Supplementary Material Monarubins A–C from the Marine Shellfish-Associated Fungus Monascus ruber BB5

Yan-Qin Ran¹, Wen-Jian Lan², Yi Qiu³, Qi Guo³, Gong-Kan Feng⁴, Rong Deng⁴, Xiao-Feng Zhu⁴, Hou-Jin Li^{3,*}, and Jun Dong^{1,*}

¹ School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; ranyq03@163.com (Y.-Q.R.)

² School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; lanwj@mail.sysu.edu.cn (W.-J.L.)

³ School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; qiuyi0771@163.com (Y.Q.); guoqi1228@126.com (Q.G)

⁴ State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China; fenggk@sysucc.org.cn (G.-K.F.); dengrong@sysucc.org.cn (R.D.); zhuxfeng@mail.sysu.edu.cn (X.-F.Z.)

* Correspondence: ceslhj@mail.sysu.edu.cn (H.-J.L.); Dongjun@gdpu.edu.cn (J.D.); Tel: +86-20-84113698 (H.-J.L.); 86-13822726106 (J.D.)

List of contents:

Figure S1. HR-(+) ESI-MS spectrum of monarubin A (1).	6
Figure S2. ¹ H NMR spectrum of monarubin A (1) in CDCl ₃ (500 MHz).	7
Figure S3. ¹³ C NMR spectrum of monarubin A (1) in CDCl ₃ (125 MHz)	8
Figure S4. DPET 135 spectrum of monarubin A (1) in CDCl ₃ (125 MHz).	9
Figure S5. HMQC spectrum of monarubin A (1) in CDCl ₃ .	10
Figure S6. ¹ H– ¹ HCOSY spectrum of monarubin A (1) in CDCl ₃ .	11
Figure S7. HMBC spectrum of monarubin A (1) in CDCl ₃	12
Figure S8. NOEY spectrum of monarubin A (1) in CDCl ₃ .	13

Figure S9. ¹ H NMR spectrum of 3,6-diisobutyl-2(1 <i>H</i>)-pyrazinone (2) in CDCl ₃ (400 MHz).	14
Figure S10. ¹³ C NMR spectrum of 3,6-diisobutyl-2(1 <i>H</i>)-pyrazinone (2) in CDCl ₃ (100 MHz).	15
Figure S11. HR-(+) ESI-MS spectrum of deoxyhydroxyaspergillic acid (3).	16
Figure S12. ¹ H NMR spectrum of deoxyhydroxyaspergillic acid (3) in CDCl ₃ (400 MHz).	17
Figure S13. ¹³ C NMR spectrum of deoxyhydroxyaspergillic acid (3) in CDCl ₃ (100 MHz).	18
Figure S14. HR-(+) ESI-MS spectrum of 2-hydroxy-6-(1-hydroxy-1-methylpropyl) 3-sec-buthylpyrazine (4)	19
Figure S15. ¹ H NMR spectrum of 2-hydroxy-6-(1-hydroxy-1-methylpropyl) 3-sec-buthylpyrazine (4) in CDCl ₃ (400 MHz)	20
Figure S16. ¹³ C NMR spectrum of 2-hydroxy-6-(1-hydroxy-1-methylpropyl) 3-sec-buthylpyrazine (4) in CDCl ₃ (100 MHz)	21
Figure S17. ¹ H NMR spectrum of pulchellalactam (5) in CDCl ₃ (400 MHz).	22
Figure S18. ¹³ C NMR spectrum of pulchellalactam (5) in CDCl ₃ (100 MHz).	23
Figure S19. HR-(+) ESI-MS spectrum of monarubin B (6).	24
Figure S20. ¹ H NMR spectrum of monarubin B (6) in CDCl ₃ (400 MHz)	25
Figure S21. ¹³ C NMR spectrum of monarubin B (6) in CDCl ₃ (100 MHz).	
Figure S22. DEPT 135 spectrum of monarubin B (6) in CDCl ₃ (100 MHz).	27
Figure S23. HMQC spectrum of monarubin B (6) in CDCl ₃ .	
Figure S24. ¹ H– ¹ H COSY spectrum of monarubin B (6) in CDCl ₃ .	29
Figure S25. HMBC spectrum of monarubin B (6) in CDCl ₃	

Figure S26. NOESY spectrum of monarubin B (6) in CDCl ₃ .	
Figure S27. ¹ H NMR spectrum of lunatinin (7) in actone-d ₆ (400 MHz)	
Figure S28. ¹³ C NMR spectrum of lunatinin (7) in actone-d ₆ (100 MHz)	
Figure S29. ¹ H NMR spectrum of 6,8-dimethoxy-3-methylisocoumarin (8) in CDCl ₃ (400 MHz)	
Figure S30. ¹³ C NMR spectrum of 6,8-dimethoxy-3-methylisocoumarin (8) in CDCl ₃ (100 MHz)	
Figure S31. ¹ H NMR spectrum of monaspurpurone (9) in CDCl ₃ (400 MHz)	
Figure S32. ¹³ C NMR spectrum of monaspurpurone (9) in CDCl ₃ (100 MHz)	
Figure S33. ¹ H NMR spectrum of 5-amino-2,6-dimethyl-6-hydroxy-4-(2'-methyl-1-oxobutyl)-3-methoxy-2	2,4-cyclohexadien-1-one (10) in
CDCl ₃ (400 MHz).	
Figure S34. ¹³ C NMR spectrum of 5-amino-2,6-dimethyl-6-hydroxy-4-(2'-methyl-1-oxobutyl)-3-methoxy-	2,4-cyclohexadien-1-one (10) in
CDCl ₃ (100 MHz).	
Figure S35. ¹ H NMR spectrum of phomaligol A (11) in CDCl ₃ (400 MHz).	40
Figure S36. ¹³ C NMR spectrum of phomaligol A (11) in CDCl ₃ (100 MHz)	41
Figure S37. ¹ H NMR spectrum of monascuspiloin (12) in CDCl ₃ (400 MHz).	42
Figure S38. ¹³ C NMR spectrum of monascuspiloin (12) in CDCl ₃ (100 MHz).	
Figure S39. HR-(+) ESI-MS spectrum of monarubin C (13).	44
Figure S40. ¹ H NMR spectrum of monarubin C (13) in CDCl ₃ (600 MHz)	

Figure S41. ¹³ C NMR spectrum of monarubin C (13) in CDCl ₃ (150 MHz)
Figure S42. DEPT 135 spectrum of monarubin C (13) in CDCl ₃ (150 MHz)47
Figure S43. HMQC spectrum of monarubin C (13) in CDCl ₃
Figure S44. ¹ H– ¹ HCOSY spectrum of monarubin C (13) in CDCl ₃
Figure S45. HMBC spectrum of monarubin C (13) in CDCl ₃
Figure S46. NOESY spectrum of monarubin C (13) in CDCl ₃ 51
Figure S47. The most stable conformers of 11 <i>S</i> -6 calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses
Figure S48. The most stable conformers of $11R-6$ calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses
Figure S49. The most stable conformers of 3S,6R,7S,11S,17R-13 calculated at the B3LYP/6-31+G(d) level. Relative populations are in
parentheses
Figure S50. The most stable conformers of 3S,6R,7S,11S,17S-13 calculated at the B3LYP/6-31+G(d) level. Relative populations are in
parentheses
Figure S51. The most stable conformers of 3R,6S,7R,11R,17S-13 calculated at the B3LYP/6-31+G(d) level. Relative populations are in
parentheses
Figure S52. The most stable conformers of 3R,6S,7R,11R,17R-13 calculated at the B3LYP/6-31+G(d) level. Relative populations are in
parentheses
Figure S53. The most stable conformers of 11S-3 calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses

Figure S54. The most stable conformers of $11R$ -3 calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses	. 59
Table S1. X-ray Crystallography Data for 4.	.60
Table S2.The hepatocellular carcinoma cell line HepG2 activity of manorubin B (6)	. 62
Table S3. The hepatocellular carcinoma cell line QGY7701 activity of manorubin B (6)	. 62
Table S4. The nasopharyngeal carcinoma cell line SUNE1 activity of lunatinin (7)	.63
Table S5. The hepatocellular carcinoma cell line HepG2 activity of lunatinin (7).	.63
Table S6. The hepatocellular carcinoma cell line QGY7701 activity of lunatinin (7)	.63

SPECTRUM-simulation :						
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition		
207.14923	207.14919	0.19	4.5	C12 H19 O N2		

Figure S2. ¹H NMR spectrum of monarubin A (1) in CDCl₃ (500 MHz).

Figure S3. ¹³C NMR spectrum of monarubin A (1) in CDCl₃ (125 MHz).

Figure S4. DPET 135 spectrum of monarubin A (1) in CDCl₃ (125 MHz).

Figure S5. HMQC spectrum of monarubin A (1) in CDCl₃.

Figure S6. ¹H–¹HCOSY spectrum of monarubin A (1) in CDCl₃.

Figure S7. HMBC spectrum of monarubin A (1) in CDCl₃.

Figure S8. NOEY spectrum of monarubin A (1) in CDCl₃.

Figure S9. ¹H NMR spectrum of 3,6-diisobutyl-2(1*H*)-pyrazinone (**2**) in CDCl₃ (400 MHz).

Figure S10. ¹³C NMR spectrum of 3,6-diisobutyl-2(1*H*)-pyrazinone (2) in CDCl₃ (100 MHz).

SPECTRUM-simulation :						
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition		
225.16019	225.15975	1.93	3.5	C12 H21 O2 N2		

Figure S11. HR-(+) ESI-MS spectrum of deoxyhydroxyaspergillic acid (3).

Figure S12. ¹H NMR spectrum of deoxyhydroxyaspergillic acid (**3**) in CDCl₃ (400 MHz).

Figure S13. ¹³C NMR spectrum of deoxyhydroxyaspergillic acid (**3**) in CDCl₃ (100 MHz).

Figure S14. HR-(+) ESI-MS spectrum of 2-hydroxy-6-(1-hydroxy-1-methylpropyl) 3-sec-buthylpyrazine (4).

Figure S15. ¹H NMR spectrum of 2-hydroxy-6-(1-hydroxy-1-methylpropyl) 3-sec-buthylpyrazine (4) in CDCl₃ (400 MHz).

Figure S16. ¹³C NMR spectrum of 2-hydroxy-6-(1-hydroxy-1-methylpropyl) 3-sec-buthylpyrazine (4) in CDCl₃ (100 MHz).

Figure S17. ¹H NMR spectrum of pulchellalactam (5) in CDCl₃ (400 MHz).

Figure S18. ¹³C NMR spectrum of pulchellalactam (5) in CDCl₃ (100 MHz).

Figure S19. HR-(+) ESI-MS spectrum of monarubin B (6).

Figure S20. 1 H NMR spectrum of monarubin B (6) in CDCl₃ (400 MHz).

Figure S21. ¹³C NMR spectrum of monarubin B (6) in CDCl₃ (100 MHz).

Figure S22. DEPT 135 spectrum of monarubin B (6) in CDCl₃ (100 MHz).

Figure S23. HMQC spectrum of monarubin B (6) in CDCl₃.

Figure S24. ¹H–¹H COSY spectrum of monarubin B (6) in CDCl₃.

Figure S25. HMBC spectrum of monarubin B (6) in CDCl₃.

Figure S26. NOESY spectrum of monarubin B (6) in CDCl₃.

Figure S27. ¹H NMR spectrum of lunatinin (7) in actone-d₆ (400 MHz).

Figure S28. ¹³C NMR spectrum of lunatinin (7) in actone- d_6 (100 MHz).

Figure S29. ¹H NMR spectrum of 6,8-dimethoxy-3-methylisocoumarin (8) in CDCl₃ (400 MHz).

Figure S30. ¹³C NMR spectrum of 6,8-dimethoxy-3-methylisocoumarin (8) in CDCl₃ (100 MHz).

Figure S31. ¹H NMR spectrum of monaspurpurone (9) in CDCl₃ (400 MHz).

Figure S32. ¹³C NMR spectrum of monaspurpurone (9) in CDCl₃ (100 MHz).

Figure S33. ¹H NMR spectrum of 5-amino-2,6-dimethyl-6-hydroxy-4-(2'-methyl-1-oxobutyl)-3-methoxy-2,4-cyclohexadien-1-one (**10**) in CDCl₃ (400 MHz).

Figure S34. ¹³C NMR spectrum of 5-amino-2,6-dimethyl-6-hydroxy-4-(2'-methyl-1-oxobutyl)-3-methoxy-2,4-cyclohexadien-1-one (**10**) in CDCl₃ (100 MHz).

Figure S35. ¹H NMR spectrum of phomaligol A (11) in CDCl₃ (400 MHz).

Figure S36. ¹³C NMR spectrum of phomaligol A (11) in CDCl₃ (100 MHz).

Figure S37. ¹H NMR spectrum of monascuspiloin (**12**) in CDCl₃ (400 MHz).

Figure S38. ¹³C NMR spectrum of monascuspiloin (**12**) in CDCl₃ (100 MHz).

SPECTRUM	-simulation :			
m/z	Theo. Mass	Delta (ppm)	RDB equiv.	Composition
			1	1
262 21664	262 21664	0.11	(5	C21 1121 O5
363.21664	363.21664	0.11	6.5	C21 H31 O5

Figure S39. HR-(+) ESI-MS spectrum of monarubin C (13).

Figure S40. ¹H NMR spectrum of monarubin C (13) in CDCl₃ (600 MHz).

Figure S41. ¹³C NMR spectrum of monarubin C (13) in CDCl₃ (150 MHz).

Figure S42. DEPT 135 spectrum of monarubin C (13) in CDCl₃ (150 MHz).

Figure S43. HMQC spectrum of monarubin C (13) in CDCl₃.

Figure S44. ¹H–¹HCOSY spectrum of monarubin C (**13**) in CDCl₃.

Figure S45. HMBC spectrum of monarubin C (13) in CDCl₃.

Figure S46. NOESY spectrum of monarubin C (13) in CDCl₃.

Figure S47. The most stable conformers of 11S-6 calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses.

Figure S48. The most stable conformers of 11R-6 calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses.

Figure S49. The most stable conformers of 3*S*,6*R*,7*S*,11*S*,17*R*-**13** calculated at the B3LYP/6-31+G(d) level. Relative populations are in

parentheses.

Figure S50. The most stable conformers of $3S_{6}R_{7}S_{11}S_{17}S_{13}$ calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses.

Figure S51. The most stable conformers of 3R, 6S, 7R, 11R, 17S-13 calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses.

Figure S52. The most stable conformers of 3R, 6S, 7R, 11R, 17R-13 calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses.

Figure S53. The most stable conformers of 11S-3 calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses.

Figure S54. The most stable conformers of 11R-3 calculated at the B3LYP/6-31+G(d) level. Relative populations are in parentheses.

Empirical formula	$2(C_{12}H_{20}N_2O_2)$
Formula weight	448.60
Temperature/K	249.99(10)
Crystal system	monoclinic
Space group	P21
a/Å	11.77370(10)
b/Å	6.91360(10)
c/Å	16.5776(2)
α/°	90
β/°	91.3700(10)
γ/°	90
Volume/Å ³	1349.01(3)
Z	2
$\rho_{calc}g/cm^3$	1.104
µ/mm ⁻¹	0.607
F(000)	488.0
Crystal size/mm ³	0.2 imes 0.15 imes 0.08
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
20 range for data collection/°	7.51 to 148.142
Index ranges	$-14 \le h \le 14, -8 \le k \le 8, -14 \le l \le 19$
Reflections collected	29460
Independent reflections	5242 [$R_{int} = 0.0525, R_{sigma} = 0.0221$]
Data/restraints/parameters	5242/1/299
Goodness-of-fit on F ²	1.039

Table S1. X-ray Crystallography Data for 4.

Final R indexes [I>= 2σ (I)]	$R_1 = 0.0570, wR_2 = 0.1619$
Final R indexes [all data]	$R_1 = 0.0588, wR_2 = 0.1647$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.22
Flack parameter	-0.04(7)

					-			
		HepG2						
DMSO (µL) manorubin B (6) (µmol/L)								
	0.054	0.037	0.111	0.333	1	3	9	27
OD (570nm) ^a	1.44	1.437	1.377	1.294	0.996	0.454	0.388	0.379
Cell viability (100%) ^b		96.3	94.7	91.2	66.3	32.4	24.5	27.7
Inhibition rate (100%) ^c		3.7	5.3	8.8	33.7	67.6	75.5	72.3

Table S2. The hepatocellular carcinoma cell line HepG2 activity of manorubin B (6)

^a Average of three measurements, OD: Optical density, ^b Cell viability = Measurements value (OD)/Control value DMSO (OD) × 100%,

^c Inhibition rate = 100% – Cell viability.

Table S3. The hepatocellular carcinoma cell line QGY7701 activity of manorubin B (6)

QGY7701								
	DMSO (µL) manorubin B (6) (µmol/L)							
	0.054	0.037	0.111	0.333	1	3	9	27
OD (570nm)	1.46	1.320	1.310	1.147	0.423	0.255	0.235	0.188
Cell viability (100%)		90.2	89.5	78.4	28.9	17.4	16.1	12.8
Inhibition rate (100%)		9.8	10.5	21.6	71.1	82.6	83.9	87.2

SUNE1									
	DMSO (µL)	lunatinin (7) (µmol/L)							
	0.2	1.5625	3.125	6.25	12.5	25	50	100	
OD (570nm)	0.791	0.668	0.672	0.578	0.452	0.391	0.364	0.368	
Cell viability (100%)		84.5	84.9	73	57.2	49.5	46.1	46.5	
Inhibition rate (100%)		15.5	15.1	27	42.8	50.5	53.9	53.5	

Table S4. The nasopharyngeal carcinoma cell line SUNE1 activity of lunatinin (7)

Table S5. The hepatocellular carcinoma cell line HepG2 activity of lunatinin (7)

HepG2									
	DMSO (µL)	lunatinin (7) (µmol/L)							
	0.2	1.5625	3.125	6.25	12.5	25	50	100	
OD (570nm)	0.422	0.373	0.347	0.233	0.142	0.111	0.085	0.092	
Cell viability (100%)		88.3	82.3	55.3	33.6	26.2	20.1	21.7	
Inhibition rate (100%)		11.7	17.7	44.7	66.4	73.8	79.9	78.3	

Table S6. The hepatocellular carcinoma cell line QGY7701 activity of lunatinin (7)

QGY7701									
	DMSO (µL)	lunatinin (7) (µmol/L)							
	0.2	1.5625	3.125	6.25	12.5	25	50	100	
OD (570nm)	0.976	0.915	0.758	0.479	0.216	0.162	0.102	0.097	
Cell viability (100%)		93.8	77.7	49.1	22.1	16.6	10.4	9.9	
Inhibition rate (100%)		6.2	22.3	5.9	77.9	83.4	89.6	90.0	