.8
2	16679.7	165.901	8.2
3	14319.9	142.430	16.5
4	14210.0	141.338	13.8
5	13037.4	129.674	6.9
6	13022.1	129.522	7.1
7	8003.5	79.606	18.5
8	7584.7	75.440	25.3
9	7538.1	74.977	26.0
10	7259.7	72.207	16.4
11	7065.1	70.272	17.9
12	6948.4	69.111	12.1
13	6924.0	68.868	20.0
14	6897.3	68.602	19.1
15	6124.4	60.915	17.1
16	5198.2	51.703	17.7
17	5186.8	51.589	21.6
18	2993.3	29.772	208.6
19	2973.5	29.575	576.8
20	2954.4	29.385	1273.6
21	2935.3	29.196	1383.2
22	2915.5	28.998	1196.6
23	2896.4	28.809	635.1
24	2877.3	28.619	186.1

Figure S45: 1H- NMR Spectrum of (-)-7 in acetone-d₆ (400 MHz)

INDEX	FREQUENCY	PPM	HEIGHT
1	16731.2	166.414	18.4
2	16680.9	165.913	16.8
3	14321.1	142.442	25.4
4	14212.0	141.357	22.6
5	13037.8	129.679	16.6
6	13022.6	129.527	14.0
7	8004.7	79.618	20.5
8	7582.8	75.421	34.0
9	7538.6	74.981	29.5
10	7257.0	72.181	11.8
11	7062.5	70.246	15.7
12	6947.3	69.100	9.8
13	6923.6	68.865	15.7
14	6896.9	68.599	17.4
15	6124.8	60.920	24.6
16	5198.6	51.707	28.7
17	5187.2	51.593	34.2
18	3009.0	29.928	28.8
19	2993.7	29.777	744.9
20	2973.9	29.579	1932.1
21	2954.8	29.390	4394.5
22	2935.8	29.200	4971.1
23	2915.9	29.003	4026.8
24	2896.8	28.813	2216.8
25	2877.8	28.623	680.2

168, colu	., f.7-13									
Sample N	ame:									
Parts (2-1	1		000	Ma	011					
Agilen	t-NMR-vnmrs400		ĻŪĽ	inie	QH					
Archive	directory:			OMe H		ОН				
Sample d	irectory:		<u> </u>		γ					
FidFile:	PROTON	н		0						
Pulse Seg Solvent:	uence: PROTON (s2) acetone	pul)	он	U		Ле				
Data coll	ected on: Feb 10	2017		(-)-18						
Operator:	vnmr1							1		
Relax. d Pulse 45 Acq. tim Width 64 16 repet OBSERVE DATA PROC Line bro FT size 6 Total tim	elay 1.500 sec .0 degrees te 3.500 sec 10.3 Hz itions H, 399.8393504 ESSING addening 0.2 Hz 5536 te 1 min 20 sec	MHz								
			,			1				
							1			
						11	0			
			1							
			M			Lvvv	Mhuld	- I		i de la construcción de la const
	0	0	7	6	5		4	3	2	1 ppm
	2	0	·							
			2.23			12.4.0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT			
1	2710.4	6.779	8.2	36	1545.6	3.866	8.4			
2	2707.1	6.770	8.2	37	1510.8	3.779	132.8			
3	2695.1	6.741	8.3	38	1510.0	3.777	121.4			
4 5	2093.8	6 735	10.0	40	1494.4	3.737	3.3			
6	2691.4	6.731	8.1	41	1489.7	3.726	3.2			
7	2250.9	5.629	21.4	42	1482.8	3.709	1.7			
8	1825.0	4.564	5.4	43	1393.4	3.485	99.5			
9	1821.7	4.556	5.7	44	1327.3	3.320	7.4			
10	1780.4	4.453	3.0	45	1322.0	3.306	9.6			
12	1777 3	4.449	3.1	40	1250.2	3.127	1.6			
13	1774.5	4.438	3.1	48	1143.2	2.859	83.2			
14	1754.2	4.387	1.5	49	1129.9	2.826	6.1			
15	1749.9	4.376	3.2	50	826.1	2.066	17.1			
16	1746.9	4.369	3.7	51	824.0	2.061	34.0			
17	1743.0	4.359	10.7	52	821.8	2.055	48.9			
10	1735.2	4.340	8.2	54	817.3	2.044	16.7			
20	1731.3	4.330	7.7	55	0.0	0.000	25.7			
21	1706.4	4.268	2.0							
22	1702.5	4.258	3.2							
23	1698.6	4.248	5.5							
24	1690.2	4.240	5.3							
26	1664.4	4.163	6.9							
27	1656.4	4.143	6.1							
28	1631.5	4.080	5.1							
29	1624.5	4.063	4.6							
30	1596.9	3.994	0.3							
32	1593.2	3.985	6.7							
33	1591.0	3.979	5.9							
34	1555.8	3.891	6.7							
35	1550.5	3.878	3.6							

Figure S48: ¹³C-NMR Spectrum of (-)-18 in acetone-d₆ (400 MHz)

INDEX	FREQUENCY	PPM	HEIGHT
1	20684.1	205.731	21.0
2	20665.8	205.548	869.3
3	20645.2	205.343	11.0
4	16768.7	166.787	7.9
5	16672.5	165.830	7.6
6	14259.4	141.828	19.2
7	13988.5	139.134	18.4
8	13249.2	131.781	8.2
9	12993.6	129.239	10.5
10	7978.8	79.360	21.6
11	7809.5	77.676	17.8
12	7587.5	75.467	27.2
13	7141.1	71.028	16.7
14	7076.3	70.383	21.3
15	7071.7	70.338	15.9
16	6951.2	69.139	20.1
17	6628.4	65.929	20.8
18	6139.4	61.064	20.5
19	5188.8	51.609	19.5
20	5183.4	51.556	18.2
21	2993.8	29.777	92.5
22	2974.7	29.588	312.5
23	2955.7	29.398	592.4
24	2935.8	29.201	666.0
25	2916.7	29.011	621.5
26	2897.7	28.821	283.4
27	2877.8	28.624	99.0

]

NDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	2710.4	6.779	32.4	36	823.8	2.060	153.2
2	2707.1	6.770	33.8	37	821.6	2.055	214.8
3	2694.7	6.740	31.8	38	819.3	2.049	151.6
4	2693.4	6.736	40.4	39	817.1	2.044	78.1
5	2692.6	6.734	39.4	40	-0.0	-0.000	126.2
6	2691.2	6.731	30.9				
7	2250.3	5.628	70.4				
8	1819.3	4.550	10.1				
9	1778.2	4.447	15.6				
10	1743.0	4.359	42.9				
11	1738.1	4.347	41.7				
12	1735.4	4.340	35.3				
13	1731.5	4.330	32.1				
14	1704.5	4.263	14.4				
15	1697.1	4.244	24.4				
16	1692.2	4.232	22.2				
17	1662.6	4.158	14.0				
18	1654.4	4.138	12.8				
19	1625.5	4.065	8.9				
20	1596.7	3.993	27.1				
21	1594.7	3.988	29.7				
22	1593.0	3.984	29.1				
23	1591.0	3.979	25.0				
24	1550.1	3.877	16.8				
25	1540.6	3.853	18.8				
26	1510.6	3.778	467.7				
27	1509.8	3.776	434.9				
28	1494.6	3.738	14.9				
29	1492.6	3.733	15.1				
30	1393.6	3.485	335.5				
31	1327.1	3.319	19.4				
32	1322.0	3.306	28.9				
33	1137.8	2.846	277.5				
34	1124.5	2.812	34.7				
35	825 9	2.066	80.1				

Figure S50: ¹³C-NMR Spectrum of (+)-18 in acetone-d₆ (100 MHz)

INDEX	FREQUENCY	PPM	HEIGHT
1	16768.7	166.787	11.5
2	16672.6	165.831	12.0
3	14258.6	141.821	22.1
4	13989.3	139.142	22.8
5	13247.7	131.766	13.5
6	12994.4	129.247	11.9
7	7978.1	79.353	19.5
8	7808.0	77.661	18.6
9	7588.3	75.475	27.4
10	7140.4	71.021	11.7
11	7075.6	70.376	20.5
12	6951.2	69.139	18.9
13	6628.5	65.929	19.6
14	6138.7	61.057	19.8
15	5188.8	51.610	24.3
16	5183.5	51.556	24.5
17	2993.8	29.778	177.8
18	2974.0	29.580	447.3
19	2954.9	29.391	1019.5
20	2935.8	29.201	1144.7
21	2916.0	29.004	927.7
22	2896.9	28.814	506.1
23	2877.9	28.624	148.9

Figure S51: ¹H- NMR Spectrum of (-)-8 in acetone-d₆ (600 MHz)

OC18-MH-49 F8-15 +D20 PPM 2.084 2.080 2.076 2.073 2.069 1.292 1.139 FREQUENCY 1250.0 1247.7 1245.6 INDEX FREQUENCY PPM HEIGHT INDEX HEIGHT HEIGHT 209.8 434.3 606.8 437.2 197.5 24.4 48.1 14.9 98.9 50.0 4114.9 4110.8 4096.4 6.859 6.852 6.828 93.7 91.8 81.0 1 51 52 53 54 55 56 57 58 59 60 23 4096.4 4095.2 4094.1 4092.6 3374.0 2752.5 2748.3 2724.6 1245.6 1243.3 1241.2 775.3 683.4 680.8 676.4 669.3 6.827 6.825 6.822 5.624 86.3 82.9 83.6 21.4 68.8 67.1 85.5 55.8 57.0 55.4 50.8 34.2 42.7 22.8 41.5 37.3 39.24 5 6 7 1.135 1.127 1.116 $\begin{array}{c} 4.588\\ 4.581\\ 4.542\\ 4.535\\ 4.331\\ 4.328\\ 4.325\\ 4.325\\ 4.321\\ 4.262\\ 4.257\\ 4.143\\ 4.136\\ 4.129\\ 3.993\\ 3.990\end{array}$ 8 90 11123 14156 17 18 90 2222 22 222 222 220 332 334 355 378 90 442 344 456 447 48 90 2724.6 2720.5 2598.4 2596.6 2594.3 2592.2 2556.7 2553.8 2485.1 2481.0 2476.9 2395.6 2393.6 2391.5 2384.5 3.990 3.987 3.975 3.972 3.967 3.840 3.830 38.1 39.2 37.8 33.2 16.2 15.9 983.7 17.9 46.6 2382.7 2380.1 2303.5 2297.3 3.830 3.813 3.778 3.774 3.768 3.762 3.759 3.754 3.751 2287.6 2266.5 2263.9 2260.4 2256.5 2254.8 2252.1 1145.0 55.8 142.4 42.0 34.0 2250.1 2155.9 2107.5 3.594 15.3 1271.3 17.8 20.6 2104.8 3.509 2104.0 2088.7 1993.9 1267.1 3.507 3.482 3.324 2.112 115.6 1488.6 189.7 62.8 20.6 28.3 20.9 26.7 20.0 1266.5 2.111
2.098 1256.9 1257.7 1256.8 1255.6 1254.4 1253.3 2.096 2.095 2.093 2.091 2.089 18.6

Figure S52: ¹³C-NMR Spectrum of (-)-8 in acetone-d₆ (150 MHz)

OC18-1	MH-49 F8-15		
NDEX	FREQUENCY	PPM	HEIGHT
1	25268.3	167.512	19.2
2	25248.7	167.382	15.5
3	21622.4	143.342	33.4
4	21372.7	141.687	38.1
5	19740.5	130.866	24.8
6	19630.7	130.138	23.1
7	12159.6	80.610	38.4
8	11537.7	76.487	41.7
9	11077.6	73.437	36.0
10	10901.9	72.273	34.3
11	10512.4	69.690	34.9
12	10425.7	69.115	31.1
13	10228.0	67.805	34.4
14	10059.2	66.686	34.4
15	8899.8	59.000	44.6
16	7912.6	52.455	36.9
17	7864.0	52.133	45.2
18	4577.6	30.347	8.8
19	4559.1	30.224	181.8
20	4539.5	30.094	421.6
21	4521.0	29.971	1085.9
22	4501.3	29.841	1387.4
23	4481.7	29.711	1077.3
24	4463.2	29.588	428.3
25	4443.5	29.458	184.5

Figure S53: 1H- NMR Spectrum of (+)-8 in acetone-d₆ (400 MHz)

Figure S54: ¹³C-NMR Spectrum of (+)-8 in acetone-d₆ (100 MHz)

Figure S55: 1H- NMR Spectrum of (-)-21 in acetone-d₆ (600 MHz)

MK-28 Cfr6-8	l.	
FREQUENCY	PPM	HEIGHT
25333.1	167.942	17.2
25274.1	167.551	12.9
21340.4	141.473	52.8
21286.0	141.112	41.9
19784.4	131.158	21.8
19723.2	130.752	22.5
12232.5	81.093	54.9
11569.0	76.695	41.0
11563.2	76.656	45.5
10832.6	71.813	41.8
10660.4	70.671	40.0
10240.7	67.889	41.8
10093.9	66.916	55.5
10021.1	66.433	43.2
8926.4	59.176	44.5
7913.8	52.463	46.8
7868.7	52.164	37.4
4577.7	30.347	8.1
4559.2	30.224	159.0
4540.7	30.102	429.3
4521.0	29.971	1051.0
4501.4	29.841	1267.3
4481.7	29.711	929.8
4463.2	29.588	433.4
4443.6	29.458	176.6
	<pre>MK-28 Cfr6-8 FREQUENCY 25333.1 25274.1 21340.4 21286.0 19784.4 19723.2 12232.5 11569.0 11563.2 10832.6 10660.4 10240.7 10093.9 10021.1 8926.4 7913.8 7868.7 4577.7 4559.2 4540.7 4551.0 4501.4 4481.7 4463.2 4443.6</pre>	<pre>MK-28 Cfr6-8</pre> FREQUENCY PPM 25333.1 167.942 25274.1 167.551 21340.4 141.473 21286.0 141.112 19784.4 131.158 19723.2 130.752 12232.5 81.093 11569.0 76.695 11563.2 76.656 10832.6 71.813 10660.4 70.671 10240.7 67.889 10093.9 66.916 10021.1 66.433 8926.4 59.176 7913.8 52.463 7868.7 52.164 4577.7 30.347 4559.2 30.224 4540.7 30.102 4521.0 29.971 4501.4 29.841 4481.7 29.711 4463.2 29.588 4443.6 29.458

Figure S57: 1H- NMR Spectrum of (+)-21 in acetone-d₆ (400 MHz)

Figure S58: ¹³C-NMR Spectrum of (+)-21 in acetone-d₆ (100 MHz)

Figure S59: 1H- NMR Spectrum of (-)-24 in acetone-d₆ (600 MHz)

INDEX	FREQUENCY	PPM	HEIGHT	INDEX	FREQUENCY	PPM	HEIGHT
1	2729.8	6.827	25.1	36	835.7	2.090	2.6
2	2727.8	6.822	25.5	37	830.0	2.076	2.4
3	2692.2	6.733	25.0	38	825.5	2.065	122.0
4	2690.0	6.728	24.7	39	823.4	2.059	253.4
5	2250.5	5.628	87.4	40	821.2	2.054	369.1
6	1880.0	4.702	3.4	41	819.1	2.049	236.8
7	1868.6	4.673	17.6	42	B16.7	2.043	124.1
8	1864.9	4.664	17.7	43	757.5	1.894	2.9
9	1787.2	4.470	8.6	44	534.3	1.336	4.0
10	1727.6	4.321	19.4	45	516.6	1.292	17.6
11	1723.9	4.311	20.9	46	506.3	1.266	3.0
12	1696.3	4.242	19.4	47	498.3	1.246	3.9
13	1680.2	4.202	4.9	48	479.9	1.200	3.2
14	1638.2	4.097	16.4	49	473.0	1.183	3.4
15	1636.0	4.092	15.8	50	471.1	1.178	4.8
16	1604.7	4.013	13.0	51	394.8	0.987	3.7
17	1589.5	3.975	7.3	52	384.0	0.960	2.7
18	1580.5	3.953	7.0	53	376.4	0,941	4.2
19	1533.9	3.836	11.6	54	369.1	0.923	2.5
20	1516.9	3.794	391.5	55	361.9	0.905	2.9
21	1507.9	3.771	383.1	56	359.0	0.898	4.9
22	1504.8	3.763	11.2	57	355.3	0.888	5.6
23	1499.3	3.750	9.3	58	352.1	0,881	6.6
24	1461.5	3.655	7.1	59	348.4	0.871	4.6
25	1450.4	3.627	8.5	60	345.7	0.865	3.5
26	1449.2	3.624	2.7	61	51.4	0.129	5.4
27	1443.1	3,609	2.9	62	4.3	0.011	3.2
20	1433.2	3.584	2.6	63	3.1	0.008	18.9
20	1416 7	3.543	4.9	64	2.3	0.006	7.5
20	1385.6	3.465	221.4	65	-0.0	-0.000	594.1
30	1348.6	3.373	3.3	66	-2.2	-0.005	5.5
31	1326.9	3,319	3.3	67	-3.5	-0.009	15.3
34	1321 6	3.305	5.1				
33	1131 0	2,831	145.7				
34	1118.4	2.797	35.7				

Figure S60: ¹³C-NMR Spectrum of (-)-24 in acetone-d₆ (150 MHz)

OC18-	MIK - 69		
INDEX	FREQUENCY	PPM	HEIGHT
1	25288.0	167.643	22.6
2	25160.8	166.800	18.6
3	21386.6	141.779	16.6
4	21008.6	139.273	23.6
5	20022.5	132.736	10.8
6	19698.9	130.590	14.6
7	19391.4	128.552	5.3
8	15953.5	105.761	5.2
9	11952.7	79.239	5.2
10	11920.3	79.024	54.2
11	11770.1	78.028	26.1
12	11564.3	76.664	44.8
13	10843.0	71.882	33.5
14	10720.4	71.070	42.8
15	10588.7	70.196	41.5
16	10574.8	70.104	7.3
17	10490.4	69.545	29.8
18	10048.8	66.617	37.0
19	10032.6	66.510	8.6
20	9222.3	61.138	38.2
21	8290.6	54.961	27.5
22	7869.8	52.172	51.3
23	7862.9	52.126	52.5
24	4583.4	30.385	24.0
25	4577.6	30.347	53.3
26	4559.1	30.224	1098.4
27	4539.5	30.094	2601.0
28	4521.0	29.971	5916.5
29	4501.3	29.841	7991.3
30	4481.7	29.711	6443.9
31	4462.0	29.580	2507.9
32	4443.5	29.458	1013.5
33	3865.6	25.626	5.8
34	3518.8	23.327	7.5
35	2165.1	14.353	5.5
36	211.5	1 402	16.4

Figure 61: 1H- NMR Spectrum of (+)-24 in acetone-d₆ (400 MHz)

Figure S63: ¹H- NMR Spectrum of (-)-9 in CDCl₃ (600 MHz)

OC18M	K100-2fr15 +	D20	
INDEX	FREQUENCY	PPM	HEIGHT
1	4460.3	7.435	31.7
2	4357.3	7.263	5175.1
3	4251.0	7.086	34.5
4	4159.5	6.934	46.9
5	4156.6	6.929	47.0
6	4157.1	6.930	47.4
7	4119.6	6.867	41.1
8	4115.8	6.861	42.6
9	2851.3	4.753	906.1
10	2778.0	4.631	41.3
11	2773.6	4.623	40.3
12	2692.3	4.488	29.0
13	2689.4	4.483	28.7
14	2563.5	4.273	28.8
15	2538.2	4.231	20.5
16	2534.4	4.225	30.0
17	2530.9	4.219	20.0
18	2486.3	4.145	22.4
19	2481.6	4.137	30.7
20	2477.5	4.130	21.3
21	2423.5	4.040	24.1
22	2294.7	3.825	545.7
23	2291.8	3.820	545.0
24	2275.9	3.794	31.5
25	2175.8	3.627	10.6
26	2146.8	3.579	290.7
27	2107.8	3.514	10.0
28	939.9	1.567	46.9
29	752.4	1.254	11.8
30	41.7	0.069	24.7
31	3.2	0.005	29.1
32	-0.0	-0.000	968.9
33	-3 2	-0 005	26 1

Figure S64: ¹³C-NMR Spectrum of (-)-9 in acetone-d₆ (150 MHz)

OC18M	K100-2fr15		
INDEX	FREQUENCY	PPM	HEIGHT
1	25150.2	166.730	17.2
2	25106.3	166.439	15.8
3	21320.5	141.341	17.7
4	19592.3	129.885	8.8
5	19520.7	129.410	13.1
6	11878.5	78.747	23.8
7	11646.2	77.207	5404.4
8	11615.0	77.000	6019.3
9	11582.6	76.785	5865.7
10	11293.6	74.870	17.0
11	10641.7	70.547	15.9
12	10440.5	69.214	18.9
13	10413.9	69.038	15.7
14	10229.0	67.812	26.5
15	10156.1	67.329	16.8
16	8929.7	59.198	23.1
17	7920.5	52.508	33.3
18	7888.1	52.293	32.0
19	7376.0	48.899	8.5

Figure S65: ¹H- NMR Spectrum of (+)-9 in acetone-d₆ (400 MHz)

Figure S66: ¹³C-NMR Spectrum of (+)-9 in acetone-d₆ (100 MHz)

OC19MH194Cfr13								INDEX 1 2 3 4 5 6	FREQUENCY 16764.8 16747.3 14218.1 14050.3 13078.3 13011.1	PPM 166.749 166.574 141.419 139.749 130.081 129.414	HEIGHT 7.5 4.1 11.5 3.5 3.9 9.6
Sample Name:								7 8	7895.6 7859.8	78.533 78.176	11.0 3.0
Data Collected on: Agilent-NMR-vnmrs400 Archive directory: '								9 10 11 12 13	7772.8 7762.1 7741.5 7709.5 7555.4	77.311 77.205 77.000 76.681 75.148	250.3 20.6 259.4 258.2 6.7
Sample directory:								14 15	7501.2	74.610 70.512	8.0 13.2
FidFile: CARBON								16 17	6959.5 6917.5	69.222 68.804	14.0
Pulse Sequence: CARBON (s2pu Solvent: cdcl3 Data collected on: Sep 24 20	1) 19							19 20 21 22	6748.2 5948.6 5277.2 5257.4	67.856 67.120 59.167 52.489 52.292	17.2 7.5 14.8 14.8 14.0
Operator: vnmr1					-			23	-2.3	-0.023	5.3
Relax. delay 1.689 sec Pulse 45.0 degrees Acq. time 1.311 sec Width 25000.0 Rx 16576 repetitions OBSERVE C13, 100.5391646 MH POWER 35 dB Continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hr FT size 65536 Total time 16 hr, 40 min	2 2										
		lul.	*****	Matthian Witterian array and a						nate the interaction	
180 160) 1	40	120	100	80	60	4	0	20		ppm