Antibacterial Cyclic Tripeptides from Antarctica-Sponge-Derived Fungus *Aspergillus insulicola* HDN151418

Chunxiao Sun ¹, Ziping Zhang ¹, Zilin Ren ¹, Liu Yu ¹, Huan Zhou ¹, Yaxin Han ¹, Mudassir Shah ¹, Qian Che ¹, Guojian Zhang ^{1,2}, Dehai Li ^{1,2,3,*}, and Tianjiao Zhu ^{1,*}

- ¹ Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- ² Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
- ³ Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
- * Correspondence: dehaili@ouc.edu.cn (D.L.); Tel.: 0086-532-82031619; zhutj@ouc.edu.cn (T.Z.); Tel.: 0086-532-82031632

Table of Contents

Figure S1. Structures of aspochracin-type cyclic tripeptides.	3
Figure S2. HPLC analysis of the crude of Aspergillus insulicola HDN151418	3
Figure S3. The 18S rRNA sequences data of Aspergillus insulicola HDN151418	4
Figure S4. ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆) spectrum of compound 1	4
Figure S5. ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆) spectrum of compound 1	5
Figure S6. DEPT (125 MHz, DMSO- <i>d</i> ₆) spectrum of compound 1	5
Figure S7. ¹ H- ¹ H COSY spectrum of compound 1.	6
Figure S8. HSQC spectrum of compound 1.	6
Figure S9. ¹ H- ¹³ C HMBC spectrum of compound 1	7
Figure S10. NOESY spectrum of compound 1.	7
Figure S11. HRESIMS spectrum of compound 1	8
Figure S12. IR spectrum of compound 1	8
Figure S13. ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) spectrum of compound 2	9
Figure S14. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 2	9
Figure S15. DEPT (150 MHz, DMSO- <i>d</i> ₆) spectrum of compound 2	10
Figure S16. ¹ H- ¹ H COSY spectrum of compound 2	10
Figure S17. HSQC spectrum of compound 2.	11
Figure S18. ¹ H- ¹³ C HMBC spectrum of compound 2.	11
Figure S19. NOESY spectrum of compound 2.	12
Figure S20. HRESIMS spectrum of compound 2.	12
Figure S21. IR spectrum of compound 2	13
Figure S22. ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3	13
Figure S23. ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectrum of compound 3	14
Figure S24. ¹ H- ¹ H COSY spectrum of compound 3.	14
Figure S25. HSQC spectrum of compound 3.	15
Figure S26. ¹ H- ¹³ C HMBC spectrum of compound 3.	15
Figure S27. NOESY spectrum of compound 3.	16
Figure S28. HRESIMS spectrum of compound 3.	16
Figure S29. IR spectrum of compound 3	17
Table S1. ¹ H NMR (400 MHz) spectroscopic data for compound 4.	17
Figure S30. ¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 4	18
Figure S31. ¹ H NMR (400 MHz, DMSO- d_6) spectrum of compound 4	18
Figure S32. ¹³ C NMR (150 MHz, DMSO- d_6) spectrum of compound 4	19
Figure S33. ¹ H- ¹ H COSY spectrum of compound 4.	19
Figure S34. HSQC spectrum of compound 4.	20
Figure S35. ¹ H- ¹³ C HMBC spectrum of compound 4.	20
Figure S36. NOESY spectrum of compound 4.	21
Figure S37. HRESIMS spectrum of compound 4.	21
Figure S38. IR spectrum of compound 4	22
Figure S39. ¹ H NMR (400 MHz, DMSO- d_6) spectrum of <i>R</i> -MPA ester of 4 (4g)	22
Figure S40. ¹ H NMR (400 MHz, DMSO- d_6) spectrum of S-MPA ester of 4 (4h)	23
Figure S41. ECD spectra of 3, 4A.	23
Figure S42. HSQMBC spectrum of 3	24

Table S2.	H NMR parameters of 1-4	1
Table S3.	³ C NMR parameters of 1-4	5

Figure S1. Structures of aspochracin-type cyclic tripeptides.

Figure S2. HPLC analysis of the crude of Aspergillus insulicola HDN151418.

Figure S3. The 18S rRNA sequences data of Aspergillus insulicola HDN151418.

Figure S4. ¹H NMR (500 MHz, DMSO- d_6) spectrum of compound 1.

Figure S5. ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of compound 1.

Figure S6. DEPT (125 MHz, DMSO-*d*₆) spectrum of compound 1.

Figure S7. ¹H-¹H COSY (500 MHz, DMSO-*d*₆) spectrum of compound **1**.

Figure S8. HSQC (500 MHz, DMSO-*d*₆) spectrum of compound 1.

Figure S9. ¹H-¹³C HMBC (500 MHz, DMSO-*d*₆) spectrum of compound 1.

Figure S10. NOESY (500 MHz, DMSO-*d*₆) spectrum of compound 1.

Figure S11. HRESIMS spectrum of compound 1.

Figure S12. IR spectrum of compound 1.

Figure S13. ¹H NMR (400 MHz, DMSO- d_6) spectrum of compound 2.

Figure S14. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of compound 2.

Figure S16. ¹H-¹H COSY (600 MHz, DMSO-*d*₆) spectrum of compound 2.

Figure S17. HSQC (600 MHz, DMSO-*d*₆) spectrum of compound 2.

Figure S18. ¹H-¹³C HMBC (600 MHz, DMSO- d_6) spectrum of compound 2.

Figure S19. NOESY (500 MHz, DMSO-*d*₆) spectrum of compound **2**.

Figure S20. HRESIMS spectrum of compound 2.

Figure S21. IR spectrum of compound 2.

Figure S22. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3.

Figure S23. ¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of compound 3.

Figure S24. ¹H-¹H COSY (400 MHz, DMSO- d_6) spectrum of compound 3.

Figure S25. HSQC (400 MHz, DMSO-*d*₆) spectrum of compound 3.

Figure S26. ¹H-¹³C HMBC (400 MHz, DMSO-*d*₆) spectrum of compound **3**.

Figure S27. NOESY (400 MHz, DMSO-*d*₆) spectrum of compound 3.

3 f1 (ppm) -5 -6 -7 -8 9 5.0 4.5 f2 (ppm) 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S28. HRESIMS spectrum of compound 3.

Figure S29. IR spectrum of compound 3.

 Table S1. ¹H NMR (400 MHz) spectroscopic data for compound 4.

No.	Sclerotiotide L [1]	4 ^{<i>a</i>}	4 ^b			
2	4.59, q (7.1)	4.59, q (7.1)	4.51, q (7.0)			
3	1.51, d (7.1)	1.51, d (7.1)	1.39, d (7.0)			
N-CH ₃	3.06, s	3.06, s	2.85, s			
5	5.11, d (10.5)	5.12, d (10.5)	4.99, d (10.3)			
6	2.43, m	2.43, m	2.23, m			
7	0.74, d (6.8)	0.74, d (6.8)	0.65, d (6.7)			
8	0.92, d (6.3)	0.92, d (6.3)	0.81, d (6.3)			
N-CH ₃	2.95, s	2.95, s	2.85, s			
10	4.98, t (7.2)	4.98, t (7.3)	4.73, t (7.7)			
NH/N-CH ₃	6.53, d (7.2)	6.54, d (7.3)	8.19, d (7.7)			
11	1.60, m	1.60, m	1.67, ov.			
	2.39, m	2.39, m	1.97, m			
12	1.57, m	1.58, m	1.48, m			
	1.66, m	1.66, m	1.66, m			
13	3.06, m	3.05, m	2.87, ov.			
	3.38, m	3.38, m	3.04, m			
NH/N-CH ₃	5.68, brs	5.68, brs	7.50, t (6.0)			
2'	5.92, d (15.0)	5.92, d (15.0)	6.21, d (15.2)			
3'	7.23, dd (15.0, 10.8)	7.24, dd (15.0, 10.8)	7.03, dd (15.1, 11.1)			
4'	6.36, dd (15.4, 11.0)	6.36, dd (15.4, 11.0)	6.30, dd (15.3, 11.1)			
5'	6.00, dd (15.4, 7.8)	6.00, dd (15.4, 7.8)	5.97, dd (15.3, 7.4)			
6'	3.62, dd (7.8, 3.7)	3.62, dd (7.8, 3.7)	3.49, dd (7.4, 4.9)			
7'	3.90, dd (6.5, 3.7)	3.90, dd (6.5, 3.7)	3.61, m			
8'	1.12, d (6.5)	1.12, d (6.5)	1.02, d (6.3)			
9'	3.32, s	3.32, s	3.21, s			
^{<i>a</i>} Recorded in CDCl ₃ . ^{<i>b</i>} Recorded in DMSO- d_6 .						

Figure S30. ¹H NMR (400 MHz, CDCl₃) spectrum of compound 4.

Figure S31. ¹H NMR (400 MHz, DMSO- d_6) spectrum of compound 4.

Figure S32. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of compound 4.

Figure S33. ¹H-¹H COSY (600 MHz, DMSO-*d*₆) spectrum of compound 4.

Figure S34. HSQC (600 MHz, DMSO-*d*₆) spectrum of compound 4.

Figure S35. ¹H-¹³C HMBC (600 MHz, DMSO-*d*₆) spectrum of compound 4.

Figure S36. NOESY (600 MHz, DMSO-*d*₆) spectrum of compound 4.

Figure S37. HRESIMS spectrum of compound 4.

Figure S38. IR spectrum of compound 4.

Figure S39. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of *R*-MPA ester of 4 (4g).

Figure S40. ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of *S*-MPA ester of 4 (4h).

Figure S41. ECD spectra of 3, 4A.

Figure S42. HSQMBC (400 MHz, DMSO-*d*₆) spectrum of 3.

Table S2. ¹H NMR parameters of 1-4.

No.	1	2	3	$4(DMSO-d_6)$	4(CDCl ₃)
Dete Eile Norre	SCX-S-1-30-3-	SCX-S-1-50-	SCX-S-1-30-1-	SCX-S-1-35-1-	SCX-S-1-35-1-
Data File Name	2	2-1-4-2	1-2	2-2	2-2
		Bruker	Bruker	Bruker	Bruker
Origin	Varian	BioSpin	BioSpin	BioSpin	BioSpin
		GmbH	GmbH	GmbH	GmbH
Instrument	vnmrs	Avance	Avance	Avance	Avance
Solvent	DMSO-d6	DMSO-d ₆	DMSO-d6	DMSO-d6	CDCl ₃
Temperature	298.2	296	297.6	297.6	297.4
Pulse Program	s2pul	zg30	zg30	zg30	zg30
Experiment	1D	1D	1D	1D	1D
	OneProbe	Z163739_008	Z163739_0084	Z163739_0084	Z163739_0084
Duch		4 (PI HR-400-	(PI HR-400-	(PI HR-400-	(PI HR-400-
Probe		S1-BBF/H/	S1-BBF/ H/ D-	S1-BBF/ H/ D-	S1-BBF/ H/ D-
		D-5.0-Z SP)	5.0-Z SP)	5.0-Z SP)	5.0-Z SP)
Number of	22	1(1(22	1(
Scans	32	16	16	32	16
Receiver Gain	54	101	101	101	101

Relaxation Delay	1	1	1	1	1
Pulse duration	3.75	8	8	8	8
Acquisition Time	2.0447	3.9977	3.9977	3.9977	3.9977
Acquisition	2019-08-	2019-12-	2020-08-	2019-09-	2020-07-
Date	09T13:29:52	07T12:13:17	24T18:09:42	26T23:42:25	27T21:35:02
Modification	2019-08-	2019-12-	2020-08-	2019-09-	2020-07-
Date	09T13:31:34	07T12:12:56	24T18:09:52	26T23:42:08	27T21:34:12
Spectrometer Frequency	499.82	400.13	400.13	400.13	400.13
Spectral Width	8012.8	8196.7	8196.7	8196.7	8196.7
Lowest Frequency	-1007.5	-1629.5	-1629.2	-1627.6	-1636.1
Nucleus	1H	1H	1H	1H	1H
Acquired Size	16384	32768	32768	32768	32768
Spectral Size	65536	65536	65536	65536	65536

 Table S3. ¹³C NMR parameters of 1-4.

No.	1	2	3	4	
Transfer	SCX-S-1-30-3-2	CCX C 1 50 0 1 4 0		SCX-S-1-35-	
Topic		SCX-S-1-50-2-1-4-2	SCX-5-1-30-1-1-2	1-2-2	
Origin	Varian	JEOL	Bruker BioSpin GmbH	JEOL	
Instrument	vnmrs	ECA	Avance	ECA	
Solvent	DMSO-d6	DMSO-d6	DMSO-d6	DMSO-d6	
Temperature	298.2	295.3	298.3	295.3	
Pulse Program	s2pul	carbon.jxp	zgpg30	carbon.jxp	
Experiment	1D	1D	1D	1D	
			Z163739_0084 (PI HR-		
Probe	OneProbe	2756	400-S1-BBF/ H/ D-5.0-Z	2756	
			SP)		
Number of	12804	7714	2500	E000	
Scans	12804	//14	2500	5000	
Receiver Gain	30	36	21.2	36	
Relaxation	1	2	2	2	
Delay	1	2	2	Z	
Pulse duration	4.75	3.2083	8	3.2083	
Acquisition	1.0497	0 (021	1 27(2	0 (021	
Time	1.0486	0.6921	1.3/63	0.6921	
Acquisition	2019-08-	2010 12 22701.25 20	2020 08 26 202.50 44	2019-10-	
Date	22T03:25:58	2019-12-23101:25:30	2020-08-26102:59:44	05T08:02:37	

Modification	2019-08-	2010 12 24710 52 40		2019-10-
Date	22T10:43:56	2019-12-24110:52:49	2020-08-26102:59:46	05T11:47:13
Spectrometer Frequency	125.69	150.92	100.62	150.92
Spectral Width	31250	37876.8	23809.5	37878.8
Lowest Frequency	-1800.4	-3846.3	-1843.5	-3847.3
Nucleus	13C	Carbon13	13C	Carbon13
Acquired Size	32768	32768	32768	32768
Spectral Size	65536	26214	65536	52430

Reference

[1] Liu, J.; Gu, B.; Yang, L.; Yang, F.; Lin, H. New Anti-inflammatory cyclopeptides from a sponge-derived fungus *Aspergillus violaceofuscus*. *Front. Chem.* **2018**, *6*, 226-233. DOI: 10.3389/fchem.2018.00226.