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Abstract: A total of eight new oxygenated 4-exo-methylene sterols, 1–8, together with one artifact
9 and six known sterols 11–16, were isolated from the marine sponge Theonella swinhoei collected
from the Bohol province in Philippines. Structures of sterols 1–8 were determined from 1D and 2D
NMR data. Among the sterols, 8α-hydroxytheonellasterol (4) spontaneously underwent an allylic
1,3-hydroxyl shift to produce 15α-hydroxytheonellasterol (9) as an artifact; this was rationalized by
quantum mechanical calculations of the transition state. In addition, the 1,2-epoxy alcohol subunit
of 8α-hydroxy-14,15-β-epoxytheonellasterol (5) was assigned using the Gauge-Independent Atomic
Orbital (GIAO) NMR chemical shift calculations and subsequent DP4+ analysis. Finally, comparison
of the 13C chemical shifts of isolated 7α-hydroxytheonellasterol (6) with the reported values revealed
significant discrepancies at C-6, C-7, C-8, and C-14, leading to reassignment of the C-7 stereochemistry
in the known structure.

Keywords: Theonella swinhoei; marine natural product; oxygenated theonellasterol; GIAO NMR
chemical shift calculation; anti-inflammatory activity

1. Introduction

Marine invertebrates have a broad array of pharmacologically and structurally attractive natural
products, some of which exhibit extraordinary potencies and selectivities against human diseases,
thus rendering them potential drug candidates [1]. The marine sponge Theonella swinhoei has
been one of the most diverse sources of natural products. Since the isolation of theonellasterol
A from T. swinhoei in 1981 [2], various classes of molecules, including polyketide [3–12],
peptides [13–18], and sterols [2,19–22], have been identified and evaluated for their biological properties.
The characteristic 4-exo-methylene-sterols represent the largest family of secondary metabolites isolated
from the genus Theonella sponges. To date, at least 37 sterols, including swinhoeisterols [21,22],
swinhosterols [19,23], conicasterols [2,24–27], and theonellasterols [2,25,26,28,29], have been identified
through extensive research on this marine invertebrate. Recently, these marine sterols and their
synthetic derivatives have been investigated as potent farnesoid-x-receptor (FXR) antagonists to protect
the liver from injuries caused due to bile acid overload [25,30].
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Generally, structures of the natural sterols can be analyzed from the key NMR (HMBC, NOESY)
correlations arising from the methyl groups at C-18 and C-19. However, precise analyses utilizing
conventional NMR techniques are problematic in some cases because of the complex overlapping of
non-functionalized sp3 methylene peaks in the 1H NMR spectrum and the absence of 1H signals from
oxygenated tertiary carbon atoms. Current advances in the prediction of NMR shielding constants
employing quantum mechanical calculations have provided alternative tools to clarify the ambiguities
in the course of structure determination [31,32]. For instance, the structure of conicasterol F, bearing a
tetra-substituted epoxide at C-8 and C-14, was deduced from GIAO calculations of 13C NMR chemical
shifts and DFT-calculated ROE-distances [26].

As a part of our ongoing research to isolate bioactive and structurally interesting natural products,
we investigated the metabolites of T. swinhoei, collected from the Bohol province in Philippines and
identified eight novel theonellasterol analogs 1–8 (Figure 1), one artifact 9, and six known sterols
11–16 (Figure S2, Supporting Information). Herein, we report the structural assignments highlighted
with DFT calculations to provide a rationale for the unusual chemical behaviors of oxygenated
4-exo-methylene sterols. The structure of 8α-hydroxy-14,15-β-epoxytheonellasterol (5) was deduced
using GIAO chemical shift calculations. In addition, the structure of 7α-hydroxytheonellasterol (6),
determined by Faulkner and Qureshi in 2000 [28], was reevaluated due to significant discrepancies
between the reported 13C NMR chemical shifts and the spectroscopic data obtained in this study.
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Figure 1. Structures of 1–8.

2. Results and Discussion

A total of eight new oxygenated theonellasterols 1–8 were obtained from the hexane extract
of T. Swinhoei. Theonellasterol-5,8-oxide (1) was isolated as a colorless oil. Its molecular formula
was determined to be C30H48O3 by HRESIMS (m/z [M + Na]+ 479.3485, calcd 479.3501), indicating
seven degrees of unsaturation. Inspection of the 1H and 13C NMR data, including correlations
from the HSQC spectrum, provided sufficient information to propose a theonellasterol-type skeleton:
two quaternary sp2 carbon atoms (δC 152.6, 150.6), an sp2 methylene (δC 111.2, δH 5.13, 5.59),
an oxymethine (δC 69.8, δH 4.64), two singlet methyl (δC 20.1/δH 0.68, δC 19.0/δH 0.92), three doublet
methyl (δC 20.0/δH 0.90, δC 19.6/δH 0.88, δC 19.6/δH 0.98), and one triplet methyl (δC 12.9, δH 0.93) groups.
Additionally, an sp2 methine (δC 116.8, δH 5.80) and two oxygenated tertiary carbons (δC 91.9, 86.8)
were detected as characteristics of compound 1, suggesting identification of a new analog. While the
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exocyclic 4,4-di-substituted 44,30-olefin and endocyclic tetra-substituted olefin at 48,14 or 48,9 were
known to be structural features of theonellasterols, the sp2 methine in 1 indicated the presence of an
endocyclic tri-substituted olefin that may be generated by an isomerization or rearrangement of the
tetra-substituted olefin. Moreover, the additional oxygenated tertiary carbons and a higher degree of
hydrogen deficiency (DBE = 7) compared to theonellasterol A (DBE = 6) indicated the existence of an
oxygenated theonellasterol framework bearing an additional ring [33,34].

HMBC correlations from CH3-19 (δH 0.68)/H2-30 (δH 5.59, 5.13)/H2-6 (δH 1.77, 1.33) to δC 91.9 and
from H-9 (δH 1.59)/H2-11 (δH 1.33, 2H) to δC 86.8 corresponded to the oxygenated tertiary carbon at
C-5 and C-8, respectively. The carbon-carbon connectivity for the B-ring was determined by HMBC
correlations from H2-7 (δH 1.86, 1.43) to C-9 (δC 58.3)/C-6 (δC 30.6), from H2-6 (δH 1.77, 1.33) to C-4
(δC 150.6)/C-5 (δC 91.9)/C-10 (δC 44.2), and from H-9 to C-1 (δC 37.8)/C-7 (δC 31.5)/C-10 (δC 44.2).
The sp2 methine (δC 116.8, δH 5.80) was located at C-15 to form the 414,15-olefin, as evident from the
1H-1H COSY cross peak for H-15–H2-16–H-17 and the HMBC correlations from CH3-18 (δH 0.92)/H2-12
(δH 1.93, 1.23)/H2-16 (δH 2.36, 2.01) to C-14 (δC 152.6). Since the carbon framework of 1 turned out to
be identical to those of theonellasterols, a covalent bond between the two oxygen atoms at C-5 and
C-8 was speculated to fulfill the hydrogen deficiency. The relative configuration of the [2,2,2]-bicyclic
B-ring, including those of the consecutive stereocenters at C-13, C-17, and C-20, was determined by
NOESY cross peaks between CH3-19 and H-6β (δH 1.77)/H-7β (δH 1.86) and between CH3-18 and
H-7β/H-20 (δH 1.59) (Figure 2). The absolute configuration of 1, including the configuration of C-24,
was deduced to be (3S,5S,8R,9R,10R,13R,17R,20R,24S), considering its biosynthetic correlation with
other theonellasterol analogs. Assignment of the 24S configuration using the δH-26-δH-27 values is
discussed later in this article.
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Figure 2. Optimized structures of 1 (a) and 2 (b) at the mPW1PW91/6-31G* level of theory and key
NOESY correlations (arrows).

8β-Hydroxytheonellasterol (2) was obtained as a colorless oil. Its molecular formula was
determined to be C30H50O2 by HRFABMS (m/z [M −H2O + H]+ 425.3780, calcd 425.3783), indicating six
degrees of unsaturation. The 1H and 13C NMR data (Tables S1 and S2, Supporting Information)
suggested that compounds 1 and 2 had most of the characteristics in common; however, only one
oxygenated tertiary carbon (δC 83.5) was detected. The oxygenated tertiary carbon exhibited correlations
with H-7 (δH 2.67, 1.20)/H-15 (δH 5.52) in the HMBC spectrum to be assigned at C-8. The endocyclic
olefin was positioned at 414,15, based on the interpretation of HMBC correlations from CH3-18 (δH 1.11)
to C-14 (δC 151.2) and from H-15 (δH 5.52) to C-8/C-13 (δC 47.7)/C-14, as well as a spin system for
H-15–H-16–H-17 in the 1H-1H COSY spectrum. Careful inspection of the 1H NMR spectrum and the
NOESY spectrum revealed that the axial H-11β (δH 1.82) and H-6β (δH 1.89) were more deshielded
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than equatorial H-11α (δH 1.30) and H-6α (δH 1.44) (Figure 2). Additionally, axially oriented CH3-18
and CH3-19 (δH 0.97) were shifted downfield compared to those in the reported theonellasterols [25].
These features accounted for the β-orientation of the hydroxyl group at C-8, initiating additional
1,3-diaxial interactions [35,36].

15β-Hydroxytheonellasterol (3) was isolated as a colorless oil. Its molecular formula was
determined to be C30H50O2 by HRESIMS (m/z [M − H2O + H]+ 425.3789, calcd 425.3783). The 1D
and 2D NMR spectra of 3 were almost identical to those of theonellasterol A. However, an additional
oxymethine (δC 70.3, δH 4.64) was detected, of which the location was assigned as C-15 by HMBC
correlations from δH 4.64 to C-13 (δC 43.8)/C-17 (δC 54.2) and from H2-16 (δH 1.95, 1.60) to δC 70.3.
The β-orientation of the hydroxyl group at C-15 was established from the NOESY correlation between
H-15 and H-17 (δH 1.60).

8α-Hydroxytheonellasterol (4) was obtained as a chemically labile compound, and reliable HRMS
data could not be obtained. However, the 1D and 2D NMR spectra of 4 suggested the presence of
an oxygenated theonellasterol scaffold bearing an oxygenated tertiary carbon (δC 86.6) and an sp2

methine (δC 123.2, δH 5.61). HMBC correlations from H2-6 (δH 1.54)/H-9 (δH 2.27) to the carbon at
δC 86.6 and from the proton at δH 5.61 to C-13 (δC 48.0)/C-16 (δC 35.2)/C-17 (δC 60.0) revealed that
the oxygenated tertiary carbon and the sp2 methine group were located to C-8 and C-15, respectively.
This further suggested that 4 was the C-8 epimer of 8β-hydroxytheonellasterol (2). For this case, the extra
1,3-diaxial interaction, which was observed in the case of 2, was undetectable from H2-6 (δH 1.67, 1.54),
H2-11 (δH 1.49, 2H), CH3-18 (δH 0.83), and CH3-19 (δH 0.68), supporting the α-orientation of OH-8.
Instead, the 1H chemical shift of H-5 (δH 3.03) was further downfield compared to those of the reported
sterols [25], and H-7β (δH 1.76) exhibited NOESY correlations with Me-18 and Me-19. This phenomenon
could be rationalized using quantum mechanical calculations. Geometry optimization of 4 at the
mPW1PW91/6-31G* level of theory revealed a boat conformation for the B-ring to initiate 1,4-flagpole
interactions between H-5 and OH-8α (d = 2.18 Å), resulting in the downfield shift of H-5 (Figure 3).
Additionally, atomic distances from H-7 to H-18 and H-19 were measured as 2.07 Å and 3.91 Å,
respectively, which are close enough to exhibit NOESY correlations.
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Figure 3. The optimized structure of 4 at the mPW1PW91/6-31G* level of theory and the calculated
atomic distance between H-5 and OH-8.

Due to its labile nature, sterol 4 was entirely decomposed into a complex mixture of unidentifiable
compounds within several days. However, extended storage in benzene afforded an artifact as a
single compound (Figure 4). Its molecular formula was determined to be C30H50O2 by HRFABMS
(m/z [M −H2O + H]+ 425.3781, calcd 425.3783). The 1D and 2D NMR data were almost identical to those
of compound 3, except for the deshielded oxymethine (δC 84.4, δH 4.97). The oxymethine exhibited
a 1H-1H COSY cross peak with H2-16 (δH 1.49) and HMBC correlations with C-13 (δC 43.5)/C-14
(δC 141.1)/C-17 (δC 54.1) to be assigned at C-15. Based on the stereochemistry of 3, the artifact was
determined to be 15α-hydroxytheonellasterol (9), which was produced through an allylic 1,3-hydroxyl
migration of 4.
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Figure 4. (a) The spontaneous transformation of 8α-hydroxytheonellasterol (4) to an artifact,
15α-hydroxytheonellasterol (9). (b) Time dependent 1H NMR spectrum in C6D6 indicating
the transformation.

Calculation of transition state energy using the Linear Synchronous Transit (LST) method revealed
that the energy barrier for the transformation of 4 to 9 was only 0.6 kcal/mol, which can explain the
instability of 4 (Figure 5). The structure of the transition state (TS) was turned out to be almost identical
to that of 9. In the transition state, the B-ring was flipped to a chair-like conformation, bringing O-8
and sp2 C-15 (1.43 Å) in close proximity. The atomic distance between C-8 and O-8 in TS was measured
to be 3.09 Å, suggesting that the C-8–O-8 bond was actually broken before the TS to form a new C–O
bond at C-15. In addition, the C-8–C-14 bond length was estimated to be 1.34 Å, indicating olefin
migration from 414,15 to 48,14 (Figure S4, Supporting Information). Although 9 was slightly more
stable than 4 at rt (∆G◦ = −0.3 kcal/mol), the low activation energy and the formation of a more rigid
tetra-substituted olefin perhaps shifted the chemical equilibrium toward 9.

8α-Hydroxy-14,15-β-epoxy-theonellasterol (5) was isolated as an amorphous powder. Its molecular
formula was determined to be C30H50O3 (m/z [M + Na]+ 481.3659, calcd 481.3658) by HRESIMS,
indicating six degrees of unsaturation. The 1D and 2D NMR data of 5 revealed an oxygenated
theonellasterol framework bearing an additional oxymethine (δC 58.8, δH 3.33) and two oxygenated
tertiary carbons (δC 75.9, 71.3). In this case, only one olefin (δC 154.2, 103.3), corresponding to
4-exo-methylene, was found, indicating the presence of an additional ring to satisfy the unsaturation
index. HMBC correlations from H2-7 (δH 1.82, 1.60) to C-8 (δC 71.3), from H2-16 (δH 1.96, 0.93) to
C-14 (δC 75.9)/C-15 (δC 58.8), and from Me-18 (δH 0.71) to C-14 (δC 75.9) indicated the presence of a
1,2-epoxy alcohol moiety within the C-8–C-14–C-15. The upfield shift of C-15 oxymethine (δC 58.8) and
the unusual HMBC correlations from the hydroxyl peak at δH 3.47 to C-7 (δC 28.3)/C-8 (δC 71.3)/C-14
(δC 75.9) suggested the presence of an 8-hydroxy-14,15-epoxide subunit. Additionally, β-orientation
of the epoxide was assigned by the NOESY cross peak between H-17 (δH 1.41) and H-15 (Figure S3,
Supporting Information), and the downfield shift of H-5 (δH 3.35) was perhaps attributable to an
α-orientation of the C-8 hydroxyl group, similar to that of 8α-hydroxytheonellasterol (4).
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Figure 5. Free energy diagram for 1,3-hydroxyl migration in 8α-hydroxy-theonellasterol (4) to generate
15α-hydroxytheonellasterol (9). Geometry optimizations of compounds 4, 9, and the transition state
(TS) were performed at the mPW1PW91/6-31G* level of theory.

Due to the limited spectroscopic data for the 1,2-epoxy alcohol subunit of 5, GIAO NMR chemical
shift calculations were employed to support the assignments (Table 1). Although our observations
suggested the maximum possibility of the 14,15-epoxide isomers 5–I and 5–II, the formation of
8,14-epoxide isomers 5–III and 5–IV could not be ruled out. The 13C NMR chemical shift calculations
of the four sets of 8,14,15-isomers using the mPW1PW91/6-31G** level of theory and subsequent DP4+

analysis indicated 100% probability of 8α-hydroxy-14,15-β-epoxy-isomer 5–I [26]. The correlation
coefficient (R2) in the regression analysis of the experimental versus calculated 13C chemical shifts of 5–I
was calculated to be 0.9908, indicating that the structure assignment was highly reliable. As anticipated
from the downfield shift of H-5, the B-ring in the optimized structure adopted a boat conformation to
rationalize the downfield shift of H-5 by 1,4-flagpole interactions (Table S4, Supporting Information).

Compound 6 was isolated as a colorless needle-shaped solid. The molecular formula was
determined to be C30H50O2 by HRESIMS (m/z [M + Na]+ 465.3705, calcd 465.3709), indicating six
degrees of unsaturation. Comparison of the NMR spectra of 6 with the previously reported data
revealed an oxygenated theonellasterol-type framework bearing an additional oxymethine (δC 66.7,
δH 4.64). The HMBC correlation from H2-6 (δC 1.77, 1.59) to δC 66.7, as well as the 1H-1H COSY cross
peak between the protons at δH 4.64 and H2-6, suggested that the oxymethine was positioned at C-7.

Because the isolation of 7α-hydroxytheonellasterol was reported in 2000 by Faulkner and
Qureshi [28], compound 6 was initially considered to be 7β-hydroxytheonellasterol, as deduced
from the comparison of 1H and 13C chemical shifts (Figure 6a). However, a lack of NOESY signals
corresponding to H-7 led us to synthesize 3,7-dimethyl ether 10 from 6. Surprisingly, the NOESY data of
10 indicated a correlation between OMe-7 (δH 3.14) and H-9 (δH 2.29), supporting theα-orientation of the
C-7 hydroxyl group. In addition, methylation of swinhosterol C (11), known as 7α-OMe-theonellasterol,
afforded a compound that was spectroscopically identical to 10 (Figure 6b,c). Single crystal X-ray
diffraction of 6 further confirmed a 7α-hydroxytheonellasterol structure (Figure 7). Considering the
large differences in the 13C chemical shifts at C-6, C-7, C-8, and C-14, we speculate that the previously
reported compound is the 7β-epimer of 6.
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Table 1. Comparison of experimental 13C chemical shifts in C6D6 with calculated 13C shifts for
isomers I–IV.
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5-I 5-II 5-III 5-IV

C-7 28.3 31.7 35.5 31.8 30.9
C-8 71.3 72.4 74.2 63.4 65.0
C-9 55.3 51.6 55.1 47.2 50.0
C-13 42.5 45.7 47.3 43.3 42.5
C-14 75.9 76.4 75.1 80.0 72.0
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C-16 32.3 25.7 27.6 38.7 38.8
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R2 0.9908 0.9828 0.9772 0.9845

MAD a 1.38 1.91 2.30 1.64
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8β-Hydroxy-7α-formyl-B-northeonellasterol (7) was isolated as a colorless oil. Its molecular
formula was determined to be C30H50O3 by HRESIMS (m/z [M + Na]+ 481.3660, calcd 481.3658).
Analysis of the 1D and 2D NMR data of 7 revealed an oxygenated theonellasterol-like skeleton bearing
an aldehyde (δC 204.2, δH 9.75) and an additional oxygenated tertiary carbon (δC 87.2). Since the
aldehyde moiety is known as a unique feature of 8β-hydroxy-B-norconicasta-6α-aldehyde among the
sterols isolated from T. swinhoei [37], the 6/5/6/5-fused cyclic backbone of 7 was assigned by comparing
the NMR data. Compound 7 could be differentiated from 8β-hydroxy-B-norconicasta-6α-aldehyde
in the ethyl substituent at C-24, which was assigned based on the HMBC correlations from a triplet
methyl group (δH 0.95) to C-24 (δC 46.9)/C-28 (δC 23.8).

28-Homoswinhoeisterol (8) was isolated as a yellow oil. The molecular formula was determined
to be C30H48O2 by HRESIMS (m/z [M + Na]+ 465.3549, calcd 463.3552). The IR spectrum of 8 clearly
indicated the presence of a hydroxyl group (3343 cm−1) and a ketone group (1593 cm−1). The features
of the IR and NMR spectra of this compound were almost identical to those of swinhoeisterol A.
The only difference was found in the triplet methyl group (δH 0.84), which was involved in a spin
system for H-24–H2-28–CH3-29, as evident from the 1H-1H COSY spectrum. This suggested that
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the ethyl group was located at C-24. In addition, the plausible biogenetic pathway reported by
Zhang et al. [21] indicated that compound 8 could be originated from swinhosterol A through an
intramolecular aldol-type reaction, which strongly suggested that the absolute configuration of 8 is
(3S,5R,7R,10S,13R,17R,20R,24S). To date, 28-homoswinhoiesterol (8) is the only 6/6/5/7-fused cyclic
sterol derived from C30 sterols such as theonellasterol A and swinhosterol A.

Generally, the 24S configurations of 24-ethyl-sterol analogs are deduced from the 13C chemical
shift differences between CH3-26 and CH3-27 [38]. However, the differences for compounds 2 (0.6 ppm),
5 (0.7 ppm), and 7 (0.8 ppm) were not significant enough for determining the configuration of C-24,
and hence, a complementary method was required for the assignment. To establish a universal database
using 1H NMR data, the absolute values of δH-26-δH-27 were obtained from the sets of sterol-type
compounds bearing a (21R,24R) or (21R,24S)-21,26-dimethyl-24-ethylhexane side chain (Table S11,
Supporting Information). Values calculated for the (21R,24R)-set were higher than 0.04 ppm, whereas
those for the (21R,24S)-set were smaller than 0.04 ppm. The validity of our database was evaluated
using six known 24S-ethyl-sterols isolated in this study: theonellasterol A (12), E (13), G (14), and K
(15); swinhosterol A (16) and C (11). In all the cases, the differences were smaller than 0.03 ppm
to prove the reliability of the database. Further, this method was extended to the new compounds
1–8. The differences for all of them were in the desirable range (<0.03 ppm), confirming their 24S
configuration (Figure S8, Supporting Information).

With the theonellasterol analogs in hand, their anti-inflammatory activities were investigated
using the murine macrophage RAW264.7 cells. Treatment with lipopolysaccharide (LPS) in RAW264.7
macrophages stimulates secretion of pro-inflammatory cytokines, including interleukin-6 (IL-6).
Levels of IL-6 secreted by the cells were quantified by the enzyme-linked immunosorbent assay (ELISA)
method. Unfortunately, useful levels of biological properties for the new oxygenated theonellasterols
(1–9) were unidentified. However, theonellasterol G (14) showed a moderate anti-inflammatory activity
with an IC50 of 4.4 µg/mL (9.2 µM), and theonellasterol K (15) exhibited a weak anti-inflammatory
activity with an IC50 of 16.7 µg/mL (35.2 µM) (Figure 8).
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Figure 8. Anti-inflammatory effect of (a) theonellasterol G (14) and (b) theonellasterol K (15). RAW264.7
cells were pre-treated with indicated concentrations of theonellasterols for 3 h, followed by treatment
with 5 ng/mL of lipopolysaccharide (LPS). After 24 h of incubation, secreted interleukin-6 (IL-6) levels
were determined as described in Experimental section. Data are presented as mean± standard deviation
(n = 4). Statistical analysis was performed using one-way analysis of variance with Dunnett’s post-hoc
analysis. * p < 0.05; *** p < 0.001 vs. LPS-stimulated group.
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3. Materials and Methods

3.1. General Experimental Procedures

Specific optical rotations were obtained on a Rudolph Research Analytical (Autopol III) polarimeter
(Rudolph Research Analytical, Hackettstown, NJ, USA). IR spectra were recorded on a JASCO
FT/IR-4100 spectrophotometer (JASCO Corporation, Tokyo, Japan). The 1D (1H and 13C) and 2D
(COSY, HSQC, HMBC, and NOESY) NMR spectra were taken in C6D6 or CDCl3 using Bruker 600 MHz
spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) at 297.1 K. 1H NMR spectra were
collected after 64 scans, and 13C NMR spectra were collected at a range of 10,000~15,000 scans
depending on the sample concentrations. The mixing time for NOESY experiments was set as 0.3 s.
Chemical shifts are reported in parts per million relative to C6D6 (δH 7.16, δC 128.4) and CDCl3 (δH 7.26,
δC 77.1). High resolution mass-spectra were obtained on a Waters Q-TOF spectrometer (Waters
Corporation, Milford, MA, USA) equipped with an ESI source and a JEOL JMS-700 spectrometer (JEOL
Ltd., Tokyo, Japan) with an FAB Source at Korea Basic Science Institute (KBSI) (Seoul, Republic of Korea).
MPLC was performed using the TELEDYNE ISCO CombiFlash Companion with the TELEDYNE ISCO
RediSep Normal-phase Silica Flash Column (Teledyne ISCO, Lincoln, NE, USA). HPLC was performed
on a PrimeLine Binary pump (Analytical Scientific Instruments, Inc., El Sobrante, CA, USA) utilizing
Silica columns (YMC-Pack Silica, 250 × 10 mm I.D. or 250 × 4.6 mm I.D., 5 µm; YMC Co. Ltd., Kyoto,
Japan), the Shodex RI-101 (Shoko Scientific Co. Ltd., Yokohama, Japan), or the UV-M201.

3.2. Biological Material

The biological material was collected in March 2016 from the Bohol province in Philippines
(9◦43′31.86” N, 124◦32′35.57” E) at a depth of 15 m using scuba diving. The sponge was kept
frozen at −20 ◦C until identified as Theonella swinhoei and chemically analyzed. A voucher sample
(163PIL-102) has been stored at the marine biotechnology center, Korea Institute of Ocean Science
& Technology (KIOST).

3.3. Extraction and Isolation

The specimen (wet wt. 1.8 kg) was lyophilized and extracted with MeOH (2.5 L × 3) and CH2Cl2
(2.5 L × 3) repeatedly at room temperature. The extracts were combined and then concentrated under
reduced pressure. The residue was partitioned with n-butanol (7.0 L) and water (5.0 L) to yield 55.43 g
of organic soluble material. The n-butanol layer was further partitioned between n-hexane (2.0 L) and
15% aqueous methanol (2.0 L). The hexane fraction was concentrated and subjected to flash column
chromatography over SiO2 (0.040–0.063 mm, 230–400 mesh) with a stepwise gradient solvent system
(100%, 93.7%, 90%, 83%, 80%, 75%, 50% hexane/EtOAc, 100% EtOAc).

The 90% and 83% hexane fractions were combined (3.22 g) and separated using MPLC on SiO2 with
a gradient solvent system from 100% hexane to 100% EtOAc over 40 min to afford seven subfractions
(based on TLC analysis). The third subfraction gave theonellasterol A (12) (1.00 g) as a pure compound
without further purification. The sixth subfraction was separated using HPLC (hexane/EtOAc = 5/1) to
yield compounds 2 (8.9 mg, tR = 26 min) and 1 (3.5 mg, tR = 28 min).

The 80% hexane fraction (273.4 mg) was directly separated using HPLC (hexane/EtOAc = 4/1)
to yield compound 8 (31.4 mg, tR = 21 min) and compound 5 (1.2 mg, tR = 26 min). The 75% and
50% hexane fractions were combined (786.0 mg) and separated using MPLC on SiO2 with a gradient
solvent system from 100% hexane to 100% EtOAc over 40 min to afford six subfractions (based on TLC
analysis). The third subfraction (200.0 mg) was separated using HPLC (hexane/acetone = 6/1) to yield
swinhosterol C (11) (1.7 mg, tR = 17 min), 4 (1.2 mg, tR = 20 min), and theonellasterol K (15) (30.3 mg,
tR = 24 min). The fourth subfraction (57.2 mg) was separated using HPLC (CH2Cl2/MeOH = 100/1) to
yield swinhosterol A (16) (12.0 mg, tR = 26 min), 7 (1.6 mg, tR = 28 min), and 3 (3.5 mg, tR = 52 min).
The fifth subfraction (72.9 mg) was separated using HPLC (hexane/acetone = 6/1) to yield 6 (3.1 mg,
tR = 30 min), and theonellasterol G (14) (5.9 mg, tR = 52 min).
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The 100% EtOAc fraction (372.3 mg) was separated using MPLC with a gradient solvent system
from 70% hexane to 100% EtOAc to afford four subfractions (based on TLC analysis). The fourth
subfraction (78.1 mg) was separated using HPLC (hexane/acetone = 4/1) to yield theonellasterol E (13)
(5.0 mg, tR = 40 min).

Theonellasterol-5,8-oxide (1): colorless oil; [α]25
D + 20.0 (c 0.1, MeOH); IR (ATR) νmax 3417, 2957, 2851,

1738, 1455, 1027 cm−1; 1H NMR and 13C NMR, see Tables S1 and S2, Supporting Information; HRESIMS
m/z 479.3485 [M + Na]+ (calcd for C30H48O3Na, 479.3501).

8β-Hydroxytheonellasterol (2): colorless oil; [α]25
D + 20.0 (c 0.1, MeOH); IR (ATR) νmax 3353, 2929,

1751, 1489, 1410, 1101 cm−1; 1H NMR and 13C NMR, see Tables S1 and S2, Supporting Information;
HRFABMS m/z 425.3780 [M − H2O + H]+ (calcd for C30H49O, 425.3783).

15β-Hydroxytheonellasterol (3): colorless oil; [α]25
D + 40.0 (c 0.1, MeOH); IR (ATR) νmax 3345, 2963, 2938,

2871, 1711, 1379, 1039 cm−1; 1H NMR and 13C NMR, see Table S1 and S2, Supporting Information;
HRESIMS m/z 425.3789 [M − H2O + H]+ (calcd for C30H49O, 425.3783).

8α-Hydroxytheonellasterol (4): colorless oil; 1H NMR and 13C NMR, see Tables S1 and S2,
Supporting Information.

8α-Hydroxy-14,15-β-epoxy-theonellasterol (5): amorphous powder; [α]25
D + 30.0 (c 0.1, MeOH); IR (ATR)

νmax 3567, 2954, 2929, 2861, 1727, 1377, 1254, 1035 cm−1; 1H NMR and 13C NMR, see Table S1 and S2,
Supporting Information; HRESIMS m/z 481.3659 [M + Na]+ (calcd for C30H50O3Na, 481.3658).

7α-Hydroxytheonellasterol (6): colorless needle-shaped solid; [α]25
D + 6.67 (c 0.1, MeOH); IR (ATR)

νmax 3359, 2929, 1416, 1333, 1100 cm−1; 1H NMR and 13C NMR, see Tables S1 and S2, Supporting
Information; HRESIMS m/z 465.3705 [M + Na]+ (calcd for C30H50O2Na, 465.3709).

8β-Hydroxy-7α-formyl-B-northeonellasterol (7): colorless oil; [α]25
D + 40.0 (c 0.1, MeOH); IR (ATR)

νmax 3434, 2933, 2865, 1710, 1458, 1374, 1031 cm−1; 1H NMR and 13C NMR, see Tables S1 and S2,
Supporting Information; HRESIMS m/z 481.3660 [M + Na]+ (calcd for C30H50O3Na, 481.3658).

28-Homoswinhoeisterol (8): yellow oil; [α]25
D + 100.0 (c 0.58, CHCl3); IR (ATR) νmax 3343, 2936, 1593,

1458, 1413, 1120, 1042 cm−1; 1H NMR and 13C NMR, see Table S1 and S2, Supporting Information;
HRESIMS m/z 465.3549 [M + Na]+ (calcd for C30H48O2Na, 463.3552).

15α-Hydroxytheonellasterol (9): colorless oil; [α]25
D + 76.6 (c 0.1, MeOH); IR (ATR) νmax 3367, 2961, 2925,

2872, 1702, 1458, 1381 cm−1; 1H NMR and 13C NMR, see Tables S1 and S2, Supporting Information;
HRFABMS m/z 425.3781 [M − H2O + H]+ (calcd for C30H49O, 425.3783).

Theonellastrol-3,7-dimethyl ether (10): white powder; [α]25
D + 23.33 (c, 0.1, MeOH); IR (ATR) νmax 2957,

2953, 2872, 2353, 1593, 1102 cm−1; 1H NMR and 13C NMR, see Supporting Information; HRESIMS m/z
493.4009 [M + Na]+ (calcd for C32H54O2Na, 493.4016).

3.4. 13C Chemical Shift Calculations

The conformational searches were performed using the Macromodel software (Maestro Materials
Science 3.7.013 based on Maestro Core 12.3.013, MMshare Version 4.9.013, Release 2020-1, Platform
Windows-x64; New York, NY, USA). The conformers within an energy threshold of 5 kJ/mol were
optimized employing DFT calculations at the mPW91PW1/6-3lG* level of theory to estimate gas
phase energies and Gibbs free energies. All of the optimizations were performed at “fine” grid
density and “ultrafine” accuracy level. The structure that has the lowest gas phase energy was
selected, and NMR shielding constants were calculated with the mPW91PW1/6-3lG**/CPCM benzene
basis set. The calculated 13C chemical shifts of compounds 5–I–IV were referenced to the 13C
chemical shift of tetramethylsilane (TMS), computed with the same level of theory (for the details,
see Supporting Information).
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3.5. IL-6 Assay

The murine macrophage RAW264.7 cells were obtained from Dong Hyun Sohn, Pusan National
University, Yangsan, South Korea. The RAW264.7 cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and antibiotics. For determining
interleukin-6 (IL-6) production, RAW264.7 cells were pre-treated with eight new sterols (1–3, 5–9) and
six known sterols (11–16) at various concentrations for 3 h, and then were incubated with or without
5 ng/mL of lipopolysaccharide (LPS; eBioscience, San Diego, CA, USA). After 24 h of incubation,
the supernatant was collected and subjected to enzyme-linked immunosorbent assay (ELISA). The levels
of IL-6 were measured by using mouse IL-6 Quantikine ELISA kit (R&D systems, Minneapolis, MN,
USA) according to the manufacturer’s instructions.

4. Conclusions

A total of eight new oxygenated 4-exo-methylene sterols 1–8 and six known sterols (11–16)
were isolated from T. swinhoei. The C-7 stereochemistry of the reported 7α-hydroxytheonellasterol
has been revised based on the outcome of a series of chemical modifications and the X-ray
crystallography data of 6. The stereo and regiochemistry of the 1,2-epoxyalcohol moiety in
8α-hydroxy-14,15-β-epoxy-theonellasterol (5) was determined by GIAO chemical shift calculations.
The reaction pathway for the 1,3-hydroxyl migration of 4 was calculated using quantum mechanical
calculations to explain the observed reaction spontaneity. In addition, the unusual downfield
shifts observed for H-5 in compounds 4 and 5 were rationalized through geometry optimizations,
which indicated the presence of an 8α-hydroxyl group in 6/6/6/5-fused cyclic sterols.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/12/607/s1,
Supporting Information I; I. Experimental procedure, II. Computational methods, III. Determination of the C-24
configuration, IV. X-ray crystallography data; Supporting Information II; Figures SII-1–SII-57: 1H NMR, 13C NMR,
COSY, HSQC, HMBC, NOESY spectra of 1–10; CIF file for 6.
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