Bromotryptamine and bromotyramine derivatives

from the Tropical Southwestern Pacific sponge

Narrabeena nigra.

Maria Miguel Gordo,¹ Kevin Calabro,¹ Sandra Gegunde,² Laurence Jennings,¹ Amparo Alfonso,² Grégory Genta-Jouve,³ Jean Vacelet,⁴ Luis M. Botana,² and Olivier P. Thomas^{*,1}

- ¹ Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway (NUI Galway), University Road, H91 TK33 Galway, Ireland; <u>m.miguelgordo1@nuigalway.ie</u> (M.M.G.), <u>kevin.calabro@nuigalway.ie</u> (K.C.), <u>laurence.jennings@nuigalway.ie</u> (L.J.),
- ² Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; <u>sandra.gegunde@rai.usc.es (S.G.); amparo.alfonso@usc.es (A.A.); luis.botana@usc.es (L.M.B.)</u>
- ³ Laboratoire de Chimie-Toxicologie Analytique et Cellulaire (C-TAC) UMR CNRS 8638 COMETE, Université Paris-Descartes, 4, avenue de l'Observatoire, 75006 Paris, France; <u>gregory.genta-jouve@parisdescartes.fr</u> (G.G.J.)
- ⁴ Aix Marseille Université, CNRS, IRD, IMBE UMR 7263, Avignon Université, Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station Marine d'Endoume, Chemin de la Batterie des Lions, 13007 Marseille, France; jean.vacelet@imbe.fr_(J.V.)
- * Correspondence: olivier.thomas@nuigalway.ie; Tel.: +353-9149-3563 (O.P.T.)

S1. Narrabeena nigra specimen collected at Alofi Island	5
S2. ¹ H NMR data, δ_{H} in ppm, mult. (<i>J</i> in Hz), in MeOH- <i>d</i> ₄ for bromotryptamines	5
S3. ¹ Η NMR data, δ _H in ppm, mult. (J in Hz), in MeOH-d ₄ for bromotyramines	5
S4. ESI(+)-HRMS analysis of 1 and crop of the molecular ion	6
S5. ¹ H NMR spectrum of 1 (600 MHz, MeOH-d ₄)	6
S6. COSY NMR spectrum of 1 (600 MHz, MeOH- <i>d</i> ₄)	7
S7. HSQC NMR spectrum of 1 (600 MHz, MeOH- <i>d</i> ₄)	7
S8. HMBC NMR spectrum of 1 (600 MHz, MeOH-d ₄)	8
S9. ESI(+)-HRMS analysis of 2 and crop of the molecular ion	9
S10. ¹ H NMR spectrum of 2 (600 MHz, MeOH- <i>d</i> ₄).	9
S11. ¹³ C NMR spectrum of 2 (150 MHz, MeOH- <i>d</i> ₄).	. 10
S12. COSY NMR spectrum of 2 (600 MHz, MeOH-d ₄)	. 10
S13. HSQC NMR spectrum of 2 (600 MHz, MeOH- <i>d</i> ₄)	. 11
S14. HMBC NMR spectrum of 2 (600 MHz, MeOH-d ₄)	. 11
S15. ESI(+)-HRMS analysis of 3 and crop of the molecular ion.	. 12
S16. ¹ H NMR spectrum of 3 (500 MHz, MeOH-d ₄).	. 12
S17. ¹³ C NMR spectrum of 3 (125 MHz, MeOH- <i>d</i> ₄).	. 13
S18. HSQC NMR spectrum of 3 (500 MHz, MeOH- <i>d</i> ₄)	. 13
S19. HMBC NMR spectrum of 3 (500 MHz, MeOH- <i>d</i> ₄)	. 14
S20. ESI(+)-HRMS analysis of 4 and crop of the molecular ion	. 15
S21. ¹ H NMR spectrum of 4 (600 MHz, MeOH- <i>d</i> ₄).	. 15
S22. ¹³ C NMR spectrum of 4 (150 MHz, MeOH- <i>d</i> ₄).	. 16
S23. COSY NMR spectrum of 4 (600 MHz, MeOH- <i>d</i> ₄)	. 16
S24. HSQC NMR spectrum of 4 (600 MHz, MeOH- <i>d</i> ₄)	. 17
S25. HMBC NMR spectrum of 4 (600 MHz, MeOH-d ₄)	. 17
S26. ECD spectrum of compound 4 in CH3CN at 0.1 mg/mL	. 18
S27. ESI(+)-HRMS analysis of 5 and crop of the molecular ion.	. 19
S28. ¹ H NMR spectrum of 5 (500 MHz, MeOH-d ₄)	. 19
S29. ¹³ C NMR spectrum of 5 (125 MHz, MeOH- <i>d</i> ₄).	. 20
S30. COSY NMR spectrum of 5 (500 MHz, MeOH-d ₄)	. 20
S31. HSQC NMR spectrum of 5 (500 MHz, MeOH- <i>d</i> ₄)	. 21
S32. HMBC NMR spectrum of 5 (500 MHz, MeOH- <i>d</i> ₄)	. 21
S33. ECD spectrum of compound 5 in CH3CN at 0.2 mg/mL	. 22
S34. ESI(+)-HRMS analysis of 6 and crop of the molecular ion.	. 23

S35. ¹ H NMR spectrum of 6 (500 MHz, MeOH- <i>d</i> ₄)	23
S36. ¹³ C NMR spectrum of 6 (125 MHz, MeOH- <i>d</i> ₄).	24
S37. COSY NMR spectrum of 6 (500 MHz, MeOH- <i>d</i> ₄)	24
S38. HSQC NMR spectrum of 6 (500 MHz, MeOH- <i>d</i> ₄)	25
S39. HMBC NMR spectrum of 6 (500 MHz, MeOH- <i>d</i> ₄)	25
S40. ESI(+)-HRMS analysis of 7 and crop of the molecular ion.	26
S41. ¹ H NMR spectrum of 7 (500 MHz, MeOH- <i>d</i> ₄)	26
S42. ¹³ C NMR spectrum of 7 (125 MHz, MeOH- <i>d</i> ₄).	27
S43. HSQC NMR spectrum of 7 (500 MHz, MeOH- <i>d</i> ₄)	27
S44. HMBC NMR spectrum of 7 (500 MHz, MeOH- <i>d</i> ₄)	28
S45. ESI(+)-HRMS analysis of 8 and crop of the molecular ion	29
S46. ¹ H NMR spectrum of 8 (500 MHz, MeOH- <i>d</i> 4).	29
S47. ¹³ C NMR spectrum of 8 (125 MHz, MeOH- <i>d</i> ₄).	30
S48. COSY NMR spectrum of 8 (500 MHz, MeOH- <i>d</i> ₄)	30
S49. HSQC NMR spectrum of 8 (500 MHz, MeOH- <i>d</i> ₄)	31
S50. HMBC NMR spectrum of 8 (500 MHz, MeOH- <i>d</i> ₄)	31
S51. ESI(+)-HRMS analysis of 9	32
S52. ¹ H NMR spectrum of 9 (500 MHz, MeOH- <i>d</i> ₄).	32
S53. ¹³ C NMR spectrum of 9 (125 MHz, MeOH- <i>d</i> ₄).	33
S54. COSY NMR spectrum of 9 (500 MHz, MeOH- <i>d</i> ₄)	33
S55. HSQC NMR spectrum of 9 (500 MHz, MeOH- <i>d</i> ₄)	34
S56. HSQC NMR spectrum of 9 (500 MHz, MeOH- <i>d</i> ₄)	34
S57. ESI(+)-HRMS analysis of 10	35
S58. ¹ H NMR spectrum of 10 (500 MHz, MeOH-d4).	35
S59. ESI(+)-HRMS analysis of 11	36
S60. ¹ H NMR spectrum of 11 (500 MHz, MeOH-d ₄).	36
S61. ESI(+)-HRMS analysis of 12	37
S62. ¹ H NMR spectrum of 12 (500 MHz, MeOH-d ₄).	37
S63. ESI(+)-HRMS analysis of 13	38
S64. ¹ H NMR spectrum of 13 (500 MHz, MeOH-d ₄).	38
S65. ESI(+)-HRMS analysis of 14	39
S66. ¹ H NMR spectrum of 14 (500 MHz, MeOH-d ₄).	39
S67. ESI(+)-HRMS analysis of 15	40
S68. ¹ H NMR spectrum of 15 (500 MHz, MeOH-d ₄).	40
S69. ESI(+)-HRMS analysis of 16	41
S70. ¹ H NMR spectrum of 16 (500 MHz, MeOH- <i>d</i> ₄).	41

S71. ¹³ C NMR spectrum of 16 (125 MHz, MeOH- <i>d</i> ₄).	. 42
S72. COSY NMR spectrum of 16 (500 MHz, MeOH-d ₄)	. 42
S73. HSQC NMR spectrum of 16 (500 MHz, MeOH- <i>d</i> 4)	. 43
S74. HMBC NMR spectrum of 16 (500 MHz, MeOH- <i>d</i> ₄)	. 43
S75. ESI(+)-HRMS analysis of 17	. 44
S76. ¹ H NMR spectrum of 17 (500 MHz, MeOH-d ₄).	. 44
S77. ESI(+)-HRMS analysis of 18	. 45
S78. ¹ H NMR spectrum of 18 (500 MHz, MeOH-d ₄).	. 45
S79. Cell viability of brominated alkaloids over microglia BV2 cell line	. 46
\$80. Cell viability of brominated alkaloids over neuroblastoma SH-SY5Y cell line	. 47
S81. Cosine values of all newly identified compounds in orange in the MetWork software	. 48
S82. Comparison between the experimental and calculated MS/MS spectrum of the minor compoun	١d
below	. 48

Biological material.

S1. *Narrabeena nigra* specimen collected at Alofi Island.

Irregularly lamellar or thickly encrusting sponge, beige gray in life, surface becoming dark grey in alcohol. Skeleton of uncored, laminated fibers, 15-100 μ m in diameter, arranged in an irregular reticulation with meshes 150-500 μ m in size. Primary fibers 50-100 μ m in diameter, with a small central pith, ending free on 350-500 μ m at the surface. Secondary fibers 15-50 μ m in diameter, without pith.

No.	9 ^b	10 ^a	11 ^a	12 ^a	13ª	14 ^a	15 ^a
2	7.26, s	7.26, s	7.24, s	7.20, s	7.19, s		
4	7.93, s	7.95, s	7.93, s	7.49, d (8.5)	7.49, d (8.5)	7.63, d (8.5)	8.15, d (8.5)
5	-	-	-	7.17, dd (8.5, 1.5)	7.17, dd (8.5, 1.5)	6.72, dd (8.5, 1.5)	7.55, dd (8.5, 1.5)
6	-	-	-	-			
7	7.70, s	7.74, s	7.73, s	7.54, d (1.5)	7.54, d (1.5)	6.98, d (1.5)	7.80, d (1.5)
7a	-	-	-	-	-	-	-
8	3.14, t (7.5)	3.10, t (7.5)	3.07, t (7.5)	3.13, t (7.5)	3.10, t (7.5)	c	6.35, d (7.5)
9	3.39, t (7.5)	3.29, t (7.5)	3.21, t (7.5)	3.30 ^c	3.22, t (7.5)	3.34, t (5.5)	7.99, d (7.5)
11	2.93, s			2.70, s			

S2. ¹H NMR data, $\delta_{\rm H}$ in ppm, mult. (*J* in Hz), in MeOH-*d*₄ for bromotryptamines

^a 500MHz ^b 600MHz ^cOverlap with solvent signal

S3. ¹H NMR data, $\delta_{\rm H}$ in ppm, mult. (*J* in Hz), in MeOH-*d*₄ for bromotyramines

No.	16 ^a	17 ^a	18 ^a
2	7.53, s	7.48, d (1.5)	7.51, d (1.5)
3	-	-	-
4	-	-	-
5	-	7.01, d (8.5)	6.98, d (8.5)
6	7.53, s	7.22, dd (8.5, 1.5)	7.26, dd (8.5, 1.5)
7	2.90, t (7.5)	2.87, d (7.5)	3.96, d (12.0)
8	3.16, t (7.5)	3.13, d (7.5)	3.13, t (12.0)
10			3.29, s
0-C <u>H</u> ₃	3.84, s	3.86, s	3.85, s

S4. ESI(+)-HRMS analysis of 1 and crop of the molecular ion.

S5. ¹H NMR spectrum of **1** (600 MHz, MeOH-*d*₄).

S6. COSY NMR spectrum of **1** (600 MHz, MeOH- d_4).

S7. HSQC NMR spectrum of **1** (600 MHz, MeOH- d_4).

S8. HMBC NMR spectrum of **1** (600 MHz, MeOH-*d*₄).

S9. ESI(+)-HRMS analysis of **2** and crop of the molecular ion.

S10. ¹H NMR spectrum of **2** (600 MHz, MeOH-*d*₄).

S12. COSY NMR spectrum of 2 (600 MHz, MeOH-d4).

S13. HSQC NMR spectrum of **2** (600 MHz, MeOH-*d*₄).

S15. ESI(+)-HRMS analysis of 3 and crop of the molecular ion.

S16. ¹H NMR spectrum of **3** (500 MHz, MeOH-*d*₄).

S18. HSQC NMR spectrum of **3** (500 MHz, MeOH- d_4).

S19. HMBC NMR spectrum of **3** (500 MHz, MeOH-*d*₄).

S20. ESI(+)-HRMS analysis of 4 and crop of the molecular ion.

S21. ¹H NMR spectrum of **4** (600 MHz, MeOH-*d*₄).

S22. ¹³C NMR spectrum of **4** (150 MHz, MeOH-*d*₄).

S23. COSY NMR spectrum of **4** (600 MHz, MeOH-*d*₄).

Supporting information

S25. HMBC NMR spectrum of **4** (600 MHz, MeOH-*d*₄).

S26. ECD spectrum of compound 4 in CH₃CN at 0.1 mg/mL

S27. ESI(+)-HRMS analysis of 5 and crop of the molecular ion.

S28. ¹H NMR spectrum of **5** (500 MHz, MeOH-*d*₄).

S30. COSY NMR spectrum of **5** (500 MHz, MeOH-*d*₄).

S31. HSQC NMR spectrum of **5** (500 MHz, MeOH- d_4).

S32. HMBC NMR spectrum of 5 (500 MHz, MeOH-d₄).

S33. ECD spectrum of compound 5 in CH₃CN at 0.2 mg/mL

S34. ESI(+)-HRMS analysis of 6 and crop of the molecular ion.

S35. ¹H NMR spectrum of **6** (500 MHz, MeOH-*d*₄).

S37. COSY NMR spectrum of **6** (500 MHz, MeOH-*d*₄).

S39. HMBC NMR spectrum of **6** (500 MHz, MeOH-*d*₄).

S40. ESI(+)-HRMS analysis of 7 and crop of the molecular ion.

S41. ¹H NMR spectrum of 7 (500 MHz, MeOH-d₄).

S42. ¹³C NMR spectrum of **7** (125 MHz, MeOH-*d*₄).

S43. HSQC NMR spectrum of **7** (500 MHz, MeOH-*d*₄).

S44. HMBC NMR spectrum of 7 (500 MHz, MeOH- d_4).

S45. ESI(+)-HRMS analysis of 8 and crop of the molecular ion.

S46. ¹H NMR spectrum of **8** (500 MHz, MeOH-*d*₄).

S48. COSY NMR spectrum of **8** (500 MHz, MeOH-*d*₄).

S50. HMBC NMR spectrum of **8** (500 MHz, MeOH-*d*₄).

7.5

7.0

6.5

8.0

8.5

6.0

5.0

5.5 f2 (ppm) 4.5

4.0

3.5

3.0

2.5

160

S51. ESI(+)-HRMS analysis of 9

S52. ¹H NMR spectrum of **9** (500 MHz, MeOH-*d*₄).

S54. COSY NMR spectrum of **9** (500 MHz, MeOH-*d*₄).

7.5

7.0

6.5

8.5

8.0

5.5 5.0 f2 (ppm) 4.0

4.5

3.5

3.0

6.0

- 8.0 -- 8.5

2.5

S56. HSQC NMR spectrum of **9** (500 MHz, MeOH-*d*₄).

S57. ESI(+)-HRMS analysis of 10

S58. ¹H NMR spectrum of **10** (500 MHz, MeOH-*d*₄).

S59. ESI(+)-HRMS analysis of 11

S60. ¹H NMR spectrum of **11** (500 MHz, MeOH-*d*₄).

S61. ESI(+)-HRMS analysis of 12

S62. ¹H NMR spectrum of **12** (500 MHz, MeOH-*d*₄).

S63. ESI(+)-HRMS analysis of 13

S64. ¹H NMR spectrum of **13** (500 MHz, MeOH-*d*₄).

S65. ESI(+)-HRMS analysis of 14

S66. ¹H NMR spectrum of **14** (500 MHz, MeOH-*d*₄).

 ${\bf S67.}$ ESI(+)-HRMS analysis of ${\bf 15}$

S68. ¹H NMR spectrum of **15** (500 MHz, MeOH-*d*₄).

 ${\bf S69.}\ {\rm ESI}({\rm +}){\rm -}{\rm HRMS}$ analysis of ${\bf 16}$

S70. ¹H NMR spectrum of **16** (500 MHz, MeOH-*d*₄).

S72. COSY NMR spectrum of **16** (500 MHz, MeOH-*d*₄).

S74. HMBC NMR spectrum of **16** (500 MHz, MeOH-*d*₄).

 $\mathbf{S75.}$ ESI(+)-HRMS analysis of $\mathbf{17}$

S76. ¹H NMR spectrum of **17** (500 MHz, MeOH-*d*₄).

 ${\color{black}{S77.}}$ ESI(+)-HRMS analysis of ${\color{black}{18}}$

S78. ¹H NMR spectrum of **18** (500 MHz, MeOH-*d*₄).

S79. Cell viability of brominated alkaloids over microglia BV2 cell line. Cells were treated with compounds (0.001, 0.01, 0.1, 1 and 10 μM) for 24 hours. Cell viability was determined using MTT test. Dates are represented in percentage of cells control, being the result

of mean absorbance ± SEM of three independent experiments done in triplicate.

S80. Cell viability of brominated alkaloids over neuroblastoma SH-SY5Y cell line. Cells were treated with compounds (0.001, 0.01, 0.1, 1 and 10 μ M) for 24 hours. Cell viability was determined using MTT test. Dates are represented in percentage of cells control, being the result of mean absorbance ± SEM of three independent experiments done in triplicate.

S81. Cosine values of all newly identified compounds in orange in the MetWork software.

S82. Comparison between the experimental and calculated MS/MS spectrum of the minor compound below.