New Eunicellin-type Diterpenes from the Panamanian Octocoral Briareum asbestinum

Marcelino Gutiérrez 1,*, Ricardo Santamaría 1, José Félix Gómez-Reyes 1, Héctor M. Guzmán 2, Javier Ávila-Román 3, Virginia Motilva 4, Elena Talero 4,*

- ¹ Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Apartado 0843-01103, República de Panamá; <u>rsantamaria@indicasat.org.pa</u> (R.S.), <u>gomezjosefelix@gmail.com</u> (J.G.)
- ² Smithsonian Tropical Research Institute, Balboa, Ancon, P. O. Box 0843-03092, Republic of Panama; guzmanh@si.edu
- ³ Department of Biochemistry and Biotechnology, Faculty of Chemistry, Universitat Rovira i Virgili, Tarragona 43007, Spain; <u>franciscojavier.avila@urv.cat</u> (J. A-R)
- ⁴Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville 41012, Spain; motilva@us.es (V.M.); etalero@us.es (E.T.)

Contents

Figure S1. Briarellin T, ¹H NMR spectrum

Figure S2. Briarellin T, ¹³C NMR spectrum

Figure S3. Briarellin T, DEPT-135 spectrum

Figure S4. Briarellin T, COSY spectrum

Figure S5. Briarellin T, HSQC spectrum

Figure S6. Briarellin T, HMBC spectrum

Figure S7. Briarellin T, NOE spectra

Figure S8. Briarellin T, HR-ESITOFMS spectra

Figure S9. Asbestinin 27, ¹H NMR spectrum

Figure S10. Asbestinin 27, ¹³C NMR spectrum

Figure S11. Asbestinin 27, DEPT-135 spectrum

Figure S12. Asbestinin 27, COSY spectrum

Figure S13. Asbestinin 27, HSQC spectrum

Figure S14. Asbestinin 27, HMBC spectrum

Figure S15. Asbestinin 27, NOE spectra

Figure S16. Asbestinin 27, HR-ESITOFMS spectra

Figure S17. Asbestinin 28, ¹H NMR spectrum

Figure S18. Asbestinin 28, ¹³C NMR spectrum

Figure S19. Asbestinin 28, DEPT-135 spectrum

Figure S20. Asbestinin 28, COSY spectrum

Figure S21. Asbestinin 28, HSQC spectrum

Figure S22. Asbestinin 28, HMBC spectrum

Figure S23. Asbestinin 28, NOE spectra

Figure S24. Asbestinin 28, HR-ESITOFMS spectrum

Table S1. Viability of THP-1 human macrophages treated with different concentrations of diterpenes.

Figure S1. Briarellin T, ¹H NMR spectrum

Figure S1. Briarellin T, ¹H NMR spectrum (expanded)

Filename Author Experiment Sample_Id Solvent Actual_Start_Time Revision_Time	= JF1_65_11 en CDC13 29 = DELTA = dept_dec.exp = I3_062_003 = CHLOROFORM-D = 28-JUL-2015 04:10:36 = 14-JAN-2020 21:09:17	·I3_062_003 [©] DEPT with decoupling 4	95.4	79.5	~ 51.9 ~ 50.9		22.6 18.8 14.1 11.4
Comment Data_Format Dim_Size X_Domain Dim_Title Dim_Units Dimensions Site Spectrometer	<pre>= DEPT with decoupling = 1D COMPLEX = 32768 = 13C = 13C = [ppm] = X = Eclipse+ 400 = DELTA_NMR</pre>						
Field_Strength X_Acq_Duration X_Domain X_Freq X_Offset	= 9.389766[T] (400[MHz]) = 1.3008896[s] = 13C = 100.52530333[MHz] = 100[ppm]	landana makabiliki wakana dala akila ang ^k ina kabiliki waka wakabili kabila ma	landshormati iladhilidindan	ulonalli.her.h. Wolvadahidahidahidahi		to a state of the	
X_Points X_Prescans X_Resolution X_Sweep Irr_Domain Irr_Freq Irr_Offset Clipped Scans Total_Scans	= 32768 = 4 = 0.76870474[Hz] = 25.18891688[kHz] = 1H = 399.78219838[MHz] = 5[ppm] = FALSE = 3937 = 3937	ана алаан талалыл талалыл таларын талар	kt a -affiktur. μι (fit .affiktur	ل يى رى يا يى اليايلية بار يا يا يونيونيا باريا	 	n hiradarustak (, , , n, N, astrikal, si N, Marasi	lan lit o o la Urbar den linda.
Relaxation_Delay Recvr_Gain Temp_Get X_Acq_Time X_Pulse Irr_Pulse Initial_Wait J_Constant Selection_Angle Selection_Pulse Unblank_Time	= 2[s] = 26 = 21.9[dC] = 1.3008896[s] = 10[us] = 44.5[us] = 140[Hz] = 140[Hz] = 135[deg] = 66.75[us] = 2[us]			85 80 75 70			25 20 15 10
_		1.0 1.5 1.50 1.25 1.20 1.15 1.10 1.05	100 55 50	f1 (ppm)			.5 20 15 10

Figure S4. Briarellin T, COSY spectrum

Figure S6. Briarellin T, HMBC spectrum

Irradiation of H-18

Figure S9. Asbestinin 27, ¹H NMR spectrum (expanded)

Figure S11. Asbestinin 27, DEPT-135 spectrum

Figure S15. Asbestinin 27, NOE spectra

Irradiation of H-2

Irradiation of H-18

Figure S15. Asbestinin 27, NOE spectra

Figure S16. Asbestinin 27, HR-ESITOFMS spectra

Filename Author Experiment Sample_Id Solvent Actual_Start_Time Revision_Time	= JF1_65_09 dept135-2 = DELTA = dept_dec.exp = I3_62_05 = CHLOROFORM-D = 3-AUG-2015 22:49:5 = 6-AUG-2015 01:26:3	.jdf 6	0 2 1 1	— 94.57	— 80.88	- 73.80 \ 72.75 \ 68.55		<pre>> 38.30 > 37.66 > 36.73 > 31.34 > 31.01 > 29.09</pre>	∠ 21.38 ∠ 18.87 ∠ 18.12 11.30	
Comment Data Format Dim_Size X_Domain Dim_Title Dim_Units Dimensions Site Spectrometer	<pre>= DEPT with decouplin = 1D COMPLEX = 32768 = 13C = 13C = [ppm] = x = Eclipse+ 400 = DELTA NMR</pre>	a								
Field_Strength X_Acq_Duration X_Domain X_Freq X_Offset X_Points X_Prescans X_Resolution X_Sweep Irr_Domain Irr_Freq Irr_Offset Clipped Scans Total_Scans	- = 9.389766[T] (400[MH = 1.3008896[s] = 13C = 100.52530333[MHz] = 100[ppm] = 32768 = 4 = 0.76870474[Hz] = 25.18891688[kHz] = 1H = 399.78219838[MHz] = 5[ppm] = FALSE = 3072 = 3072	z]) Wikiji	Herein vin Herein an Marken Marken von Herein auf der Bereinen an Bereinen der Ber	alifetta ⁽ lingvillende)a ^{n (} dingville	hang bill the bing film	ether b ⁱ Useranney partiterativened instrument	egeding water a Maphinia page		Wheeler	the second s
Relaxation_Delay Recvr_Gain Temp_Get X_Acq_Time X_Pulse Irr_Pulse Initial_Wait J_Constant Selection_Angle Selection_Pulse Unblank_Time	= 2[s] = 26 = 24.9[dC] = 1.3008896[s] = 10[us] = 44.5[us] = 1[s] = 140[Hz] = 135[deg] = 66.75[us] = 2[us]	, , , , , , , , , , , , , , , , , , ,	25 120 115 110 105 100	95 90	85 80	75 70 65 60		40 35 30 2	25 20 15	10 5

Figure S20. Asbestinin 28, COSY spectrum

Irradiation of Proton H-18

Irradiation of Proton H-19

Irradiation of Proton H-14

Table S1. Viability of THP-1 human macrophages treated with different concentrations of diterpenes. Values are mean ± SEM (%) of three independent experiments in duplicate (n = 3).

	% Viability THP-1 macrophages (24 h)								
(µM)	10	20	50	100	IC ₅₀				
Briarellin T (1)	99.5 ± 2.0	98.5 ± 1.2	101.4 ± 0.5	98.5 ± 1.0	> 100				
Asbestinin 27 (2)	100.5 ± 1.3	99.5 ± 0.9	98.6 ± 2.1	97.4 ± 1.1	> 100				
Asbestinin 28 (3)	98.5 ± 3.1	99.1 ± 1.4	97.0 ± 1.0	99.5 ± 2.0	>100				
Asbestinin 17 (4)	102.2 ± 1.5	100.5 ± 0.8	98.0 ± 2.0	99.5 ± 1.2	> 100				