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Abstract: Fucoidans are multifunctional marine macromolecules that are subjected to numerous 

and various downstream processes during their production. These processes were considered the 

most important abiotic factors affecting fucoidan chemical skeletons, quality, physicochemical 

properties, biological properties and industrial applications. Since a universal protocol for fucoidans 

production has not been established yet, all the currently used processes were presented and 

justified. The current article complements our previous articles in the fucoidans field, provides an 

updated overview regarding the different downstream processes, including pre-treatment, 

extraction, purification and enzymatic modification processes, and shows the recent non-traditional 

applications of fucoidans in relation to their characters. 
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1. Introduction 

Polysaccharides, nucleic acids, and peptides are considered the main three types of bioactive 

polymeric macromolecules [1]. Among these, polysaccharides serve various roles in living cells 

including structural functions, where cellulose and chitin represent the major components of the 

different cell wall matrices [2,3], energy storage (e.g., starch and glycogen) [4,5], and hydration and 

signaling functions (e.g., mucilage and alginic acid) [6,7]. 

Particularly, marine homo- and heteropolysaccharides are derived from marine organisms, 

which represent a large part of global biodiversity [8]. Among these are the algal polysaccharides, 

such as fucoidan and alginate in brown seaweeds, carrageenan in red seaweeds and ulvan in green 

seaweeds. These were reported to have interesting nutraceutical, biomedical, pharmaceutical and 

cosmeceutical applications, including dietary fibers; anti-inflammatory, anti-tumor, anti-oxidant, 

hepatoprotective and anti-coagulant properties; and drug carrier functionality. Therefore, they have 

been extensively investigated during the last few decades [9–13], especially after the emergence of 

glycobiology and glycomics [14–17]. 

Polysaccharides such as dietary fibers of brown algae are abundant and diverse (e.g., alginates, 

cellulose, fucoidans and laminarins) constituting the major components (up to 75%) of the dried 

thallus weight (% DW) [18–20]. Previous work investigated their abundance in different species, 

reporting Fucus, Ascophyllum, Saccharina, and Sargassum to contain 65.7, 69.6, 57.8 and 67.8 % DW, 

respectively [21,22]. Specifically, fucoidans are found in the cell walls and extracellular matrices of 
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brown algae in addition to more than 265 genera and 2040 species of marine invertebrates (e.g., sea 

cucumbers), where they perform vital structural functions [23–26]. Fucoidans are assumed to act as 

cross-linkers between the major threads of cellulose and hemicellulose, promoting cellular integrity 

and maintaining cellular hydration (especially during drought seasons) [27]. They also act in other 

reproductive, immune and cell-to-cell communicative roles [23]. As recommended by the 

International Union of Pure and Applied Chemistry (IUPAC), fucoidans is a general term used to 

describe sulfated L-fucose-based polymers including sulfated fucans cited by the Swedish scholar 

Kylin, as well as other fucose-rich sulfated heteropolysaccharides [23,28]. Their chemical structures, 

in terms of monomeric composition and branching, are quite simple in marine invertebrates 

compared to their analogues in brown algae [13,29]. 

Hundreds of articles have thoroughly discussed and reviewed the biological, pharmacological 

and pharmaceutical applications of fucoidans [30–33], including nanomedicine, [34] which has made 

it a hot topic in the last few decades [35–37]. All these studies tried to investigate fucoidans molecular 

mechanisms in relation to their chemical structure and physicochemical properties. Therefore, 

different hypotheses were suggested for each activity, such as anti-tumor [31,38–40], anti-coagulant 

[41,42], anti-viral [43,44] and anti-inflammatory activity[45,46]. These investigations revealed that 

various factors are relevant, such as molecular weight, sulfation pattern, sulfate content and 

monomeric composition [47–49]. For example, different fractions were produced with different 

physicochemical properties in our previous experiments; sulfation pattern and sulfate content were 

highly related to anti-viral and cytotoxic activities against HSV-1 and Caco-2 cell lines, respectively, 

while molecular weight and sugar composition were potential factors in anti-coagulation activity 

[41,50]. In addition, degree of purity was reported as an influential factor [32], where co-extracted 

contaminants (e.g., phlorotannins or polyphenols) could lead to significant interference in anti-

oxidant activity and, consequently, cosmetic applications [51,52].  

Therefore, several key production challenges regarding fucoidans were discussed in our last 

review article in order to obtain a product that follows the universal good manufactured practice 

(GMP) guidelines. The article discussed sources of heterogeneity in extracted fucoidans, including 

the different biotic (e.g., biogenic, geographical and seasonal factors) and abiotic (e.g., downstream 

processes) factors affecting the fucoidans physicochemical and chemical properties [53]. Others 

patented production techniques that have assisted in the marketing of several commercial fucoidans 

by well-known companies (e.g., Sigma-Aldrich®, Algues and Mer and Marinova®) derived from Fucus 

vesiculosus and other brown algae species [54–56]. 

Furthermore, the improvement of fucoidans activity was investigated, targeting several points. 

Among these was the modification of the chemical structure of the native fucoidans scaffolding, 

including depolymerization [57,58] and over-sulfation [59]. These modifications could be attempted 

chemically [60], enzymatically [35,61] or physically [62]. Predetermined synthesis of oligomers [63,64] 

and low molecular weight polymers with defined monomeric units [65] is also involved. 

Additionally, fractionation of fucoidans is a common approach during extraction and purifications 

steps by applying different extraction and purification conditions (e.g., pH, time, molarity of NaCl) 

[49,55].  

The current article aimed at complementing our previously published article discussing the 

reasons for heterogeneity of fucoidans [53]. It reviewed and evaluated the different downstream 

processes used in production as the most important abiotic factors affecting the fucoidans quality and 

structural features; it then addressed recent uncommon applications and prospective bioproduction 

of fucoidans. In addition, the updated status of enzymatic structural modifications of fucoidans, 

especially by fucoidanases, were presented. 

2. Global Market and Cultivation of Brown Algae 

Marine hydrocolloids (e.g., agar, carrageenan and alginate) are of particular industrial interest, 

with worldwide annual production of approx. 100,000 tons and a value above US $1.1 billion [66]. 

Based on FAO periodical reports (FAO, 2014, 2016), among the top seven most-cultivated seaweeds, 

three taxa are mainly used for hydrocolloids production; these include Rhodophyta (e.g., Eucheuma 
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sp. and Kappaphycus alvarezii) for carrageenan production and Gracilaria sp. for agar production [67]. 

These data encouraged the global marine market to escalate the production yield by finding 

alternative, eco-friendly seaweed cultivation techniques, such as sea farming or aquaculture and 

biotechnology [53]. In 2014, the annual production of cultivated seaweeds reached 27.3 million tons 

[68], representing 27% of the total marine aquaculture production, while the global market of marine 

biotechnology (blue biotechnology) for industrial applications has been expected to achieve US $4.8 

billion in 2020 and grow to US $6.4 billion by 2025 [69]. 

Species of brown macroalgae (Phaeophyceae) are distributed among the orders Fucales and 

Laminariales, which are the major commercial sources of the algal sulfated polysaccharides, in 

addition to Chordariales, Dictyotales, Dictyosiphonales, Ectocarpales, and Scytosiphonales. 

Moreover, phylogenetic analysis showed that Fucales are one of the largest and most diversified 

orders within Phaeophyceae, having eight families (41 genera and 485 species), named 

Ascoseiraceae, Cystoseiraceae, Durvillaeaceae, Fucaceae, Hormosiraceae, Himanthaliaceae, 

Sargassaceae, and Seirococcaceae [70]. Figure 1 illustrates the distribution of several examples 

of well-known brown algae species which are considered potential sources of sulfated 

polysaccharides dominating tropical to temperate marine forests and intertidal regions. The data 

were based on Wahl, et al. [71]. 

 

Figure 1. Global distribution of the major brown seaweeds’ species. They dominate tropical to 

temperate marine forests and intertidal regions 

Furthermore, like terrestrial plant tissue culture (PTC), several biotechnological attempts were 

performed to cultivate and/or regenerate thallus from different species of brown seaweeds using 

seaweeds tissue culture [72]. They include micropropagation, callus induction and protoplast 

isolation [69,73–75]. They are very promising techniques as it may not only help to overcome the 

previously mentioned fucoidans production heterogeneity challenges [53] but also provide a 

sustainable supply [76]. However, compared to PTC, STC is still not well-enough established to be 

used for production of hydrocolloids and fucoidans [77] or cultivation in closed, well-controlled 

bioreactors, as in case of the red algae organism Agardhiella subulata [78]. 

3. Downstream Processes 

Fucoidans are anionic polymers occurring in highly complicated matrices in cell walls and 

intercellular spaces along with other carbohydrate polymers (e.g., alginate, cellulose and laminarin), 

polyphenols and proteins [79]. Additionally, due to the sulfate ester groups, fucoidans are water 

soluble polysaccharide polymers [80] exhibiting high affinity to other cell wall components, 

especially polyphenols [81]. Therefore, various and complicated downstream processes are required 
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to remove such extraneous substances before and after precipitation with ethanol or cationic 

surfactants to obtain high-purity fucoidans [82,83]. The processes always include pre-treatment, 

extraction and purification stages as shown in Figure 2. 

 

Figure 2. Required downstream processes including steps in each process for fucoidans production. 

3.1. Pre-treatment 

After harvesting algal biomass from beaches, the biomass should be washed thoroughly with 

tap water to remove sands and epiphytes, then dried and milled to increase the area-to-mass ratio. 

Several pre-treatment steps are performed before the extraction step to release fucoidans from 

intercalating components, ease the following extraction process, improve the extraction yield, and 

decrease the possible interferences from co-extracted components in purification and biological 

investigations.  

Previous experiments tried to remove pigments (e.g., chlorophyll, flavins and carotenoids) and 

lipids in specific bleaching and defatting steps with acetone, toluene, charcoal or 80%–85% (v/v) 

ethanol [34,84,85]. Since fucoidans are negatively charged molecules, they remained unaffected by 

incubation with organic solvents (e.g., acetone, toluene or hexane:isopropanol (3:2) mixture) during 

pre-treatment of the dried algal biomass. Such extracts were further treated to obtain carotenoids, 

represented by fucoxanthin in brown algae [86], lipids and fatty acid metabolites (especially essential 

polyunsaturated fatty acids (PUFA) and fucosterol), adding to nutraceutical applications of brown 

algae [87,88]. In contrast, activated carbon materials, such as charcoal, adsorb the target fucoidans 

molecules, adversely affecting the final production yield [79].  

Other studies tried to exclude the tightly non-covalently bound polyphenolic compounds 

represented by phloroglucinol-type phlorotannins [89], which contribute to the light to dark brown 

color of the crude fucoidans extract (along with fucoxanthin) [41,81]. They reported comparatively 

high phlorotannins content, reaching approximately one fifth of the brown algae dry weight [25]. 

Phlorotannins perform major structural and physiological functions, like tannins found in plants, 

including defense against biotic and abiotic stresses [90,91]. Despite of the great pharmacological 

importance of phlorotannins [92,93], their presence in high-quality fucoidans is not acceptable 

because of the possibility of interference with the anti-oxidant [25,52,94] and anti-tumor activities of 

fucoidans [95]. Therefore, the natural phenolics content of fucoidans should be determined before the 

measurement of their biological activities [96]. Therefore, nearly all pre-extraction protocols for 

fucoidans involved strategies to remove such contaminants, e.g., incubation with EtOH:H2O:HCHO 

(16:3:1) (v/v/v) at pH 2. Under such conditions, formaldehyde enhances the crosslinking and 

polymerization of such polyphenolic contaminants and the high volume of ethanol results in protein 

denaturation [41,60,97,98]. However, the toxicity of formaldehyde limits its utilization in pre-

treatment protocols [51]. 
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Furthermore, pre-treatment steps are performed to remove other carbohydrates such as alginate, 

the major hydrocolloids in brown algae [99]. This is commonly removed by formation of water-

insoluble calcium complex either before [60] or during the extraction procedure using 1%–4% (w/v) 

CaCl2 followed by a filtration or centrifugation step to remove the formed precipitate [58,98,100,101]. 

These previously mentioned procedures were optimized using successive incubation, centrifugation 

or filtration, washing and drying for the main extraction step of the dried, milled algal biomass, as 

described in Figure 3. The application of such an optimized protocol resulted in a dried, pre-treated 

powder representing 71% (w/w) of the starting material [98]. Despite these results, downstream 

processing of fucoidans, except with enzymatic modification, starts with a small scale (e.g., 5–10 g of 

the dried algal biomass) to optimize parameters like dried biomass to solvent ratio, temperatures, 

pH, and incubation time, based on preliminary quality and yield of crude fucoidans measured by 

infra-red spectroscopy (IR), simple sugar tests and elemental analysis. After this, transfer to large 

scale production could be accomplished using larger biomass quantities (e.g., 500–1000 g). 

 

Figure 3. Overview of optimized pre-treatment steps of the dried algae biomass before fucoidans 

extraction. All steps were performed at 25 °C overnight and the ratio between dried algal biomass to 

solvent was 1:10, except for the acetone step, which was 1:20 (modified after [98,102]). 

Due to several complicated pre-treatment steps, general protocols always employ a single 

incubation step using the ternary mixture composed of CH3OH:CH3Cl:H2O (4:2:1) (v/v/v) [103], 

binary mixture of CH2Cl2:EtOH (94.2:5.8, v/v) [104], or aqueous ethanol (e.g., 95% v/v) [105,106] to 

remove pigments [107], polyphenols [51,103] and lipids [108]. Nevertheless, pre-treatment steps may 

be insufficient for complete removal or prevention of some residual co-extraction.  

Notably, all these procedures were carried out at room temperature in organic solvents and high 

volumes of ethanol, in which fucoidans are insoluble. Theoretically, the native structural backbone 

should not be affected. However, similar polymeric carbohydrates such as laminarin may still be 

present, contaminating the extract after these steps.  

Recently, in order to decrease pollution of organic toxic solvents, compressional-puffing pre-

treatment was applied for Sargassum hemiphyllum and S. glaucescens fucoidans. The pre-treatment 

method was based on mechanical pressure at higher temperatures that loosen the cell wall matrix 

before the step of extraction. Such methods succeeded in increasing the production yield, but they 

affected the molecular features of the fucoidans, including molecular weight [109,110]. 

3.2. Extraction  

As previously mentioned, fucoidans are principally anionic water-soluble macromolecules. 

Therefore, they can be extracted from the pre-treated biomass using a simple hot- or cold-water 

incubation. Afterwards, the extracted fucoidans can be precipitated by high volumes of solvents with 

a low dielectric constant (e.g., >70% (v/v), > 2.5 volume ethanol [111,112], <2 volume acetone [113]) or 

cationic surfactants (e.g., hexadecyltrimethylammonium bromide (Cetavlon®) 10% (v/v)) [55] via an 

affinity complex formation at low temperatures (4 °C) to remove the undesired salts from the sulfated 

polysaccharides [52]. This specific precipitation reaction between fucoidans and Cetavlon® is applied 

in screening tests of microorganisms for putative fucoidanase activity [114]. 
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Ale et al. published comprehensive articles discussing the history of extraction, including the 

different classical extraction methods of fucoidans, and reported that extraction procedures 

significantly affect the polymers monomeric composition, even for the same organism [60,115]. 

Beyond simple hot water extraction [58,116], attempts were made to increase the selectivity and 

extraction yields, including extraction in acidic [117], alkaline [118], and buffered [41,119] aqueous 

solutions. However, a neutralization step is required, using Na2CO3 or (NH4)2CO3, directly after 

extraction to guard against the non-specific acidic hydrolysis of the polymer [101,115]. Such drastic 

pH changes affect the chemical and physicochemical properties of fucoidans during the extraction 

step. 

Currently, besides the previously discussed classical extraction methods based on thermal 

energy, extraction protocols based on vibrational energy have been developed. These protocols are 

based on microwave-assisted (MAE) [120,121] or ultrasound-assisted (UAE) [94,122] extraction steps 

to elicit cell wall degradation which improves the polymer release into aqueous solvent. These 

protocols were optimized either using an approach that modified one factor at a time or a multiple 

factorial design, setting the polymers production yield, monomeric composition and biological 

activities as the measured responses. 

Recently, combined sulfated polysaccharides extraction protocols were optimized from different 

brown algae species using hydrothermal-assisted extraction (HAE) followed by sequential 

ultrasound and thermal technologies [123]. Similarly, subcritical water extraction was applied to 

increase the production yield of fucoidans from Nizamuddinia zanardinii [124]; such mild conditions 

may be advantageous to preserve the native chemical backbone and physicochemical characters of 

fucoidans.  

Recently, as a trial to reduce such undesirable effects, enzyme-aided or assisted extraction (EAE) 

protocols are being developed using enzymes instead of harsh chemicals and high extraction 

temperatures during extraction. These include cellulase, papain, laminarinase, alginate lyase, and 

protease, which are present in products of Novozymes [79,125–128]. In addition, other cost-effective 

and time-saving techniques are reported, like those for terrestrial plant polysaccharides, such as 

extraction under vacuum to lower the boiling point of water and hence avoid possible heat-induced 

fucoidans degradation [129]. Alternatively, 0.5% (w/v) ethylenediaminetetraacetic acid (EDTA) was 

applied at 70 °C for simultaneous extraction of Laminaria japonica fucoidans and removal of pigments 

[130]. 

3.3. Separation physical methods  

Filtration, dialysis and centrifugation, either for the algal biomass or precipitates, are also among 

the downstream processes after pre-treatment and extraction steps [131–133]. Cross-flow filtration 

and dialysis against water are usually performed using different molecular weight cut-off (MWCO) 

membranes for isolation of fucoidans from smaller compounds depending on the high molecular 

weight of fucoidans [134] and also for fractionation purposes, where low molecular weight fucoidans 

(LMWF) can be separated from high molecular weight analogues (HMWF) [49]. 

In addition, filtration, concentration, and fractionation are simultaneously performed using 

centrifugal concentrators (Vivaspin®) equipped with membranes with certain MWCO, like in protein 

purification. However, in some cases, especially in the presence of bulk masses or high concentrations 

of salts and small contaminants, the use of centrifugal concentrators becomes practically and 

economically unsuitable for fucoidans purification. In such cases, bulky contaminants result in 

membrane clogging leading to its deterioration and increasing the production cost. 

3.4. Purification 

Despite the previously mentioned purification steps, residuals of co-extracted contaminants are 

still present, and resulting fucoidans are still crude-type. [27]. Therefore, further selective purification 

steps are needed to obtain a high-quality product for reproducible and accurate biological 

investigations. Some researches adopted simple, non-chromatographic steps, such as bleaching of the 

crude fucoidans (NaClO2 in dilute HCl) followed by precipitation with cetyltrimethylammonium 
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bromide [135] or by cold overnight incubation in aqueous buffered solution of calcium acetate (20 

mM, pH = 6.5 -7.5) followed by dialysis [136]. In addition, membrane filtration was reported to 

produce fucoidans fractions of different molecular weight [137]. 

However, other chromatographic purification techniques were discussed in our previous 

publications [41,53,98,102]. Almost all the chromatographic techniques are based on the permanent 

negatively charged sulfate ester groups distributed on the polymer backbone which allow selective 

fucoidans capture. However, carboxylated (e.g., alginate) and phosphorylated (e.g., nucleic acids) 

compounds might interfere [138,139]. Therefore, the pH value of the applied solvents is critical 

during chromatographic purification. One option for this uses anionic exchange resins (e.g., 

diethylaminoethyl cellulose or DEAE-cellulose), which was performed at pH 7.2 using 0.1 M sodium 

phosphate buffer [140]. An alternative is cationic dyes (e.g., toluidine blue- or perylene diimide 

derivative), modified resins or chitosan functioning in buffered solutions [27,102]. Both anion 

exchange and dye affinity chromatography involve the use of highly concentrated NaCl elution 

solvents. As a result, a subsequent purification step using chromatographic gel permeation [141] or 

dialysis [140] is required to remove salts, increasing the production costs. Other methods based on 

the use of biological macromolecules, such as lectins and anti-thrombin III, were also reported [53]. 

Novel innovative purification techniques were recently developed, such as selective solid phase 

extraction for purifying fucoidans and other complex seaweeds polymers by molecularly imprinted 

polymers (MIP) [142,143] or MIP modified by deep eutectic solvents [142,143]. Abdella et al., 

developed a green and time-saving purification protocol using genipin cross-linked toluidine blue 

immobilized-chitosan beads employing fucoidans affinity to cationic thiazine dyes [102].  

4. Recent Uncommon Applications 

In addition to the classical therapeutic applications of fucoidans, including anti-coagulant 

[41,144], anti-viral [145,146], anti-inflammatory [46,147] and selective cytotoxic and anti-tumor uses 

[39,50], uncommon bioactivities, including cosmeceutical, pharmaceutical, diagnostic, and 

synergistic therapeutic applications were recently reported [32]. Recent fucoidans uses included 

therapeutic treatment of major blindness diseases [148]. It has also been used as a drug carrier, 

especially for anti-cancer treatments and anti-biotics. Additionally, fucoidans have been shown to 

improve drug bioavailability and efficacy in pharmaceutical formulations, including in 

nanoparticles, liposomes, microparticles, and semisolid formulations [28,149,150]. Table 1 

summarizes some of the recent and uncommon fucoidans applications based on in-vitro or in-vivo 

studies, in addition to biogenic resources and physicochemical features.  
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Table 1. Some selected recent therapeutic, diagnostic and pharmaceutical applications of fucoidans 

including the biogenic sources 

 Application Biogenic source 
Quality grade / 

purification method 
Structural 
features 

Involved mechanism Ref. 

Therapeutic 

 

Anti-viral  
(IAV) 

Kjellmaniella 
crassifolia 

(Laminariales) 
*  

Inhibition of the viral 
neuraminidase (NA)  
Interference with the 

cellular EGFR pathway 

[43] 

Anti-metabolic 
syndrome 

Fucus vesiculosus 
(Fucales) 

 

Dialysis of crude 
alginate-free fucoidans 

Alternating 
α(1→3)/α(1→4)

linked fucose, 
Mw > 7.0 × 103 

g/mol 

Regulation of jnk, akt, 
and ampk signaling 

Alleviation of insulin 
resistance  

Regulation of lipid 
metabolism 

[151] 

Anti-leishmaniasis 
Commercial product 

purchased from Sigma-
Aldrich® 

Polymer of α-
(1→3) linked 

fucose 

Activation of the 
mitogen-activated 

protein kinase 
(MAPK)/NF-κB 
pathway against 

Leishmania donovani-
infected macrophages 

[152] 

Enhancement of 
dendritic cells 

maturation, production 
of 

pro-inflammatory 
cytokines,  

and down-regulation of 
anti-inflammatory 

cytokines 

[153,154] 

Immunostimulant 
Nizamuddinia 

zanardinii (Fucales) 

A fraction of DEAE 
Sepharose Fast Flow 

column  

Highly branched 
polymer 

Mw: 953.6 × 
103 g/mol 

 

Stimulation of 
RAW264.7 murine 

macrophage and NK 
cells 

[155] 

Anti-metastasis 

Undaria pinnatifida 
(Laminariales)  

DEAE-cellulose, and 
Sephadex G-100 column 

chromatography 
(purity>90%) 

Mw: of 10.4356 
× 104 g/mol 

 

- Suppression of Hca-F 
cell growth, adhesion, 

invasion, and metastasis 
capabilities, 

- Inactivation of the NF-
κB pathway 

[156] 

Gastrointestinal 
tract protective 

 

Purity ≥ 95% 
(Commercial product 

purchased from Sigma-
Aldrich®) 

 

Protection against H2O2-
induced damage via 

activation of the NRF2 
signaling pathway  

[157] 

Anti-malaria 

- Partial purification by 
cetylpyridinum chloride 
Fractionation by DEAE-
Sephadex A-25 column 

Sugar 
monomers, and 

uronic acid, 
M.wt: approx. 
15 × 103 g/mol 

 

In-vitro and in-vivo 
inhibition of 

erythrocytes invasion by 
P. falciparum 

merozoites 

[158] 

Renal protective 

Laminaria japonica 
(Laminariales) 

 

 

LMWF  
(Mw: 7 x 103 

g/mol) 
 

Inhibition of 
overexpression of pro-
inflammatory and pro-

fibrotic factors, 
oxidative stress and 

apoptosis  

[159,160] 

Cardio-, hepatic- 
and renal 
protective 

Commercial product 
purchased from 

Absunutrix Lyfetrition®  
 

Reduction of oxidative 
stress, pro-inflammatory 
effects and injuries to the 

cardiac, hepatic, and 
renal tissues 

[161] 

Inhibition of 
tumor 

angiogenesis 

Sargassum 
hemiphyllum 

(Fucales) 
Hydrolyzed crude extract  

LMWF; 
760 g/mol  

Suppression of HIF-
1/VEGF-regulated 
signaling pathway 

[162] 

Pro-angiogenic  
Ascophyllum 

nodosum 
(Fucales) 

Fractionated with 
dialysis commercial 

crude fucoidan (ASPHY)  

LMWF  
(<4.9 x 103 

g/mol)  

Increase of the vascular 
network formation 

regulated via Erk1/2 and 
PI3K/AKT cell signaling 

pathways 

[163] 
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Alleviation of 
diabetic 

complications 

S. Fusiforme 
(Fucales) 

Crude extract 

Mw: 205.89x103 
g/mol, 

high sulfate 
content 

- Suppression of 
oxidative stress  

- Alteration of the gut 
microbiota 

- Attenuation of the 
pathological changes in 

heart and liver 

[164] 

Diagnostic 

 
Imaging of 

cardiovascular 
diseases 

Ascophyllum 
nodosum 
(Fucales) 

An oxidative-reductive 
degraded crude extract 

(purchased from Algues 
and Mer, 

Ascophyscient®) 

GMP-grade 
LMWF (7.1x103 

g/mol)  

Synthesis of technetium-
99m-fucoidan 

radiotracer for detection 
of P-selectin   

[56] 

 
Commercial product 
from Algues and Mer 

 

Synthesis of 
polycyanoacrylate-

fucoidan microcapsules 
(Fuco-MCs) for 

detection of P-selectin   

[165] 

Cosmeceutical 

 

Anti-Photoaging 
Ecklonia cava 
(Laminariales) 

Enzymatic degradation 
of a commercial HMWF 

LMWF (Mw: 8 
× 103 g/mol) 

 

Anti-oxidant, anti-
apoptotic, and MMP-9-

inhibiting effects 
[166] 

Skin brightening 
and age spot 

reduction 

F. vesiculosus 
(Fucales) 

Crude extracts purchased 
from Marinova® Pty Ltd. 

58.6%  
fucoidans, 

33.7% 
polyphenol 

Increase of Sirtuin 1 
(SIRT1) expression in 

vitro 
[167,168] 

Skin immunity, 
soothing and 

protection 

U. pinnatifida 
(Laminariales) 

89.6% 
fucoidans, 

<2% polyphenol 

Reconstruction of 
skin 

F. vesiculosus 
(Fucales) 

Commercial product 
from Sigma-Aldrich® 
(not determined the 

degree of purity) 

 

Increase of proliferating 
cell nuclear antigen 

(PCNA) p63 and α6-
integrin expression 

[169] 

Pharmaceutical technology 

 

As vehicle for 
drug delivery 

F. vesiculosus 
(Fucales) 

Commercial product 
purchased from Sigma-

Aldrich® 

Mw: 57.26 ×103 
g/mol 

- Chitosan-fucoidans-
based nanoparticles for 
delivery of anti-cancers 
(e.g., curcumin-loaded 

NPs) 
- Nanoencapsulation of 

poly L-lysine 

[170,171] 

 

Piperlongumine (PL)-
loaded chitosan-fucoidan 
nanoparticles (PL-CS-F 

NPs) 

[172] 

 

Synthesis of 
fucoidan/trimethylchitos
an nanoparticles (FUC-
TMC-NPs) as adjuvant 

in anthrax vaccine 
adsorbed 

[173] 

Green synthesis of 
silver 

nanoparticles  
 

Synthesis of chitosan-
fucoidan complex-

coated AgNPs  
[174] 

*: Not specified. 

5. Enzymatic modification of native fucoidans 

Owing to their high molecular weight, therapeutic applications of native fucoidans face many 

challenges including structure elucidation, solubility, manufacturing, and handling [63,116], in 

addition to safety as a food supplement [175]. Structure elucidation and quantitation of native 

fucoidans is highly complicated and requires advanced or hyphenated spectroscopic techniques such 

asHPLC-MS/MS as it applied in Sea Cucumbers fucoidans [176,177]. Also, these techniques must be 

applied after a step of enzymatic or acid hydrolysis to transform the fucoidans polymers to oligomers. 

According to their molecular weight, fucoidans are classified into three classes: LMWF (<10 kDa), 

medium molecular weight fucoidan (MMWF) (10–10000 kDa), and HMWF (>10000 kDa) [31]. LMWF 

demonstrated better bioavailability and bioactivities than HMWF [178,179]. As a consequence, 

several articles reported physical, chemical and enzymatic modification of the native HMWF to get 

LMWF of higher biological activity [62]. Specifically, enzymatic modification of macroalgal 

polysaccharides, including fucoidans by either fucoidanases or sulfatases, is characterized by 
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regioselectivity and stereospecificity. This new trend is considered crucial and highly promising for 

current and future applications of polysaccharides [180].  

Nevertheless, our publications in 2009 particularly reviewed the specific enzymatic degradation 

of fucoidans induced by fucoidanases (EC 3.2.1.44) and α-L-fucosidases (EC 3.2.1.51), mainly those 

isolated from marine bacteria [35]. Cumashi, et al. studied the chemical structures of different 

fucoidans isolated from a number of brown algal species [181]. Their proposed models, which were 

highly appreciated and recommended by many researchers [60], showed the backbone of fucoidans 

to be mainly an alternating α-(1-4) and α-(1-3) linked L-fucopyranoside. Regarding the sulfation 

pattern, C-2 is usually substituted with sulfate ester groups in addition to alternating C-3 or C-4 in L-

fucopyranose residue, according to the glycosidic linkages. In addition, branched chain polymers 

were also found as in F. serratus. Other minor sugar units (e.g., mannose, galactose, glucose and 

xylose) occur as well in fucoidans structure; however, their distribution pattern and positions are still 

unknown [60,181]. Now, the mechanism of enzymatic degradation can be described in relation to 

fucoidans chemical structures. 

Despite the increasing number of publications investigating fucoidanase activity of different 

marine species cell extracts, few of these enzymes have been isolated and characterized. Moreover, 

genome sequences encoding few fucoidanases have been published, including Ffa2 and FFA1 from 

Formosa algae KMM 3553T [182,183], FcnA from Mariniflexili fucanivorans SW5T [184]. Therefore, 

specificity of fucoidanases, type of cleaved glycoside bond, structure-activity relationship studies and 

enzyme stability are still poorly described. It was only observed that identified microbial fucoidanses 

act only on fucoidans isolated from their respective symbionts [185]. In fact, fucoidanases have not 

actually been fully utilized yet as a powerful tool either for the structural studies of fucoidans or 

production of defined and well-characterized bioactive fragments of extracted fucoidans, as shown 

in Table 2. 

Table 2. Source of fucoidans as a substrate and mode of action of some fucoidanases 

Biogenic source of fucoidans Fucoidanase source 
Mode of 

action  
Ref. 

F. evanescens 

 

Formosa algae KMM 3553 
Endo 

α-14 
[61,182] 

Pseudoalteromonas citrea 

strains KMM 3296, KMM 3297, KMM 

3298 

Endo 

α-13 

 

[186] 

F. vesiculosus 

 
Dendryphiella. arenaria TM94 

Endo 

n.d.* 
[187] 

Kjellmaniella crassifolia Fucobacter marina SA-0082 
Endo 

β-14 
[188] 

Cladosiphon okamuranus 

 

Fucophilus fucoidanolyticus SI-1234 
Endo 

α-13 
[189] 

Flavobacterium sp. F-31 
Endo 

n.d. 
[190] 

F. distichus Littorina kurila 
Endo 

α-13 
[191] 

Pelvetia canaliculata Mariniflexile fucanivorans SW5T 
Endo 

α-14 
[184] 

Undara pinnatifida Sphingomonas paucimobilis PF-1 
Endo 

n.d. 
[192,193] 

Saccharina cichorioides 

Pseudoalteromonas citrea 

strains KMM 3296, KMM 3297, KMM 

3298 

Endo 

α-13 
[186] 

Nemacystus decipiens Mizuhopecten yessoensis 
Endo 

n.d. 
[194] 

Ascophyllum nodosum Pecten maximus 
Exo 

n.d. 
[195,196] 
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Biogenic source of fucoidans Fucoidanase source 
Mode of 

action  
Ref. 

Thelenota ananas (Wild sea 

cucumber) 
Wenyingzhuangia Fucanilytica 

Endo 

n.d. 
[197] 

*n.d.: not determined. 

Similarly, recent advances in bioinformatics and genome sequencing of microbial species have 

resulted in a continual increase of novel genome sequences. These genomes demonstrated various 

potential genes encoding for enzymes with biopolymer-degrading capabilities, such as Shewanella 

violacea DSS12 (NC_014012.1), Formosa algae KMM 3553 (NZ_LMAK01000014.1) [182], Formosa haliotis 

MA1 (NZ_BDEL01000001.1) [198], Wenyingzhuangia fucanilytica CZ1127 (NZ_CP014224.1) [199] and 

Pseudoalteromonas sp. strain A601 (MXQF01000000) [200]. Moreover, production of stabilized 

fucoidanases has been achieved by targeted truncation of the C-terminal of FcnA2, Fda1 and Fda2. 

This recently developed method may help with enzymatic production of defined degrees of 

polymerization and more bioactive products from native fucoidan substrates [201]. 

6. Conclusion and Future Prospective 

As multifunctional molecules, fucoidans have received special interest based on their proven 

efficacy in different fields. The current article reviewed many aspects related to fucoidans’ 

production, mainly from brown algae. Biogenic source and downstream processes were shown as 

major factors determining their application, which is affected by molecular weight and quality grade 

of fucoidans. Therefore, the alteration of fucoidans’ native structure was recommended, especially as 

performed by fucoidanases. Their production in nanoform or in combination with other polymers 

can improve or modify their potential uses, allowing their expanded potential as therapeutic agents, 

e.g., in anti-cancer applications [202]. 

Production of high-quality purified fucoidans is urgently required to clarify the relationships 

between chemical structure and the various bioactivities attributed to fucoidans, eliminating any 

interference from contaminants. However, it was observed in some cases that crude extracts and 

presence of co-extracted contaminants, especially polyphenolic phlorotannins, have advantageous 

cosmeceutical effects due to their powerful anti-oxidant activity [203,204]. 

Novel techniques, either in cultivation or downstream processes, have been established, 

increasing the global production yields and reducing ecological and economic problems. A new 

advance toward achieving such goals was established by optimization of water extraction via 

measurement of kinetic parameters [205]. In addition to this, it is expected that most future trends in 

marine biotechnology research will focus on the cell wall and extracellular matrix components of 

brown algae, including fucoidans’ biosynthetic genes and production regulators [23,53,63,206–208]. 

Such trials may enable the scientific community to produce more bioactive molecules of fucoidans 

with defined characteristics, including degree of polymerization, sulfate content and pattern, in 

reproducible manners. 
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