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Abstract: Four 4-hydroxy-α-pyrones including three new ones named nipyrones A–C (1–3) together
with one known analogue germicidin C (4) were discovered from a marine sponge-derived fungus
Aspergillus niger cultivated in a solid rice culture. Their structures and absolute configurations were
elucidated through a combination of spectroscopic data and electronic circular dichroism (ECD)
calculations as well as comparison with literature data. Compounds 1–4 were evaluated for their
antibacterial activities against five pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Bacillus
subtilis, methicillin-resistant Staphylococcus aureus, and Mycobacterium tuberculosis). Compound 3
showed promising activity against S. aureus and B. subtilis, with minimum inhibitory concentration
(MIC) values of 8 µg/mL and 16 µg/mL, respectively, and displayed weak antitubercular activities
against M. tuberculosis, with MIC value of 64 µg/mL, while compounds 1 and 2 exhibited moderate
antibacterial efficacy against four pathogenic bacteria with MIC values of 32–64 µg/mL.
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1. Introduction

In recent years, sponge-derived fungi have represented a potential resource for discovery
of novel bioactive molecules [1,2]. Numerous secondary metabolites with a broad spectrum of
bioactivities have been isolated from sponge-derived fungi, inclusive of alkaloids [3], terpenoid [4],
polyketides [5], and peptides [6]. α-Pyrones are one of polyketide-biosynthetic skeletons, characterized
by six-membered unsaturated cyclic scaffold containing a lactone [7]. α-Pyrones can be widely found
in the fungi and actinomycetes [8–10], and these molecules demonstrated a wide range of extraordinary
biological activities, such as antimicrobial [11], anti-inflammatory [12], cytotoxic [13], and quorum
sensing signaling molecules [14,15].

Members of the genus Aspergillus are well known to produce chemically diverse secondary
metabolites, many of which have been developed to therapeutic leads for human health [16–19]. During
our ongoing search for sponge-derived fungi capable of producing antibiotics, a sponge-derived
fungus Aspergillus niger LS24 showed antimicrobial activities. HPLC-UV profile of crude extract of
A. niger LS24 grown on solid rice medium indicated the presence of various α-pyrone derivatives
with the characteristic UV absorption similar to that of germicidin C [20]. Antibacterial-guided
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fractionation of the EtOAc extract from a scale-up culture led to the isolation and identification of three
new 4-hydroxy-α-pyrones, named nipyrones A–C (1–3) and one known analogue, germicidin C (4)
(Figure 1). Compounds 1–4 were evaluated for their antibacterial activities against five pathogenic
bacteria. Herein, the isolation, structure elucidation, and antibacterial evaluation of these α-pyrones
are described.
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2. Results and Discussion

2.1. Structure Elucidation

Nipyrone A (1) was obtained as a colorless oil. The molecular formula of 1 was assigned as
C13H20O3 by HRESIMS data and gave an [M + H]+ peak at m/z 225.1487, suggesting four degrees
of unsaturation. Its UV absorption at 290 nm indicated the presence of a conjugated α-pyrone
chromophore [21] (Figure S2). The 1H-NMR spectrum (Table 1) of 1 displayed one olefinic proton
at δH 6.16 (s, H-5), two methylenes at δH 1.70 (m, H-8), 1.19 (m, H-8), 1.27 (m, H-10), and 1.10
(m, H-10), two methines at δH 2.64 (m, H-7) and 1.27 (m, H-9), two methyl doublets at δH 0.84 (d,
J = 6.4 Hz, H3-12) and 1.19 (d, J = 6.9 Hz, H3-13), one methyl triplet at δH 0.82 (t, J = 7.3 Hz, H3-11),
and one methyl singlet at δH 1.97 (s, H3-14). Analysis of 13C NMR and DEPT spectra of 1 classified
the 14 carbons into four methyls, two methylenes, three methines, and four nonprotonated carbons.
HMBC correlations (Figure 2) of H3-14/C-2 (δC 167.3), C-3 (δC 98.7), and C-4 (δC 168.7) as well as
H-5/C-3 (δC 98.7) in the HMBC spectrum suggested the existence of the 4-hydroxy-3-methyl α-pyrone
skeleton (Figure 2 and Figure S7). The structure of a 1,3-dimethylpentyl group was further verified by
the COSY correlations (H-7/H2-8/H3-13, H-9/H3-12, and H-10/H3-11) and HMBC correlations from
H3-12/H3-13 to C-8 (δC 41.7) and H3-11 to C-9 (δC 32.1). The 1,3-dimethylpentyl group was connected
to C-6 (δC 167.3) of 4-hydroxy-3-methyl α-pyrone moiety, supported by the HMBC correlations of
H-7/C-5 (δC 100.0) and C-6 together with H3-13/C-6 (Figure 2). Thus, the planar structure of 1 was
established as 4-hydroxy-3-methyl-6-(-4-methylhexan-2-yl)-2H-pyran-2-one. The relative configuration
of 1 was established by the NOESY data (Figure S9). The NOE correlation between H3-12/H3-13
clarified H3-12 and H3-13 to be cofacial of the side chain (Figure 2). Thus, the absolute configuration
at C-7 and C-9 of 1 was identified as 7S,9S or 7R,9R. The absolute configuration of 1 was further
determined by comparing the experimental electronic circular dichroism (ECD) spectrum of 1 with
the correspondingly time-dependent density functional theory (TDDFT)-calculated one. The Cotton
effects of the experimental ECD spectrum of 1 matched very well with the calculated ECD spectrum
for the model molecule of 7S,9S at the B3LYP/6-311 + G(d, p) level (Figure 3 and see Supplementary
Materials), thus confirming its absolute configuration.
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Table 1. 1H (600 MHz) and 13C NMR (150 MHz) data for compounds 1–3 (CDCl3).

No.
1 2 3

δC, Type δH (J in Hz) δC, Type δH (J in Hz) δC, Type δH (J in Hz)

2 167.3, C - 166.9, C - 165.9, C -
3 98.7, C - 98.2, C - 100.8, C -
4 168.7, C - 165.7, C - 166.1, C -
5 100.0, CH 6.16, s 106.8, C - 93.2, CH 6.04, s
6 167.3, C - 162.1, C - 168.6, C -
7 36.1, CH 2.64, m 32.3, CH 3.00, m 35.1, CH 2.85, m

8 41.7, CH2 1.70, m; 1.19, m 41.5, CH2 1.79, m; 1.19, m 45.5, CH2

2.06, dd
(14.7, 5.8);
1.57, dd

(14.6, 4.3)
9 32.1, CH 1.27, m 32.4, CH 1.13, m 72.9, C -

10 29.6, CH2 1.27, m; 1.10, m 29.9, CH2 1.27, m; 1.09, m 35.3, CH 1.46, q (7.5)
11 11.2, CH3 0.82, t (7.3) 11.3, CH3 0.81, t (7.3) 8.2, CH3 0.88, t (7.5)
12 19.2, CH3 0.84, d (6.4) 19.2, CH3 0.83, d (6.2) 25.9, CH3 1.15, s
13 19.5, CH3 1.19, d (6.9) 19.3, CH3 1.16, d (7.0) 21.4, CH3 1.29, d (7.0)
14 8.3, CH3 1.97, s 9.8, CH3 2.00, s 56.1, CH3 3.87, s
15 - - 8.8, CH3 2.02, s 8.5, CH3 1.90, s

Nipyrone B (2) was also obtained as a colorless oil with a molecular formula of C14H22O3 as
determined by HRESIMS data with one CH2 more than 1. The spectroscopic data of 2 (Table 1) were
highly identical to that of 1 except for the absence of one olefinic proton and an additional methyl
singlet. The additional methyl group was located at C-5 (δC 106.8, Table 1) by HMBC correlation from
H3-14 to C-6 (Figure 2 and see Supplementary Materials). The absolute configuration of 2 tentatively
led to deduction of the same as 1 based on the biosynthetic consideration and specific rotation.
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Nipyrone C (3) was isolated a as a colorless oil, and its molecular formula was assigned as
C14H23O4 based on the HRESIMS ([M + H]+ m/z 255.1591) and 13C NMR data. The 1D and 2D NMR
spectroscopic data for 3 (Table 1) closely resembled those of 1. Significant differences in the NMR data
for 3 were only found in the resonances assigned to an additional hydroxy group and an additional
methoxy group. Moreover, the C-9 position in 1 replaced by a hydroxy group in 3 was confirmed by
chemical shift C-9 (δC 72.9). The attachment of the methoxy group (C-14, δC 56.1) at C-4 was supported
by the HMBC correlation of H3-14/C-4 (see Supplementary Materials). Based on the biosynthetic point
of view and specific rotation, the absolute configuration of 3 might be assigned to be 7S,9R.

In addition, compound 4 was identified as germicidin C by comparison of its spectral data
with those reported in [20]. Many α-pyrone-based secondary metabolites biosynthesized by
polyketide synthetase (PKS) pathway have been widely reported, uncovering their biosynthetic gene
clusters [7,22,23]. We proposed that the polyketide chain primed with acetyl-CoA and malonyl-CoA
was elongated, enolized, cyclized, methylated, hydroxylated, and released as the corresponding four
4-hydroxy-α-pyrones. A probable biosynthesis pathway of 1–4 is illustrated in Scheme 1.
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2.2. Biological Activities

The antibacterial activities of 1–4 were evaluated against four bacteria, including Gram-positive
and Gram-negative bacteria, using broth micro-dilution method within a concentration range of 256–1
µg/mL. Four pathogenic bacteria, including S. aureus, E. coli, B. subtilis, and methicillin-resistant S.
aureus (MRSA) were performed. The results are shown in Table 2. Compound 3 exhibited significant
inhibitory activity against S. aureus and B. subtilis, with minimum inhibitory concentration (MIC)
values of 8 and 16 µg/mL, respectively. Compounds 1, 2, and 4 exhibited moderate antimicrobial
effect against S. aureus, E. coli, and B. subtilis, with MIC values in range of 32–64 µg/mL. Compounds
1–4 displayed weak antibiotic capacity against MRSA. Compound 3 possessed weak antitubercular
activities against M. tuberculosis (MIC, 64 µg/mL).
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Table 2. Antibacterial activities of compounds 1–4.

Compounds MIC (µg/mL)

S. aureus E. coli B. subtilis MRSA M. tuberculosis

1 64 32 64 128 128
2 64 64 64 128 128
3 8 64 16 128 64
4 64 64 32 128 128

Chloramphenicol 8 4 2 4 -
Ethambutol - - - - 8

3. Materials and Methods

3.1. General Experimental Procedures

Optical rotations were determined with a P-2000 digital polarimeter (JASCO, Hachioji, Japan).
UV spectra were obtained with a NADE Evolution 201 spectrophotometer (ThermoFisher, Waltham,
MA, USA). IR spectra were measured on a Nicolet iS5 spectrometer (ThermoFisher, Waltham, MA,
USA). NMR data were carried out at ambient temperature on a Varian 600 MHz (Palo Alto, CA,
USA) spectrometer operating at 600 (1H) and 150 (13C) MHz. HRESIMS data were recorded on
an Agilent Technologies 6520 Accurate Mass Q-TOF LC/MS spectrometer equipped with an ESI source
(Agilent Technologies, Santa Clara, CA, USA). Medium-pressure liquid chromatography (MPLC) was
performed on a FLEXA Purification System (Bonna-Agela Technologies Co., Tianjin, China) using
a 15 µm ODS column (Santai Technologies, Inc., Changzhou, China). Semi-preparative HPLC was
performed on an YMC-Pack Pro C18 RS column (5 µm, 250 × 10 mm id; YMC, Kyoto, Japan) with
a Waters 600 separation system coupled with a Waters 2998 Photodiode Array detector (Waters, MA,
USA). Column chromatography (CC) was performed on silica gel (200–300 mesh, Qingdao Haiyang
Chemical Factory, Qingdao, China) and Sephadex LH-20 (25–100 µm; Pharmacia, Uppsala, Sweden).

3.2. Fungal Material

Marine sponge Haliclona sp. was collected at Lingshui, Hainan Province, China. The sponge tissue
was cut into small pieces of about 0.1 cm3 each, which were homogenized with sterile seawater. 20 µL
of the diluted homogenate (1:100, sterile seawater) was inoculated in PDA agar plates, which were
incubated for periods of 3 days to 4 weeks for purifying fungal colonies. 15 fungal isolates were obtained.
Among them, the EtOAc extract of the fungal strain LS24 showed antimicrobial activities. Surprisingly,
its extract showed stronger antimicrobial effects (MICs, 32–128 µg/mL against different pathogenic
bacteria) when grown on solid rice medium in comparison to liquid medium (MICs, >128 µg/mL
against different pathogenic bacteria). The fungal strain LS24 was identified using morphological
studies, DNA amplification, and the internal transcribed spacer region (ITS) sequencing (GenBank
accession ID: KX290301, 100% similarity). The isolate was stored on PDA medium (potato 200 g,
dextrose 20 g, sea salt 35 g and agar 15 g in 1.0 L of H2O, pH 7.4–7.8) slants at 4 ◦C. A voucher strain
was preserved at College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.

3.3. Fermentation

The fungus A. niger was cultured on PDA agar plate at 28 ◦C for 7 days. The fungal colony was
further inoculated into the PDB medium (potato 200 g, dextrose 20 g, and sea salt 35 g in 1.0 L of H2O,
pH 7.4–7.8) at 28 ◦C for 3 days on a rotating shaker (180 rpm). Then, a large-scale fermentation of the
strain was performed. The fungal seed broth (20 mL) was added to 10 flasks (1000 mL), each containing
100 g rice and 160 mL water. These flasks were incubated at 28 ◦C for 30 days under static conditions.
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3.4. Extraction and Isolation

All the fermented materials were extracted with 5 L EtOAc three times to afford a brown extract
(8 g). The EtOAc extract was subjected to vacuum liquid chromatography (VLC) on a silica gel column
(6 × 15 cm, 200–300 mesh) using step gradient elution with petroleum ether/EtOAc (from 20:1 to 0:1, v/v)
to obtain seven fractions (Fr.1–7) according to HPLC analysis. Fraction 4 was further chromatographed
over a Sephadex LH-20 column, eluted with CH3OH and CH2Cl2 (1:1, v/v), yielding three subfractions
(Fr.4.A–C). Fr.4.B (300 mg) was further separated into six subfractions (Fr.4.B.1–6) by ODS silica gel
MPLC eluting with MeOH/H2O (30–100%, 120 min, flow rate 20 mL/min) to obtain nine subfractions
(Fr.4.B.1–9). Fr.4.B.3 was separated by semipreparative HPLC (35% MeCN/H2O, 2 mL/min, detected at
290 nm) to provide 1 (1.3 mg, tR 32 min) and 2 (1.2 mg, tR 34 min). Meanwhile, Fr.4.B.7 was purified by
semipreparative HPLC (40% MeCN/H2O, 2 mL/min, detected at 290 nm) to yield 3 (1.1 mg, tR 30 min)
and 4 (3.1 mg, tR 32 min).

Nipyrone A (1): colorless oil; [α]25
D +43 (c 0.23, MeOH); CD λmax (∆ε) 203(+2.41), 288 (+0.72) nm; UV

(MeOH) (log ε) λmax 290 (4.19) nm; IR (KBr) νmax 3093, 2964, 2930, 2876, 2680, 1662, 1582, 1459, 1415,
1375, 1245, 1152, 1126, 1057, 972, 932, 876, 837, 760, 705 cm−1; 1H and 13C NMR data, see Table 1;
HRESIMS m/z 225.1487 [M + H]+ (calcd for C13H21O3, 225.1485).

Nipyrone B (2): colorless oil; [α]25
D +72 (c 1.13, MeOH); UV (MeOH) (log ε) λmax 286 (3.86) nm; IR (KBr)

νmax 3219, 2963, 2930, 2875, 1705, 1671, 1606, 1568, 1459, 1408, 1377, 1232, 1156, 1093, 1035, 958, 873, 806,
761 cm−1; 1H and 13C NMR data, see Table 1; HRESIMS m/z 239.1639 [M + H]+ (calcd for C14H23O3,
239.1628).

Nipyrone C (3): colorless oil; [α]25
D +35 (c 0.12, MeOH); UV (MeOH) (log ε) λmax 299 (3.92) nm; IR (KBr)

νmax 3429, 3101, 2967, 2929, 2876, 1686, 1642, 1566, 1462, 1406, 1380, 1325, 1251, 1192, 1141, 1099, 1032,
968, 941, 905, 804, 756 cm−1; 1H and 13C NMR data, see Table 1; HRESIMS m/z 255.1591 [M + H]+ (calcd
for C14H23O4, 255.1591).

3.5. Antibacterial Assay

The antibacterial effects of compounds 1–4 were evaluated against Gram-positive bacteria S.
aureus ATCC 25923, B. subtilis ATCC 6633, methicillin-resistant S. aureus ATCC 43300 (MRSA),
and Gram-negative bacterium E. coli ATCC 25922 according to a previously described method [24].
The test compounds were dissolved in DMSO (1 mg/mL for 1–4). The minimum inhibitory concentration
(MIC) values were defined as the lowest concentration of test compound that inhibited the growth
of more than 99% of the bacterial population after overnight incubation in 96-well microtiter plates,
as detected by eye. Briefly, 100 µL of each bacterial solution was inoculated in each well (105 CFU/mL)
and added with 100 µL of each compound solution and control in triples. Microplates were incubated
for 24 h at 37 ◦C. The final concentrations of each test compound in the wells were in the range of
256–1 µg/mL using sequential 2-fold serial dilutions. The final DMSO concentration was maintained at
0.5% by adding the medium. Chloramphenicol and DMSO were used as the positive control and the
negative control, respectively. The detailed method of the antitubercular activity of compounds 1–4
against M. tuberculosis H37Rv was described by the agar proportion method based on the previous
report [25]. The blank control was DMSO. Ethambutol was used as a positive control.

4. Conclusions

In summary, three new 4-hydroxy-α-pyrone derivatives, nipyrones A–C (1–3) along with one
known analogue germicidin C (4) were isolated from a marine sponge-derived fungus A. niger grown
on a solid rice culture. These 4-hydroxy-α-pyrone derivatives have in common the differences in
functional group substitution and side chain length. Biogenetically, nipyrones A–C (1–3) are presumably
originated from the polyketide pathway. This study further expanded the structural diversity of
naturally occurring α-pyrone derivatives. Notably, compound 3 displayed significant inhibitory
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effects on two pathogenic bacteria, S. aureus and E. coli and may be considered to have potential as
an antibiotic agent.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/6/344/s1.
HRESIMS, NMR, IR, UV of the new compounds 1–3; ECD calculation data for 1.
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