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Abstract: The blue alga Spirulina platensis has presented several pharmacological activities,
highlighting its actions as an anti-inflammatory and antioxidant. In addition, there are few studies with
the influence of strength training on physiological parameters, as intestinal contractility and oxidative
cell damage. We evaluated the influence of S. platensis supplementation, strength training, and its
association on contractile reactivity of rat ileum, as well as the balance of oxidative stress/antioxidant
defenses. Methods: Male Wistar rats were divided into; sedentary (S); S + supplemented with
algae at 50 (S50), 150 (S150), and 500 mg/kg (S500); trained (T); and T + supplemented (T50, T150,
and T500). Contractile reactivity was analyzed by kymographs; oxidative stress on ileum by the
malondialdehyde (MDA) formation; and the antioxidant capacity by 2,2-diphenyl-1-picrylhydrazyl
(DPPH) method. S. platensis supplementation reduced the reactivity of rat ileum to carbachol (CCh)
and KCl, while training reduced only the CCh efficacy. In addition, association potentiated the
reduction on contractile reactivity. Supplementation reduced the oxidative stress and increased
oxidation inhibition; training alone did not alter this parameter, however association potentiated this
beneficial effect. Therefore, this study demonstrated that both supplementation and its association with
strength training promote beneficial effects regarding intestinal contractile reactivity and oxidative
stress, providing new insights for intestinal disorders management.
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1. Introduction

The use of natural products by humans comes from many years and science that has increasingly
recognized its active action, including in modern pharmacotherapy with various drugs of vegetable
origin [1,2]. Besides these products, there are those from aquatic origin, which, unlike the plants,
are not commonly used in traditional medicine [3].
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Despite this, several studies have reported the pharmacological importance of metabolites derived
from aquatic products, such as chemotherapeutic, anti-inflammatory, hypoglycemic, and antioxidant
activities [4–6]. In this way, aquatic bioactive products may be used as a therapeutic tool for many
diseases, and therefore should be more studied for new discoveries in the field of pharmacology
and therapeutics.

Some aquatic products have been already marketed and used as food supplements, such as
the blue-green algae Spirulina platensis. It belongs to the Cyanobacterial phylum and the family
Spirulinaceae [7] and has been widely used due its nutritional value. Furthermore, several studies
have reported its importance for the treatment of cardiovascular, metabolic, and inflammatory
diseases, in addition to its antioxidant properties [8–10]. Brito et al., 2018 [11] showed that chronic
supplementation with S. platensis decreased contractile reactivity and increased relaxing activity. Also,
it was shown that the factors that accompanied this improvement in reactivity involve the release
of nitric oxide and reduction in oxidative stress and systemic inflammation. Accordingly, these data
demonstrated for the first time that the synergistic action between strength training and S. platensis
results in improving vascular reactivity.

Changes in intestinal contractility are responsible for several symptoms like colic, diarrhea, and
constipation [12], and S. platensis has presented beneficial effects in gastrointestinal inflammatory
diseases, such as colitis [13]. S. platensis was found to have beneficial effects in constipation, enhancing
gut peristalsis, curing the inflammatory reaction in the chorionic villus, and modulating the composition
of the intestinal microbiota of mice [14]. However, there is a lack of studies about the effect of this
algae on the intestinal contractile reactivity.

Physical exercise has been recommended as a therapeutic tool for the prevention and treatment of
diseases and disorders of the gastrointestinal tract. The acute and chronic aerobic swimming exercise
modifies the contractile gastrointestinal reactivity, thus contributing to the improvement of these
gastrointestinal symptoms [15,16]. However, nothing has been demonstrated about the influence of
anaerobic exercise of resistance on intestinal contractility, and the effects of the combination of exercise
and S. platensis supplementation.

Thus, based on the beneficial effects of S. platensis for health and the influence of physical exercise
on organ and body systems functioning, the aim of this study was to evaluate the effect of S. platensis
supplementation, strength exercise, and its combination, on the contractile reactivity of rat ileum.

2. Results

2.1. Electromechanical Coupling Contractile Reactivity Measurement

Cumulative concentration–response curves to KCl (10−3 to 3 × 10−1 M) (n = 3–5) were attenuated,
with reduction on Emax values, by the supplementation with S. platensis at the doses of 50, 150, and
500 mg/kg compared to control (p < 0.05). The strength training did not modify the efficacy of KCl in
relation to S; however, the supplementation of trained animals with the algae reduced the efficacy of
KCl at doses of 50 and 150 mg/kg (p < 0.05), compared to S, but not at 500 mg/kg. Analysis of pEC50

values showed that the supplementation with the algae at 50 mg/kg increased the potency of KCl
(p < 0.05), compared to S; however, this was not observed at doses of 150 and 500 mg/kg. In addition,
the training or the association with the algae did not alter this parameter, compared to control group
(Figure 1, Table 1).
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Figure 1. Cumulative concentration-response curves to KCl in S, S50, S150, S500 (A), and T, T50, T150,
and T500 groups (B) in rat ileum. Symbols and the bars represent the mean and e.p.m., respectively
(n = 3–5).Two-way ANOVA followed by Tukey’s post-test: * p < 0.05 (S vs. S50, S500, T50, and T150),
# p < 0.05 (S50 and S500 vs. S150; T vs. T50 and T150), γ p < 0.05 (T50 and T150 vs. T500).

Table 1. Values of Emax (%) and pEC50 of KCl in the S, S50, S150, S500, T, T50, T150, and T500 groups in
rat ileum.

KCl (M) Emax (%) pEC50

S 100.0 1.76 ± 0.02
S50 59.7 ± 5.8 * # 2.04 ± 0.04 *
S150 71.6 ± 7.1 * 1.76 ± 0.04
S500 51.3 ± 4.5 * # 1.63 ± 0.02

T 82.4 ± 7.5 1.78 ± 0.06
T50 14.0 ± 1.8 * # γ 1.58 ± 0.09
T150 33.7 ± 5.7 * # γ 1.65 ± 0.07
T500 83.3 ± 3.1 1.64 ± 0.04

Data are expressed as the mean and e.p.m (n = 3–5). One-way ANOVA followed by Tukey’s post-test: Emax: * p < 0.05
(S vs. S50, S500, T50, and T150), # p < 0.05 (S50 and S500 vs. S150; T vs. T50 and T150), γ p < 0.05 (T50 and T150 vs.
T500); pEC50: * p < 0.05 (S50 vs. S, S150 and S500).

2.2. Pharmacomechanical Coupling Contractile Reactivity Measurement

Cumulative concentration–response curves to CCh (10−9 to 10−4 M) (n = 3–5) were attenuated,
with the reduction of Emax, by supplementation with S. platensis at doses of 150 and 500 mg/kg, but not
at 50 mg/kg (p < 0.05). The strength exercise also reduced the efficacy of CCh, as well as its combination
with supplementation at all doses (p < 0.05). Regarding the pEC50 values, only 500 mg/kg increased
the potency of CCh, without association with training (p < 0.05) (Figure 2, Table 2).

Table 2. Values of Emax (%) and pEC50 of KCl in the C, C50, C150, C500, T, T50, T150, and T500 groups
in rat ileum.

CCh (M) Emax (%) pEC50

S 100.0 5.99 ± 0.05
S50 92.5 ± 2.6 6.19 ± 0.11

S150 30.0 ± 0.9 * 6.26 ± 0.10
S500 53.3 ± 3.8 * # 6.43 ± 0.15 *

T 57.1 ± 5.8 * 6.44 ± 0.14
T50 33.3 ± 2.0 * # 6.35 ± 0.18
T150 56.6 ± 3.9 * 6.38 ± 0.20
T500 43.5 ± 4.5 * 6.07 ± 0.18

Data are expressed as the mean and e.p.m (n = 3–5). Two-way ANOVA followed by Bonferroni’s post-test: Emax:
* p < 0.05 (S or S50 vs. S150, and S500; S vs. T, T50, T150 and T500), # p < 0.05 (S150 vs. S500; T and T150 vs. T50);
pEC50: * p < 0.05 (S vs. S500).
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Figure 2. Cumulative concentration-response curves to CCh in S, S50, S150, and S500 (A), and T,
T50, T150, and T500 groups (B) of rat ileum. Symbols and the bars represent the mean and e.p.m.,
respectively (n = 3–5). One-way ANOVA followed by Tukey’s post-test: * p < 0.05 (S or S50 vs. S150
and S500; S vs. T, T50, T150 and T500), # p < 0.05 (S150 vs. S500; T and T150 vs. T50).

2.3. Lipid Peroxidation Assay

The MDA concentration in rat ileum (n = 5) was decreased from 19.7 ± 1.2 (S) to 12.8 ± 1.0 µmol/L
by supplementation with S. platensis only at 500 mg/kg (p < 0.05), but did not differ in S50
(17.9 ± 0.0 µmol/L) and S150 (15.8 ± 1.0 µmol/L). The strength training did not alter the MDA levels
in ileum 18.0 ± 2.0 µmol/L, as well as its combination with the algae at 50 mg/kg (18.0 ± 1.0 µmol/L);
however, the supplementation of exercised animals at 150 and 500 mg/kg reduced the MDA
concentrations to 11.8 ± 0.8 and 6.8 ± 0.6 µmol/L (Figure 3).

Figure 3. Concentration of MDA (µmol/mL) of S, S50, S150, S500, T, T50, T150, and T500 groups in rat
ileum. Columns and vertical bars represent the mean ± S.E.M., respectively (n = 5). Two-way ANOVA
followed by Bonferroni’s post-test: * p < 0.05 (S vs. S500; T vs. T150 and T500); # p < 0.05 (T50 vs. T150
and T500).

2.4. Antioxidant Assay

The oxidation inhibition, based on DPPH concentration, in rat ileum (n = 5) from S group
(40.0 ± 5.0%) was not altered by supplementation with algae at 50 (42.0 ± 4.0%) and 150 mg/kg
(44.0 ± 3.0%); but was increased to 64.0 ± 0.9% at 500 mg/kg. The strength exercise did not alter this
parameter (49.0 ± 5.0%), as well as its combination with S. platensis supplementation at 50 mg/kg
(49.0± 5.0%); however, at 150 (68.0± 2.0%) and 500 mg/kg (82.0± 2.0%), the supplementation associated
with training increased the oxidation inhibition on rat ileum (Figure 4).
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Figure 4. Oxidation inhibition (%) in the S, S50, S150, S500, T, T50, T150, and T500 groups in rat ileum.
Columns and vertical bars represent the mean ± S.E.M. respectively (n = 5). Two-way ANOVA followed
by Bonferroni’s post-test: * p < 0.05 (S vs. S500; T vs. T150 and T500); # p < 0.05 (T50 vs. T150 and T500);
γ p < 0.05 (T150 vs. T500).

3. Discussion

In this work, we investigated the modulation of contractile reactivity of rat ileum by food
supplementation with the blue algae Spirulina platensis, strength exercise and the association of
supplementation with training, as well as its effects on the balance between oxidative stress and
antioxidant defenses. As a result, we demonstrated that algae supplementation reduces the maximum
amplitude of the intestinal contractile response to both electro- and pharmaco-mechanical stimulation,
in sedentary animals or those submitted to strength exercise. However, the physical exercise alone
negatively modifies only the reactivity to pharmacomechanical coupling of contraction. Additionally,
although the exercise program did not promote alterations in the overall balance between reactive
oxygen species (ROS) production and antioxidant defenses in the intestine, algae supplementation
reduced oxidative stress as well as improved intestinal antioxidant defenses in both sedentary and
trained rats.

The importance of natural products as a therapeutic choice for numerous diseases has been
already described. Among these natural products, the aquatic algae Spirulina platensis is highlighted,
having presented some pharmacological activities, such as hypoglycemic, anti-inflammatory and
antioxidant, contributing to the prevention and treatment of cardiovascular, metabolic, and
inflammatory diseases [12]. Indeed, studies with animals and humans have demonstrated that the
supplementation with the algae prevents oxidative stress, as well as the endothelial dysfunction [17,18].

We postulated that oral supplementation with S. platensis could alter, in some way, the intestinal
contractile reactivity, which modifies the gastrointestinal functioning. For this, CCh, a muscarinic
agonist, was used as pharmacomechanical contractile agent mimicking the acetylcholine (ACh) effects,
as it is released from myenteric autonomic nerves to regulate intestinal smooth muscle motility [19,20].
This agonist binds to M3 receptors, which leads to Gq/11 protein pathway activation, and stimulation of
phospholipase C, resulting on Ca2+ influx and release from sarcoplasmic reticulum and, then, intestinal
muscle contraction [21–24]. Additionally, to simulate the electric pacemaker of interstitial cells of Cajal
located at the boundaries and in the substance of the inner smooth muscle layer, from which they
spread to the outer longitudinal smooth muscle layer, KCl was employed, as it depolarizes the cell
membrane, resulting in Ca2+ influx by voltage-sensitive Ca2+ channels (CaV) [25,26].

Our data showed that S. platensis, at 50, 150, and 500 mg/kg, reduced the ileum reactivity to KCl
(Figure 1A, Table 1). On the other hand, supplementation reduced, in a dose-dependent manner,
the ileum reactivity for CCh at 50 and 150 mg/kg, however, at 500 mg/kg, this effect was not observed
(Figure 2A, Table 2). These data indicate that algae supplementation reduces the Ca2+ influx through
CaV on smooth muscle or on myenteric nerves, which additionally could reduce the release of
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neurotransmitters, as ACh, explaining the reduced efficacy of the agonist in the animals supplemented
with the algae. Furthermore, the contractile potency of KCl and CCh was increased, despite the
reduced efficacy, at 50 and 500 mg/kg, respectively, since its pEC50 was increased at these doses. Since
the increased potency of stimulation is associated by an augment in the number of receptors on cell
membrane [27], this find can be explained by an increase expression of CaV and M3 (or a combination
of both) promoted by the algae, probably as a compensatory mechanism for the reduced ACh release.
However, the elucidation of the obtained results requires additional research; such statement can be
confirmed by the examination of ACh levels in the ileum.

Physical exercise is characterized by removing the organism from homeostasis, due to the increased
energy expenditure by the musculature, leading to physiological responses [28]. During exercise,
the blood flow is diverted in greater quantities for the musculature and skin to oxygenate these
tissues, leading to the splanchnic ischemia-reperfusion process. Because of this, these processes can
generate reactive oxygen species, which disrupts normal cellular functioning due to the oxidative
stress, which alters the function of macromolecules [29]. However, just as reactive oxygen species
are generated, there is the antioxidant defense that fights these free radicals, and the body returns
to homeostasis.

Some studies which have focused on the effects of strength training on organ functioning, especially
vascular beds, have demonstrated vascular function improvement by strength exercise [30–33].
In addition, these studies showed a reduction on vascular reactivity by this modality of exercise [34].
However, concerning the gastrointestinal tract, little is known about the effects of physical exercise. The
exercise promotes ischemia and motor changes in the intestine and intestinal mucosa [35], and shows
that swimming as an acute and chronic aerobic exercise reduces ileum reactivity to both KCl and
CCh [15,16]; however the influence of anaerobic exercise of resistance was not evaluated so far.

Then, we evaluated the influence of strength exercise on ileum reactivity and the combination
with S. platensis supplementation, in view of a possible potentiation on the beneficial effects when
associated; however, initially we confirmed the effectiveness of exercise by observing an increase in the
time to perform the exercise sessions, and that the program of strength exercise with progressive loads
does not promote an overtraining [36], observing that the activity of lactate dehydrogenase (LDH) and
creatine kinase (CK) were not increased (data not showed).

We observed that the training decreased the reactivity of rat ileum to CCh, but not to KCl,
indicating a preferential effect on ACh release than on CaV expression or activity. Additionally, when
combined with the algae, there was a potentiation on the reduction on contractile reactivity, since this
effect was observed at lower doses than occurred on sedentary rats (Figures 1 and 2, Tables 1 and 2),
for both contractile agents. Therefore, these data reinforce a potentiation promoted by the algae on the
effects of strength exercise on rat ileum contractility.

Despite these hypotheses, the data obtained do not allow an in-depth analysis of the mechanisms
involved in these alterations, and additional studies are necessary to mechanistically elucidate
these findings.

Studies of acute and chronic swimming exercise have shown that acute exercise does not promote
oxidative stress in rat ileum. Furthermore, there is an increase after four weeks of exercise, but after six
to eight weeks, oxidative stress is reduced, showing that the body underwent physiological changes
to adapt to exercise and returned to homeostasis [15,16]. However, regarding the strength exercise,
there are not data showing its effect on the balance oxidative stress and antioxidant defenses.

Literature data shows that S. platensis presents antioxidant activity due to the pigment phycocyanin,
a very stable molecule and free radical scavenger [37], beyond its inhibitory effect on the production of
superoxide anion [38,39]. In addition, other constituents contribute to the antioxidant benefits of the
algae, as carotenoids, that regulate superoxide dismutase (SOD) and catalase (CAT), as well as block
free radicals by chelation of metal ions, preventing lipid peroxidation; and vitamins B and E, that act as
antioxidants via capture of radicals and metal chelating agents [40].
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Our data showed that food supplementation with the algae, at the higher dose (500 mg/kg),
decreased the level of oxidative stress in rat ileum, since there was a reduction in the MDA concentration
measured; an oxidative damage marker formed by oxidation of lipid of cell membrane [41]. Differently,
the strength training did not alter the formation of ROS, but the association of exercise and S.
platensis supplementation reduced this parameter at 150 and 500 mg/kg (Figure 3), indicating that this
combination promotes beneficial effect regarding the prevention of cell oxidative damage. Confirming
these data, it was observed that both supplementation (500 mg/kg) and the association, at the same
doses, improved the antioxidant capacity of rat ileum (Figure 4).

Taken together, these data point to a possible beneficial effect of food supplementation with S.
platensis, as well as its association with strength training—this is preliminary data that needs further
testing, including in humans to confirm possible effects such the reduction of oxidative damage in the
intestine, which may contribute for a better intestinal functioning, especially during exposure to stress.

4. Material and Methods

4.1. Animals

Wistar rats (Rattus norvegicus), initially 2-months-old, weighing 200–300 g, were obtained from
animal production unit of UFPB. The animals were kept under restricted food control with balanced
diet (Labina®, São Paulo, Brazil), to avoid large differences in body weight and density, and had access
to water ad libitum. They were maintained in rooms at 21 ± 1 ◦C and submitted to a 12 h light-dark
cycle (light on from 6 to 18 h). Forty-eight hours after the last exercise session, the animals were fasted
for 18 h (receiving only water ad libitum during this period), to avoid the influence of substances
released during digestion, and then euthanized by cervical dislocation followed by cervical vessels
section to proceed with the experimental analysis.

All experimental procedures were performed following the principles of animal care of the
Guidelines for the ethical use of animals in applied etiology studies [42] and previously approved by
UFPB Ethics Committee on Animal Use (Protocol/CEUA 0511/13).

4.2. Drugs

Calcium chloride bihydrate (CaCl2·2H2O), magnesium chloride hexahydrate (MgCl2·6H2O),
and glucose (C6H12O6) were purchased from Vetec (Darmstadt, Germany). Sodium bicarbonate
(NaHCO3) was purchased from Fmaia (Belo Horizonte, Brazil). Sodium chloride (NaCl) and potassium
chloride (KCl) were purchased from Química Moderna (São Paulo, Brazil). Monosodium dihydrogen
orthophosphate (NaH2PO4), sodium hydroxide (NaOH) and hydrochloric acid (HCl) were purchased
from Nuclear (Brazil). These substances were employed in the physiological Tyrode solution for
functional experiments. Carbamylcholine hydrochloride (CCh) was purchased from Merck (Darmstadt,
Germany). Thiobarbituric acid, tetramethoxypropane and perchloric acid were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Carbogen mixture (95% O2 and 5% CO2) was obtained from
White Martins (Danbury, CT, USA).

4.3. Spirulina Platensis

S. platensis was obtained as powder from the Dongtai Top Bio Engineering Co., Ltd. (Nanjing,
China) (lot 20130320). A sample was analyzed for quality control by Farma Nostra laboratory (Anápolis,
Goiás, Brazil) (Lot 1308771A) and handled by Dilecta pharmacy (João Pessoa, Paraíba, Brazil) (lot
20121025).

4.4. Experimental Protocol

Animals were divided into eight groups (five animals in each): Sedentary (S), trained (T),
sedentary and supplemented with S. platensis at 50 (S50), 150 (S150), and 500 mg/kg (S500), and a
combination of training and supplementation at 50 (T50), 150 (T150), and 500 mg/kg (T500).
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Animals of trained groups were submitted to a specific program of water jumping; for this,
water was heated to around 32 ◦C [43]. The week of adaptation was consisted of three alternating
sessions of exercise (1st day: 2 sets × 5 jumps, 2nd day: 4 sets × 5 jumps, and 3rd day: 4 sets × 5 jumps),
with an overload of 50% of the body weight. The strength training program consisted of 4 sets of 12
repetitions, with a 30 second interval between sets; a progressive load was adjusted according to the
animal weight, being 50% (1st and 2nd week), 60% (3th and 4th week), and 80% of body weight (5th
to 8th week), anchored in the trunk of the animals by a vest. After 48 h from the end of the training,
the animals were euthanized and the ileum was isolated (Figure 5).

Figure 5. Strength training program. Adaptation period: 1–3 days; and strength training protocol:
1–8 weeks.

For supplementation with S. platensis, the algae was dissolved in saline solution and orally
administrated by gavage (volume: 2.5 mL/animal) along 8 weeks [44]. For trained + supplemented
animals, administration was performed 30 min before exercise session and sedentary animals received
saline solution [45].

4.5. Contractile Reactivity Measurement

Animals were euthanized. The ileum was immediately removed, cleaned of fat and connective
tissue, and immersed in physiological solution at room temperature and bubbled with carbogen
mixture. To register isotonic contractions, ileum segments (2–3 cm) were suspended by cotton yarn
in organ bath (5 mL) and recorded on smoked drum through levers coupled to kymographs (DTF)
under resting tension of 1.0 g at 37 ◦C [46]. The organ baths were warmed by a thermostatic pump
Polystat 12,002 Cole-Palmer (Vernon Hills) and bathed by a Tyrode solution (pH 7.4) with the following
composition (in mM): NaCl (150.0), KCl (2.7), CaCl2 (1.8), MgCl2 (2.0), NaHCO3 (12.0), NaH2PO4

(0.4), and d-glucose (5.5). After 30 min of stabilization period, an isotonic contraction was induced
with KCl 30 mM, to verify the functionality of the organ, and 15 min after two similar cumulative
concentration-response curves to KCl or CCh were obtained, as electro- and pharmaco-mechanical
coupling contractile agents. The reactivity of ileum to that agents was assessed and compared between
groups based on the values of maximum effect (Emax) and negative logarithm of the concentration of
contractile agents producing 50% of its maximal effect.

4.6. Lipid Peroxidation Assay

Lipid peroxidation in ileum was determined measuring the chromogenic product of
2-thiobarbituric acid (TBA) reaction with malondialdehyde (MDA), which is one of the products formed
because of membrane lipid peroxidation [47]. Ileum segments from each animal were homogenized
with KCl (1:1) and 250 µL of tissue homogenate were incubated at 37 ◦C for 60 min. Then, the mixture
was precipitated with 35% perchloric acid and centrifuged at 1.207 g for 20 min at 4 ◦C. The supernatant
was transferred to Eppendorf® tubes and 400 µL of TBA 0.6% were added and incubated at 95–100 ◦C
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for 1 h. After cooling, the samples were read in spectrophotometer at wavelength of 532 nm. The
results were expressed in µmol/L per gram of dry tissue.

4.7. Antioxidant Assay

Ileum segments from each animal were homogenized with KCl (1:1), centrifuged at 1.198× g for
10 min and 250 µL of supernatant were incubated at 37 ◦C for 60 min. Then, 100 µL of the tissue was
added in an Eppendorf® tube with 2 mL of 2,2-diphenyl-1-picrylhydrazyl (DPPH) solution (1.25 mL
DPPH dissolved in 100 mL ethanol). The tubes were vortexed and allowed to stand for 30 min. They
were centrifuged at 7.489× g at 20 ◦C for 15 min. Then, the samples were read in spectrophotometer at
a wavelength of 515 nm.

The results were expressed as a percentage of oxidation inhibition, following the equation:

AOA = 100 − [(DPPH-R)S/(DPPH-R)W × 100]

where (DPPH-R)S and (DPPH-R)W correspond to the concentration of DPPH- remaining after 30 min,
measured in the sample (S) and white (W) prepared with distilled water [48].

4.8. Statistical Analysis

Data were expressed as mean ± standard error of mean (S.E.M.). Cumulative concentration-
response curves were fitted and pEC50 values were obtained by non-linear regression [28]. Multiple
comparisons were performed by one- or two-way ANOVA followed by Tukey or Bonferroni’s post-test.
The differences were considered significant when p < 0.05. All data were analyzed using GraphPad
Prism® software version 5.01 (GraphPad Software Inc., California, LA, USA).

5. Conclusions

An experimental model of smooth muscle is important for studying its functioning and new
pharmacological and non-pharmacological strategies for the treatment of disorders, such as those
affecting the intestinal tract. Our data point to a possible beneficial effect of food supplementation with
S. platensis, as well as its association with strength training on oxidative stress and contractile reactivity.
This is preliminary data needs further testing, including in humans, to confirm possible effects of the
reduction of oxidative damage in the intestine, which may contribute for a better intestinal functioning,
especially during exposure to stress.
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Abbreviation List

Sedentary (S)
S + supplemented with algae at 50 (S50) 150 (S150)
S + supplemented with algae at 150 (S150)
S + supplemented with algae at 500 mg/kg (S500)
Trained (T)
T + supplemented (T50, T150, and T500)
2,2-diphenyl-1-picrylhydrazyl (DPPH)
Malondialdehyde (MDA)
Carbachol (CCh)
Potassium chloride (KCl)
Maximum effect (Emax)
pEC50
Reactive oxygen species (ROS)
Acetylcholine (ACh)
Ca2+ channels (CaV)
Lactate dehydrogenase (LDH)
Creatine kinase (CK)
Superoxide dismutase (SOD)
Catalase (CAT)
Calcium chloride bihydrate (CaCl2.2H2O)
Magnesium chloride hexahydrate (MgCl2.6H2O)
Glucose (C6H12O6)
Sodium bicarbonate (NaHCO3)
Sodium chloride (NaCl)
Monosodium dihydrogen orthophosphate (NaH2PO4)
Sodium hydroxide (NaOH)
Hydrochloric acid (HCl)
Carbamylcholine hydrochloride (CCh)
2-thiobarbituric acid (TBA)
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