Design, Synthesis and Biological Evaluation of Jahanyne Analogues as Cell Cycle Arrest Inducers

Baijun Ye¹, Jianmiao Gong², Qiuying Li², Shiqi Bao², Xuemei Zhang², Jing Chen², Qing Meng¹, Bolin Chen¹, Peng Jiang¹, Liang Wang^{1,*} and Yue Chen^{1,3,*}

- ¹ The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, PR China; yebaijunts@126.com (B.Y.); mengqing19920220@163.com (Q.M.); 2120150647@mail.nankai.edu.cn (B.C.); jiang1921372889@126.com (P.J.);
- ² Accendatech Co., Ltd., Tianjin 300384, PR China; jianmiao.gong@accendatech.com (J.G.); liqiuying@mail.nankai.edu.cn (Q.L.); shiqi.bao@accendatech.com (S.B.); xuemei.zhang@accendatech.com (X.Z.); chenjing@accendatech.com (J.C.);
- ³ Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350, PR China;
- * Correspondence: lwang@nankai.edu.cn (L.W.); yuechen@nankai.edu.cn (Y.C.); Tel.: +86-22-85358387

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4.

Figure S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4.

Figure S3. ¹⁹F NMR (400 MHz, CDCl₃) spectrum of compound 4.

Figure S4. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5.

Figure S5. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 5.

Figure S6. ¹⁹F NMR (400 MHz, CDCl₃) spectrum of compound 5.

Figure S7. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 5a.

Figure S8. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 5a.

Figure S9. ¹⁹F NMR (400 MHz, CDCl₃) spectrum of compound 5a.

Figure S10. ¹H NMR (400 MHz, CD₃OD) spectrum of compound 2b.

Figure S11. ¹³C NMR (100 MHz, CD₃OD) spectrum of compound **2b**.

Figure S12. ¹⁹F NMR (400 MHz, CD₃OD) spectrum of compound 2b.

Figure S13. COSY (¹H, 400 MHz, CD₃OD spectrum of compound 2b.

Figure S14. HSQC (1 H, 400 MHz, 13 C, 100 MHz, CD₃OD) spectrum of compound **2b**.

Figure S15. ¹H NMR (400 MHz, CD₃OD) spectrum of compound 1b

Figure S16. ¹³C NMR (100 MHz, CD₃OD) spectrum of compound 1b.

Figure S17. ¹⁹F NMR (400 MHz, CD₃OD) spectrum of compound 1b.

Figure S18. COSY (¹H, 400 MHz, CD₃OD) spectrum of compound 1b.

Figure S19. HSQC (1 H, 400 MHz, 13 C, 100 MHz, CD₃OD) spectrum of compound 1b.