## The biosynthesis of rare homo-amino acid containing variants of microcystin by a benthic cyanobacterium

Tânia Keiko Shishido<sup>1,2</sup>, Jouni Jokela<sup>1</sup>, Anu Humisto<sup>1</sup>, Hao Wang<sup>1,3</sup>, Suvi Suurnäkki<sup>1,4</sup>, Matti Wahlsten<sup>1</sup>, Danillo O. Alvarenga<sup>1</sup>, Kaarina Sivonen<sup>1</sup>, David P. Fewer<sup>1\*</sup>

Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014, Helsinki, Finland; tania.shishido@helsinki.fi (T.K.S.); jouni.jokela@helsinki.fi (J.J.); anu.humisto@helsinki.fi (A.H.); matti.wahlsten@helsinki.fi (M.W.); danillo.oliveiradealvarenga@helsinki.fi (D.O.A.); kaarina.sivonen@helsinki.fi (K.S.)

- <sup>2</sup> Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 5D, FI-0014, Helsinki, Finland
- <sup>3</sup> Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
- \* Correspondence: david.fewer@helsinki.fi; Phone: +358 9 19159270.

## Figures

**Figure S1**. Relative amounts (%) of microcystin variants in *Phormidium* sp. LP904c (yellow) and DVL1003c (green). Peak areas of the extracted ion chromatograms of the protonated microcystins was used in calculations.

**Figure S2.** Ultraviolet (UV), total ion current (TICC) and extracted ion (EIC) chromatograms obtained with HPLC-ITMS of protonated microcystins found from *Phormidium* sp. LP904c. Mass/charge values of protonated microcystins are marked to the EIC traces.

**Figure S3.** Ultraviolet (UV), total ion current (TICC) and extracted ion (EIC) chromatograms obtained with HPLC-ITMS of protonated microcystins found from *Phormidium* sp. DVL1003c. Mass/charge values of protonated microcystins are marked to the EIC traces.

**Figure S4.** Product ion spectra of protonated microcystins from *Phormidium* sp. LP904c obtained with HPLC-ITMS. Mass/charge values of protonated microcystins and their retention times (min) are marked to the spectra.

**Figure S5.** Coding for the product ions generated from the protonated and sodiated microcystins. Variable methyl groups 1-3 are marked with a gray shade.

**Figure S6.** Product ion spectra of sodiated non Arg microcystins from *Phormidium* sp. LP904c obtained with HPLC-ITMS. Mass/charge values of protonated microcystins and their retention times (min) are marked to the spectra.

**Figure S7.** Effect of polar surface areas (PSA) to the retention times ( $R_t$ , min) of *Phormidium* sp. DVL1003c microcystins calculated with a topological polar surface area (TPSA) method (Ertl et al., 2000). High correlation ( $R^2 = 0.937$ ) shows that the proposed microcystin structures fit well to the measured retention times.

Figure S8. Microcystin variants produced by studied *Phormidium* strains and relative amount produced.

**Figure S9.** Concatenated phylogenetic tree of the McyD and McyE sequences constructed using neighborjoining with 1000 bootstrap replications. *Phormidium* sp. LP904c is indicated in bold.

**Figure S10.** Phylogenetic tree constructed using condensation (A) and adenylation (B) domains from McyB1 (blue) and McyC (pink) amino acid sequences. Neighbor-joining method with 1000 bootstrap replications. *Phormidium* sp. LP904c is indicated in bold.

## Tables

**Table S1.** Assignments, ion masses (m/z) and intensities (%) of the protonated non Arg microcystins of the most important product ions. Red No = Ion structure confirmed by Diehnelt et al. 2006 with high resolution fourier transform ion cyclotron resonance mass spectrometer. CI = Code for ion structure presented in Figure S5.

**Table S2.** Assignments, ion masses (m/z) and intensities (%) of the sodiated non Arg microcystins of the most important product ions. CI = Code for ion structure presented in Figure S5.

**Table S3.** Microcystin variants, retention times (Rt), relative amounts (RA) and small diagnostic ions (from protonated MC's) with corresponding amino acids from *Phormidium* sp. LP904c by HPLC-ITMS and UPLC-QTOF. RA's were calculated from the sum of the peak areas of the extracted ion chromatograms of different ion species (H, Na, K and 2H) of microcystins. Hty = homotyrosine, Hph = homophenylalanine. Diagnostic ions of MC's No 14-16 were analysed from sodiated MC's and additionally MC No 15 ions masses were corrected with the mass of sodiated MC No 15 exact mass.

**Table S4.** Sequence similarity of the microcystin gene cluster from *Phormidium* sp. LP904c obtained by BLASTp.

**Table S5.** Microcystins variants detected in the strains from table 2 and 3. The homoamino acids detected are highlighted.



**Figure S1**. Relative amounts (%) of microcystin variants in *Phormidium* sp. LP904c (yellow) and DVL1003c (green). Peak areas of the extracted ion chromatograms of the protonated microcystins was used in calculations.



**Figure S2.** Ultraviolet (UV), total ion current (TICC) and extracted ion (EIC) chromatograms obtained with HPLC-ITMS of protonated microcystins found from *Phormidium* sp. LP904c. Mass/charge values of protonated microcystins are marked to the EIC traces.



**Figure S3.** Ultraviolet (UV), total ion current (TICC) and extracted ion (EIC) chromatograms obtained with HPLC-ITMS of protonated microcystins found from *Phormidium* sp. DVL1003c. Mass/charge values of protonated microcystins are marked to the EIC traces.



**Figure S4.** Product ion spectra of protonated microcystins from *Phormidium* sp. LP904c obtained with HPLC-ITMS. Mass/charge values of protonated microcystins and their retention times (min) are marked to the spectra.



**Figure S5.** Coding for the product ions generated from the protonated and sodiated microcystins. Variable methyl groups 1-3 are marked with a gray shade.



**Figure S6.** Product ion spectra of sodiated non Arg microcystins from *Phormidium* sp. LP904c obtained with HPLC-ITMS. Mass/charge values of protonated microcystins and their retention times (min) are marked to the spectra.



**Figure S7.** Effect of polar surface areas (PSA) to the retention times ( $R_t$ , min) of *Phormidium* sp. DVL1003c microcystins calculated with a topological polar surface area (TPSA) method (Ertl et al., 2000). High correlation ( $R^2 = 0.937$ ) shows that the proposed microcystin structures fit well to the measured retention times.



Figure S8. Microcystin variants produced by studied *Phormidium* strains and relative amount produced.



**Figure S9.** Concatenated phylogenetic tree of the McyD and McyE amino acid sequences constructed using neighbor-joining with 1000 bootstrap replications. *Phormidium* sp. LP904c is indicated in bold.



**Figure S10.** Phylogenetic tree constructed using condensation (A) and adenylation (B) domains from McyB1 (blue) and McyC (pink) amino acid sequences. Neighborjoining method with 1000 bootstrap replications. *Phormidium* sp. LP904c is indicated in bold.

**Table S1.** Assignments, ion masses (m/z) and intensities (%) of the protonated non Arg microcystins of the most important product ions. Red No = Ion structure confirmed by Diehnelt et al. 2006 with high resolution fourier transform ion cyclotron resonance mass spectrometer. CI = Code for ion structure presented in Figure S5.

|     |               | Protonated product ion structure                                | s                                 | M     | C-LTyr    | M     | C-LHty    | MC-H  | lphHty    | MC    | -LW       | MC-   | LHph      | мс-н  | phHph     |
|-----|---------------|-----------------------------------------------------------------|-----------------------------------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|
| No  | CI            | [peptide + H] <sup>⁺</sup>                                      | -Neutral                          | m/z   | Intensity |
| 1   | 1a-7c         | Ala-Aa2-Asp-Aa4-Adda-Glu-Mdha + H                               |                                   | 1 002 |           | 1 016 |           | 1 064 |           | 1 025 |           | 1 000 |           | 1 048 |           |
| 2   | 1a-7c         | Ala-Aa2-Asp-Aa4-Adda-Glu-Mdha + H                               | NH <sub>3</sub>                   | 985   | 100       | 999   | 100       | 1 047 | 85        | 1 008 | 100       | 983   | 92        | 1 031 | 100       |
| 3   | 1a-7c         | Ala-Aa2-Asp-Aa4-Adda-Glu-Mdha + H                               | H₂O                               | 984   | 80        | 998   | 38        | 1 046 | 35        | 1 007 | 53        | 982   | 70        | 1 030 | 62        |
| 4   | 1a-7c         | Ala-Aa2-Asp-Aa4-Adda-Glu-Mdha + H                               | сн₃он                             | 970   | 9         | 984   | 6         | 1 032 | 6         | 993   | 8         | 968   | 10        | 1 016 | 14        |
| 5   | 1a-7c         | Ala-Aa2-Asp-Aa4-Adda-Glu-Mdha + H                               | H <sub>2</sub> O, NH <sub>3</sub> | 967   | 16        | 981   | 9         | 1 029 | 11        | 990   | 15        | 965   | 14        | 1 013 | 10        |
| 6   | 1a-7c         | Ala-Aa2-Asp-Aa4-Adda-Glu-Mdha + H                               | CH₃OH, NH₃                        | 953   | 14        | 967   | 11        | 1 015 | 10        | 976   | 16        | 951   | 13        | 999   | 11        |
| - 7 | 1a-7c         | Ala-Aa2-Asp-Aa4-Adda-Glu-Mdha + H                               | CH₃OH, H₂O                        | 952   | 20        | 966   | 4         | 1 014 | 5         | 976   | 16        | 950   | 9         | 998   | 6         |
| 8   | 1a-6c         | Ala-Aa2-Asp-Aa4-Adda-Glu + H                                    | NH3                               | 902   | 10        | 916   | 11        | 964   | 8         | 925   | 9         | 900   | 5         | 948   | 7         |
| 9   | 1a-6c         | Ala-Aa2-Asp-Aa4-Adda-Glu + H                                    | H₂O                               | 901   | 9         | 915   | 5         | 963   | 3         | 924   | . 4       | 899   | 5         | 947   | 4         |
| 10  | 1a-4c         | Ala-Aa2-Asp-Aa4 + H                                             |                                   | 477   | 24        | 491   | 20        | 539   | 22        | 500   | 30        | 475   | 20        | 523   | 25        |
| 11  | 2a-4c         | Aa2-Asp-Aa4 + H                                                 |                                   | 406   | 5         | 420   | 6         | 468   | 7         | 429   | 4         | 404   | 8         | 452   | 6         |
| 12  | 3a-7c         | MeAsp-Aa4-Adda-Glu-Mdha + H                                     |                                   | 818   | 13        | 832   | 21        | 832   | 0         | 841   | 10        | 816   | 12        | 816   | 0         |
| 13  | 3a-7c         | MeAsp-Aa4 + H                                                   |                                   | 293   | 6         | 307   | 2         | 307   | 2         | 316   | 6         | 291   | 3         | 291   | 1         |
| 14  | <b>4</b> a-7c | Aa4-Adda-Glu-Mdha + H                                           |                                   | 689   | 8         | 703   | 6         | 703   | 0         | 712   | 4         | 687   | 12        | 687   | 0         |
| 15  | 4a-5c         | Aa4-Adda + H                                                    |                                   | 477   | 24        | 491   | 20        | 491   | 2         | 500   | 30        | 475   | 20        | 475   | 0         |
| 16  | 5y            | C <sub>11</sub> H <sub>17</sub> NO-Glu-Mdha-Ala-Aa2-Asp-Aa4 + H |                                   | 868   | 8         | 882   | 56        | 930   | 60        | 891   | 48        | 866   | 100       | 914   | 84        |
| 17  | 5y-5x-4c      | C <sub>11</sub> H <sub>14</sub> O-Glu-Midha-Ala-Aa2-Asp-Aa4 + H |                                   | 851   | 77        | 865   | 72        | 913   | 77        | 874   | 48        | 849   | 84        | 897   | 76        |
| 18  | 5a-5y-4c      | C <sub>11</sub> H <sub>17</sub> NO-Glu-Mdha-Ala-Aa2-Asp-Aa4 + H | H₂O                               | 850   | 63        | 864   | 31        | 912   | 36        | 873   | 31        | 848   | 69        | 896   | 38        |
| 19  | 5a-2c         | Adda-Glu-Mdha-Ala-Aa2 + H                                       | NH <sub>3</sub>                   | 693   | 35        | 693   | 15        | 741   | 12        | 693   | 23        | 693   | 29        | 741   | 14        |
| 20  | 5y-5x-3c      | C <sub>11</sub> H <sub>14</sub> O-Glu-Midha-Ala-Aa2-Asp+H       |                                   | 688   | 5         | 688   | 3         | 736   | 4         | 688   | 3         | 688   | 6         | 736   | 7         |
| 21  | 5a-1c         | Adda-Glu-Mdha-Ala + H                                           | $NH_3$                            | 580   | 20        | 580   | 12        | 580   | 16        | 580   | 12        | 580   | 22        | 580   | 12        |
| 22  | 5y-5x-2c      | C <sub>11</sub> H <sub>14</sub> O-Glu-Mdha-Ala-Aa2 + H          |                                   | 559   | 28        | 559   | 16        | 607   | 20        | 559   | 15        | 559   | 44        | 607   | 30        |
| 23  | 5a-7c         | Adda-Glu-Mdha + H                                               | NH <sub>3</sub>                   | 509   | 33        | 509   | 38        | 509   | 17        | 509   | 17        | 509   | 30        | 509   | 17        |
| 24  | 5y-5x-1c      | C <sub>11</sub> H <sub>14</sub> O-Glu-Midha-Ala + H             |                                   | 446   | 15        | 446   | 18        | 446   | 20        | 446   | 22        | 446   | 21        | 446   | 23        |
| 25  | 5y-5x-7c      | C <sub>11</sub> H <sub>14</sub> O-Glu-Mdha + H                  |                                   | 375   | 27        | 375   | 20        | 375   | 19        | 375   | 10        | 375   | 36        | 375   | 16        |
| 26  | 6a-4c         | Glu-Mdha-Ala-Aa2-Asp-Aa4 + H                                    |                                   | 689   | 8         | 703   | 6         | 751   | 6         | 712   | 4         | 687   | 12        | 735   | 13        |
| 27  | 6a-3c         | Glu-Mdha-Ala-Aa2-Asp + H                                        | NH <sub>3</sub>                   | 509   | 33        | 509   | 38        | 557   | 22        | 509   | 17        | 509   | 30        | 557   | 1         |
| 28  | 6a-3c         | Glu-Mdha-Ala-Aa2-Asp + H                                        | H₂O                               | 508   | 12        | 508   | 33        | 556   | 41        | 508   | 5         | 508   | 7         | 556   | 4         |
| 29  | 6a-2c         | Glu-Mdha-Ala-Aa2 + H                                            |                                   | 397   | 6         | 397   | 5         | 445   | 7         | 397   | 5         | 397   | 8         | 445   | 4         |
| 30  | 7a-4c         | Mdha-Ala-Aa2-Asp-Aa4 + H                                        |                                   | 560   | 51        | 574   | 44        | 622   | 40        | 583   | 42        | 558   | 58        | 606   | 48        |
| 31  | 7a-3c         | Mdha-Ala-Aa2-Asp + H                                            |                                   | 397   | 6         | 397   | 5         | 445   | 7         | 397   | 5         | 397   | 8         | 445   | 4         |

|     | Sodiated product ion structure |                                 | es                   | MC-LTyr |           | MC-LHty |           | MC-HphHty |           | MC-LW |           | MC-LHph |           | MC-HphHph |           |
|-----|--------------------------------|---------------------------------|----------------------|---------|-----------|---------|-----------|-----------|-----------|-------|-----------|---------|-----------|-----------|-----------|
| No  | CI                             | [peptide + Na] <sup>+</sup>     | - Neutral            | m/z     | Intensity | m/z     | Intensity | m/z       | Intensity | m/z   | Intensity | m/z     | Intensity | m/z       | Intensity |
| 1   | 1a-7c                          | Ala-Aa2-MeAsp-Aa4-Adda-Glu-Mdha |                      | 1 024   |           | 1 038   |           | 1 086     |           | 1 047 |           | 1 022   |           | 1 070     |           |
| 2   | 1a-7c                          | Ala-Aa2-MeAsp-Aa4-Adda-Glu-Mdha | NH₃                  | 1 007   | 9         | 1 021   | 11        | 1 069     | 11        | 1 030 | 17        | 1 005   | 11        | 1 053     | 7         |
| 3   | 1a-7c                          | Ala-Aa2-MeAsp-Aa4-Adda-Glu-Mdha | H₂O                  | 1 006   | 14        | 1 020   | 12        | 1 068     | 16        | 1 029 | 16        | 1 004   | 13        | 1 052     | 16        |
| 4   | 1a-7c                          | Ala-Aa2-MeAsp-Aa4-Adda-Glu-Mdha | co                   | 996     | 57        | 1 010   | 52        | 1 058     | 59        | 1 019 | 46        | 994     | 48        | 1 042     | 47        |
| 5   | 1a-7c                          | Ala-Aa2-MeAsp-Aa4-Adda-Glu-Mdha | CO <sub>2</sub>      | 980     | 7         | 994     | 10        | 1 042     | 11        | 1 003 | 6         | 978     | 8         | 1 026     | 9         |
| 6   | 1a-7c                          | Ala-Aa2-MeAsp-Aa4-Adda-Glu-Mdha | CO, H <sub>2</sub> O | 978     | 9         | 992     | 4         | 1 040     | 9         | 1 001 | 7         | 960     | 2         | 1 008     | 2         |
| 7   | 1a-7c                          | Ala-Aa2-MeAsp-Aa4-Adda-Glu-Mdha | CO <sub>2</sub> , CO | 952     | 37        | 966     | 28        | 1 014     | 29        | 975   | 26        | 950     | 23        | 998       | 28        |
| 8   | 1a-4c                          | Ala-Aa2-MeAsp-Aa4               |                      | 499     | 6         | 513     | 6         | 561       | 3         | 522   | 11        | 497     | 3         | 545       | 6         |
| 9   | 1a-3c                          | Ala-Aa2-MeAsp                   | co                   | 308     | 5         | 308     | 4         | 356       | 8         | 308   | 2         | 308     | 6         | 356       | 18        |
| 10  | 2a-7c                          | Aa2-MeAsp-Aa4-Adda-Glu-Mdha     |                      | 953     | 18        | 967     | 21        | 1 015     | 18        | 976   | 10        | 951     | 20        | 999       | 20        |
| 11  | 3a-1c                          | MeAsp-Aa4-Adda-Glu-Mdha-Ala     |                      | 911     | 12        | 925     | 10        | 925       | 14        | 934   | 20        | 909     | 20        | 909       | 18        |
| 12  | 3a-6c                          | MeAsp-Aa4-Adda-Glu              |                      | 757     | 11        | 771     | 10        | 771       | 9         | 780   | 5         | 755     | 4         | 755       | 6         |
| 13  | 3a-6c                          | MeAsp-Aa4-Adda-Glu              | H₂O                  | 739     | 5         | 753     | 8         | 753       | 8         | 762   | 13        | 737     | 8         | 737       | 5         |
| 14  | 3a-6c                          | MeAsp-Aa4-Adda-Glu              | CO, H <sub>2</sub> O | 711     | 15        | 725     | 11        | 725       | 9         | 734   | 14        | 709     | 7         | 709       | 11        |
| 15  | 3a-5c                          | MeAsp-Aa4-Adda                  |                      | 628     | 42        | 642     | 39        | 642       | 34        | 651   | 46        | 626     | 46        | 626       | 46        |
| 16  | 3a-5c                          | MeAsp-Aa4-Adda                  | со                   | 600     | 53        | 614     | 59        | 614       | 43        | 623   | 53        | 598     | 42        | 598       | 37        |
| 17  | 4a-2c                          | Aa4-Adda-Glu-Mdha-Ala-Aa2       |                      | 895     | 15        | 909     | 16        | 957       | 17        | 918   | 24        | 893     | 19        | 941       | 11        |
| 18  | 4a-2c                          | Aa4-Adda-Glu-Mdha-Ala-Aa2       | co                   | 867     | 20        | 881     | 17        | 929       | 23        | 890   | 7         | 865     | 25        | 913       | 18        |
| 19  | 4a-7c                          | Aa4-Adda-Glu-Mdha               |                      | 711     | 15        | 725     | 11        | 725       | 9         | 734   | 14        | 709     | 7         | 709       | 11        |
| 20  | 4a-6c                          | Aa4-Adda-Glu                    |                      | 628     | 42        | 642     | 39        | 642       | 34        | 651   | 46        | 626     | 46        | 626       | 46        |
| 21  | 4a-6c                          | Aa4-Adda-Glu                    | co                   | 600     | 53        | 614     | 59        | 614       | 43        | 623   | 53        | 598     | 42        | 598       | 37        |
| 22  | 4a-6c                          | Aa4-Adda-Glu                    | CO, H <sub>2</sub> O | 582     | 32        | 596     | 34        | 596       | 11        | 605   | 23        | 580     | 30        | 580       | 2         |
| _23 | 4a-5c                          | Aa4-Adda                        |                      | 499     | 6         | 513     | 6         | 513       | 6         | 522   | 11        | 497     | 3         | 497       | 2         |
| 24  | 5a-3c                          | Adda-Glu-Mdha-Ala-Aa2-MeAsp     | NH₃                  | 844     | 36        | 844     | 30        | 892       | 33        | 844   | 26        | 844     | 44        | 892       | 46        |
| 25  | 5a-7c                          | Adda-Glu-Mdha                   |                      | 548     | 7         | 548     | 9         | 548       | <1        | 548   | 13        | 548     | 8         | 548       | <1        |
| 26  | 6a-4c                          | Glu-Midha-Ala-Aa2-MeAsp-Aa4     |                      | 711     | 15        | 725     | 11        | 773       | 4         | 734   | 14        | 709     | 7         | 757       | 4         |
| 27  | 6a-3c                          | Glu-Midha-Ala-Aa2-MeAsp         |                      | 548     | 7         | 548     | 9         | 596       | 11        | 548   | 13        | 548     | 8         | 596       | 3         |
| 28  | 6a-3c                          | Glu-Midha-Ala-Aa2-MeAsp         | CO, H <sub>2</sub> O | 502     | 14        | 502     | 10        | 550       | 12        | 502   | 14        | 502     | 15        | 550       | 13        |
| 29  | 6a-2c                          | Glu-Mdha-Ala-Aa2                |                      | 419     | 100       | 419     | 100       | 467       | 100       | 419   | 100       | 419     | 100       | 467       | 100       |
| 30  | 7a-5c                          | Mdha-Ala-Aa2-MeAsp-Aa4-Adda     |                      | 895     | 15        | 909     | 16        | 957       | 17        | 918   | 24        | 893     | 19        | 941       | 11        |
| 31  | 7a-5c                          | Mdha-Ala-Aa2-MeAsp-Aa4-Adda     | co                   | 867     | 20        | 881     | 17        | 929       | 23        | 890   | 7         | 865     | 25        | 913       | 21        |
| 32  | 7a-4c                          | Mdha-Ala-Aa2-MeAsp-Aa4          |                      | 582     | 32        | 596     | 34        | 644       | 38        | 605   | 23        | 580     | 30        | 628       | 34        |
| 33  | 7a-3c                          | Mdha-Ala-Aa2-MeAsp              |                      | 419     | 100       | 419     | 100       | 467       | 100       | 419   | 100       | 419     | 100       | 467       | 100       |
| 34  | 7a-3c                          | Mdha-Ala-Aa2-MeAsp              | $CO_2$ , $CO$        | 347     | 57        | 347     | 55        | 395       | 64        | 347   | 38        | 347     | 48        | 395       | 73        |

Table S2. Assignments, ion masses (*m*/*z*) and intensities (%) of the sodiated non Arg microcystins of the most important product ions. CI = Code for ion structure

**Table S3.** Microcystin variants, retention times (Rt), relative amounts (RA) and small diagnostic ions (from protonated MC's) with corresponding amino acids from *Phormidium* sp. LP904c by HPLC-ITMS and UPLC-QTOF. RA's were calculated from the sum of the peak areas of the extracted ion chromatograms of different ion species (H, Na, K and 2H) of microcystins. Hty = homotyrosine, Hph = homophenylalanine. Diagnostic ions of MC's No 14-16 were analyzed from sodiated MC's and additionally MC No 15 ions masses were corrected with the mass of sodiated MC No 15 exact mass.

|    |                             | Aa in | pos | Rt    |     | Diagnostic ions (m/z) in MS <sup>2</sup> |     |                 |     |                   |                    |
|----|-----------------------------|-------|-----|-------|-----|------------------------------------------|-----|-----------------|-----|-------------------|--------------------|
|    |                             |       | _   |       | RA  |                                          |     | -               |     |                   | Glu <sup>6</sup> - |
| No | Microcystin                 | X     | Ζ   | (min) | (%) | Aa <sup>2</sup>                          |     | Aa <sup>4</sup> |     | Mdha <sup>7</sup> | Mdha <sup>7</sup>  |
| 1  | MC-YR                       | Y     | R   | 35,5  | <1  |                                          |     |                 |     |                   |                    |
| 2  | MC-HtyR                     | Hty   | R   | 36,3  | 4   | 150,0913                                 | Hty | 70,0649         | R   | 56,0489           | 213,0868           |
| 3  | MC-MR                       | М     | R   | 36,5  | 1   |                                          |     |                 |     |                   |                    |
| 4  | [DMAdda <sup>5</sup> ]MC-LR | L     | R   | 36,8  | <1  |                                          |     |                 |     |                   |                    |
| 5  | [MeSer7]MC-LR               | L     | R   | 38,2  | <1  |                                          |     |                 |     |                   |                    |
| 6  | [Asp <sup>3</sup> ]MC-LR    | L     | R   | 38,3  | <1  |                                          |     |                 |     |                   |                    |
| 7  | MC-LR                       | L     | R   | 38,8  | 55  | 86,0959                                  | L   | 70,0649         | R   | 56,0492           | 213,0867           |
| 8  | MC-FR                       | F     | R   | 38,8  | 9   | 120,0809                                 | F   | 70,0653         | R   | 56,0499           | 213,0864           |
| 9  | [Dha <sup>7</sup> ]MC-LR    | L     | R   | 39,3  | <1  |                                          |     |                 |     |                   |                    |
| 10 | MC-HphR                     | Hph   | R   | 41,2  | 17  | 134,0959                                 | Hph | 70,0645         | R   | 56,0483           | 213,0869           |
| 11 | MC-LY                       | L     | Y   | 44,9  | 1   |                                          |     |                 |     |                   |                    |
| 12 | MC-LHty                     | L     | Hty | 45,1  | 5   | 86,0957                                  | L   | 150,0909        | Hty | 56,0489           | 213,0859           |
| 13 | MC-HphHty                   | Hph   | Hty | 46,9  | 3   | 134,0959                                 | Hph | 150,0911        | Hty | 56,0487           | 213,0864           |
| 14 | MC-LW                       | L     | W   | 47,6  | <1  | 86,0970                                  | L   | 159,0873        | W   | 56,0503           | 213,0877           |
| 15 | MC-LHph                     | L     | Hph | 51,2  | <1  | 86,0979                                  | L   | 134,0950 Hph    |     | -                 | 213,0856           |
| 16 | MC-HphHph                   | Hph   | Hph | 52,9  | <1  | -                                        |     | -               |     | 56,0471           | 213,0870           |

| Amino acid sequence from<br><i>Phormidium</i> sp. LP904c | Query length<br>(amino acids) | Predicted function | Organism                            | Coverage/Identity | Accession<br>number |
|----------------------------------------------------------|-------------------------------|--------------------|-------------------------------------|-------------------|---------------------|
| МсуА                                                     | 2783                          | NRPS               | Fischerella sp. PCC 9339            | 99/75             | WP_017308558.1      |
|                                                          |                               |                    | Dolichospermum/Anabaena sp. 90      | 100/75            | WP_041458258.1      |
| МсуВ                                                     | 2130                          | NRPS               | Fischerella sp. PCC 9339            | 99/76             | WP_017308559.1      |
|                                                          |                               |                    | Dolichospermum/Anabaena sp. 90      | 99/76             | WP_015078940.1      |
| McyC                                                     | 1296                          | NRPS               | MULTISPECIES: Planktothrix          | 99/80             | WP_026787621.1      |
|                                                          |                               |                    | Planktothrix agardhii               | 99/80             | WP_042154169.1      |
| McyD                                                     | 3907                          | PKS                | Planktothrix prolifica NIVA-CYA98   | 100/78            | WP_026796481.1      |
|                                                          |                               |                    | Planktothrix agardhii NIVA-CYA126/8 | 100/78            | WP_042154180.1      |
| McyE                                                     | 3489                          | NRPS-PKS           | Planktothrix agardhii NIVA-CYA56/3  | 100/82            | WP_027255262.1      |
|                                                          |                               |                    | MULTISPECIES: Planktothrix          | 100/82            | WP_026795534.1      |
| McyF                                                     | 238                           | Aspartate racemase | Microcystis aeruginosa PCC9807      | 97/83             | WP_002768078.1      |
|                                                          |                               |                    | Microcystis aeruginosa PCC7941      | 97/83             | WP_002776433.1      |
| McyG                                                     | 2644                          | NRPS-PKS           | Planktothrix prolifica NIVA/CYA98   | 100/82            | WP_026796479.1      |
|                                                          |                               |                    | Planktothrix agardhii NIVA/CYA126/8 | 100/82            | WP_042154175.1      |
| McyH                                                     | 584                           | ABC transporter    | Planktothrix agardhii               | 99/82             | WP_027250110.1      |
|                                                          |                               |                    | MULTISPECIES: Planktothrix          | 99/81             | WP_026787624.1      |
| McyI                                                     | 336                           | Dehydrogenase      | Microcystis aeruginosa NIES88       | 99/77             | WP_061431771.1      |
|                                                          |                               |                    | Microcystis aeruginosa PCC9808      | 99/76             | WP_044034182.1      |
| McyJ                                                     | 316                           | Methyltransferase  | MULTISPECIES: Planktothrix          | 97/87             | WP_026795539.1      |
|                                                          |                               |                    | Planktothrix agardhii NIVA-CYA56/3  | 97/86             | WP_027255267.1      |

Table S4. Sequence similarity of the microcystin gene cluster from *Phormidium* sp. LP904c obtained by BLASTp or Blastx.

| Table S5. Microcystins va | ariants detected in the                 | strains from table 2 and 3. In high         | light are the homoa | mino acids | detected | d.            |
|---------------------------|-----------------------------------------|---------------------------------------------|---------------------|------------|----------|---------------|
|                           |                                         |                                             | Amino               | acids in   | %        |               |
|                           |                                         |                                             | micro               | ocystin    | MC*      |               |
|                           |                                         |                                             | stru                | cture      |          |               |
|                           |                                         |                                             | corresp             | ondent to  |          |               |
|                           |                                         |                                             | the A               | domain     | _        |               |
| Genera                    | Strain                                  | Microcystin variants                        | McyB <sub>1</sub>   | McyC       |          | <b>Ref.</b> ¤ |
|                           |                                         |                                             | (X)                 | (Y)        |          |               |
| Phormidium sp.            | DVL1003c                                | MC-LR                                       | Leu                 | Arg        | 49       | 1, 2          |
|                           |                                         | MC-HphR                                     | Hph                 | -          | 14       |               |
|                           |                                         | MC-LHty                                     | -                   | -          | 12       |               |
|                           |                                         | MC-HphHty                                   | Hph                 | Hty        | 7        |               |
|                           |                                         | MC-FR                                       | Phe                 | -          | 7        |               |
|                           |                                         | MC-HtyR                                     | Hty                 | -          | 4        |               |
|                           |                                         | [MeSer <sup>7</sup> ]MC-LR                  | -                   | -          | 2        |               |
|                           |                                         | [D-Asp <sup>3</sup> ]MC-LHty                | -                   | Hty        | 2        |               |
|                           |                                         | MC-LHph                                     | -                   | Hph        | 1        |               |
|                           |                                         | MC-HphHph                                   | Hph                 | Hph        | <1       |               |
|                           |                                         | MC-LW                                       | -                   | Trp        | <1       |               |
|                           |                                         | [D-Asp <sup>3</sup> ]MC-LR                  | -                   | -          | <1       |               |
|                           |                                         | [Dha <sup>7</sup> ]MC-LR                    | -                   | -          | <1       |               |
|                           |                                         | [DMAdda <sup>5</sup> ]MC-LR                 | -                   | -          | <1       |               |
|                           |                                         | MC-YR                                       | Tvr                 | -          | <1       |               |
|                           |                                         |                                             | 5                   |            |          |               |
| Planktothrix agardhii     | CYA 126/8                               | [D-Asp <sup>3</sup> ]MC-RR                  | Arg                 | -          | 92       | 3             |
| 8                         |                                         | [D-Asp <sup>3</sup> ]MC-LR                  | -                   | -          | 7        |               |
|                           |                                         | r -Lll -                                    |                     |            |          |               |
| Planktothrix agardhii     | 213                                     | [D-Asp <sup>3</sup> ]MC-RR                  | Arg                 | -          | 84       | 4             |
| 0                         |                                         | [D-Asp <sup>3</sup> ]MC-LR                  | -                   | -          | 15       |               |
|                           |                                         | [Asp <sup>3</sup> , Dha <sup>7</sup> ]MC-LR | -                   | -          | <1       |               |
|                           |                                         | r - r , - 1                                 |                     |            |          |               |
| Planktothrix aqardhii     | NIVA-CYA56/3                            | Dm-MC-LR                                    | -                   | -          | Ni       | 5             |
| 8                         | · · · - · · · · · · · · · · · · · · · · | Dm-MC-RR                                    | Arg                 | -          | Ni       |               |
|                           |                                         | Dm-MC-YR                                    | Tvr                 | -          | Ni       |               |
|                           |                                         |                                             | - ) -               |            |          |               |
| Planktothrix prolifica    | NIVA-CYA 98                             | [Dha <sup>7</sup> ]MC-LR                    | _                   | -          | Ni       | 6             |
| pronjion                  |                                         | IDha <sup>7</sup> IMC-RR                    | Arg                 | _          | Ni       | -             |
|                           |                                         | [ ]                                         | ***8                |            |          |               |
| Planktothrix rubescens    | NIVA-CYA 407                            | Dm-MC-LR                                    | -                   | _          | Ni       | 5             |
|                           |                                         | 2                                           |                     |            |          | 0             |

| Table S5. Microc | ystins variants | detected in th | ne strains from | table 2 and 3. | In highlig | ght are the | homoamino | acids detected |
|------------------|-----------------|----------------|-----------------|----------------|------------|-------------|-----------|----------------|
|                  |                 |                |                 |                |            | ,           |           |                |

|                           |      | Dm-MC-RR                                              | Arg    | - | Ni  |   |
|---------------------------|------|-------------------------------------------------------|--------|---|-----|---|
|                           |      | Dm-MC-HtyR                                            | Hty    | - | Ni  |   |
| Dolichospermum sp         | 90   | MC-LR                                                 | _      | _ | 55  | 4 |
| Demenooper muni op.       | 20   | [D-Asp <sup>3</sup> ]MC-LR                            | _      | _ | 34  | 1 |
|                           |      | MC-RR                                                 | Arg    | - | 5   |   |
|                           |      | [D-Asp <sup>3</sup> ]MC-RR                            | Arg    | - | 2   |   |
|                           |      | MC-HilR                                               | Hil    | _ | 1.5 |   |
|                           |      | [D-Asp <sup>3</sup> ]MC-Hi]R                          | Hil    | _ | <1  |   |
|                           |      | [MeSer <sup>7</sup> ]MC-LR                            | -      | - | <1  |   |
|                           |      | [DMAdda <sup>5</sup> ]MC-LR                           | _      | _ | <1  |   |
|                           |      | [D-Asp <sup>3</sup> , MeSer <sup>7</sup> ]MC-LR       | _      | _ | <1  |   |
|                           |      | [Dha <sup>7</sup> ]MC-LR                              | _      | _ | <1  |   |
|                           |      | []                                                    |        |   |     |   |
| Dolichospermum flos-aquae | 18B6 | [D-Asp <sup>3</sup> , Dha <sup>7</sup> ]MC-RR         | Arg    | - | 79  | 4 |
| , , ,                     |      | Demethyl- MC-RR                                       | Arg    | - | 20  |   |
|                           |      | [X]MC-RR                                              | Arg    | - | 1   |   |
|                           |      | MC-XR                                                 | x      | - | <1  |   |
|                           |      |                                                       |        |   |     |   |
| Dolichospermum            | 66 A | [Dha <sup>7</sup> ]MC-HtyR                            | Hty    | - | 56  | 4 |
| lemmermannii              |      |                                                       |        |   |     |   |
|                           |      | [D-Asp <sup>3</sup> , Dha <sup>7</sup> ]MC-XR         | Х      | - | 29  |   |
|                           |      | [L-Ser <sup>7</sup> ]MC-HtyR                          | Hty    | - | 4   |   |
|                           |      | [D-Asp <sup>3</sup> , L-Ser <sup>7</sup> ]MC-HtyR     | Hty    | - | 2   |   |
|                           |      | [Dha <sup>7</sup> ]MC-LR                              | -      | - | 2   |   |
|                           |      | [Dha <sup>7</sup> ]MC-HphR                            | Hph    | - | 2   |   |
|                           |      | [D-Asp³, Dha <sup>7</sup> ]MC-LR                      |        | - | 1   |   |
|                           |      | [DMAdda <sup>5</sup> , (M)dha <sup>7</sup> ]MC-(H)tyR | Hty/Ty | - | <1  |   |
|                           |      |                                                       | r      |   |     |   |
|                           |      | [D-Asp <sup>3</sup> , Dha <sup>7</sup> ]MC-XR         | Х      | - | <1  |   |
|                           |      | [X]MC-HtyR                                            | Hty    | - | <1  |   |
|                           |      | [D-Asp <sup>3</sup> ]MC-XR                            | X      | - | <1  |   |
|                           |      | [X]MC-(H)tyR                                          | Hty/Ty | - | <1  |   |
|                           |      |                                                       | r      |   |     |   |
|                           |      | MC-XR                                                 | X      | - | <1  |   |
|                           |      | [X]MC-X/HtyR                                          | X/Hty  | - | <1  |   |
|                           |      | [X]MC-(H)tyR                                          | Hty/Ty | - | <1  |   |
|                           |      |                                                       | r      |   | -1  |   |
|                           |      | MC-HtyK                                               | Hty    | - | <1  |   |

|            |          | [X, L-Ser <sup>7</sup> ]MC-LR                                          | -      | -   | <1       |      |
|------------|----------|------------------------------------------------------------------------|--------|-----|----------|------|
|            |          | [D-Asp <sup>3</sup> ]MC-XR                                             | Х      | -   | <1       |      |
|            |          | Demethyl-[L-Ser <sup>7</sup> ]MC-LR                                    | -      | -   | <1       |      |
|            |          | [L-Ser <sup>7</sup> ]MC-LR                                             | -      | -   | <1       |      |
|            |          | [Dha <sup>7</sup> ]MC-FR                                               | Phe    | -   | <1       |      |
|            |          | [D-Asp <sup>3</sup> , Dha <sup>7</sup> ]MC-FR                          | Phe    | -   | <1       |      |
|            |          | [X]MC-LR                                                               | -      | -   | <1       |      |
|            |          | [D-Asp <sup>3</sup> , Dha <sup>7</sup> ]MC-HphR                        | Hph    | -   | <1       |      |
| Nostoc sp. | 152      | [ADMAdda⁵]MC-LR                                                        | -      | -   | 44       | 4,7  |
| -          |          | [ADMAdda <sup>5</sup> ]MC-LHar                                         | -      | Har | 40       |      |
|            |          | [ADMAdda <sup>5</sup> ]MC-HilR                                         | Hil    | -   | 1.7      |      |
|            |          | [ADMAdda <sup>5</sup> ]MC-HilHar                                       | Hil    | Har | 1        |      |
|            |          | [ADMAdda <sup>5</sup> , Dha <sup>7</sup> ]MC-LR                        | -      | -   | <1       |      |
|            |          | [Ser <sup>1</sup> , D-Asp <sup>3</sup> , ADMAdda <sup>5</sup> ]MC-LR   | -      | -   | <1       |      |
|            |          | [D-Asp <sup>3</sup> ,ADMAdda <sup>5</sup> , Dha <sup>7</sup> ]MC-LR    | -      | -   | <1       |      |
|            |          | [DMAdda <sup>5</sup> ]MC-LR                                            | -      | -   | <1       |      |
|            |          | [DMAdda <sup>5</sup> ]MC-LHar                                          | -      | Har | <1       |      |
|            |          | [D-Asp3, DMAdda <sup>5</sup> ]MC-LR                                    | -      | -   | <1       |      |
|            |          | [ADMAdda <sup>5</sup> ]MC-XR                                           | Х      | -   | <1       |      |
|            |          | [D-Asp <sup>3</sup> , ADMAdda <sup>5</sup> ]MC-VR                      | Val    | -   | <1       |      |
|            |          | [D-Asp <sup>3</sup> , ADMAdda <sup>5</sup> , Dha <sup>7</sup> ]MC-HilR | Hil    | -   | <1       |      |
| Nostoc sp. | IO-102-I | [ADMAdda⁵]MC-LR                                                        | -      | -   | 82       | 4, 8 |
| ±          |          | [ADMAdda <sup>5</sup> ]MC-XR                                           | Х      | -   | 4        |      |
|            |          | [D-Asp <sup>3</sup> , ADMAdda <sup>5</sup> ]MC-LR                      | -      | -   | 3        |      |
|            |          | [DMAdda <sup>5</sup> ]MC-LR                                            | -      | -   | 2        |      |
|            |          | MC-XR                                                                  | Х      | -   | 1        |      |
|            |          | MC-XR                                                                  | Х      | -   | 1        |      |
|            |          | [(X), ADMAdda <sup>5</sup> ]MC-(F)R                                    | Phe    | -   | 1        |      |
|            |          | MC-XR                                                                  | Х      | -   | 1        |      |
|            |          | [(X), DMAdda <sup>5</sup> ]MC-(Hil)R                                   | Hil    | -   | 1        |      |
|            |          | [DMAdda <sup>5</sup> ]MC-HilR                                          | Hil    | -   | <1       |      |
|            |          | [ADMAdda <sup>5</sup> ]MC-XR                                           | Х      | -   | <1       |      |
|            |          | [ADMAdda <sup>5</sup> ]MC-XR                                           | Х      | -   | <1       |      |
|            |          | ADMAdda <sup>5</sup> IMC-YR                                            | Tvr    | -   | <1       |      |
|            |          |                                                                        | - , -  |     |          |      |
|            |          | [ADMAdda <sup>5</sup> ]MC-XR                                           | X      | -   | <1       |      |
|            |          | [ADMAdda <sup>5</sup> ]MC-XR<br>[X]MC-LR                               | X<br>- | -   | <1<br><1 |      |

|                         |            | [X]MC-LR                                        | -   | -   | <1  |    |
|-------------------------|------------|-------------------------------------------------|-----|-----|-----|----|
|                         |            | MC-XR                                           | Х   | -   | <1  |    |
| Fischerella sp          | PCC9339    | MC-LR                                           | _   | _   | Ni  | 9  |
|                         | 100,007    |                                                 |     |     |     | -  |
| Hapalosiphon hibernicus | BZ-3-1     | MC-LA                                           | -   | Ala | 70  | 4  |
|                         |            | [D-Asp <sup>3</sup> ]MC-LA                      | -   | Ala | 16  |    |
|                         |            | MC-RA                                           | Arg | Ala | 7   |    |
|                         |            | [D-Asp <sup>3</sup> ]MC-RA                      | Arg | Ala | 2   |    |
|                         |            | MC-VA                                           | Val | Ala | 1   |    |
|                         |            | [D-Asp³, DMAdda <sup>5</sup> ]MC-LA             | -   | Ala | 1   |    |
|                         |            | [Dha <sup>7</sup> ]MC-LA                        | -   | Ala | 1   |    |
|                         |            | MC-LL                                           | -   | Leu | <1  |    |
|                         |            | [D-Asp <sup>3</sup> ]MC-VA                      | Val | Ala | <1  |    |
|                         |            | [D-Asp <sup>3</sup> ]MC-LV                      | -   | Val | <1  |    |
|                         |            | MC-LV                                           | -   | Val | <1  |    |
| Microcystis aeruginosa  | PCC 7806   | [D-Asp <sup>3</sup> ]MC-LR                      | -   | -   | 52  | 4  |
|                         |            | MC-LR                                           | -   | -   | 46  |    |
|                         |            | [MeSer <sup>7</sup> ]MC-LR                      | -   | -   | <1  |    |
|                         |            | [D-Asp <sup>3</sup> , Dha <sup>7</sup> ]MC-LR   | -   | -   | <1  |    |
|                         |            | [Dha <sup>7</sup> ]-MC-LR                       | -   | -   | <1  |    |
|                         |            | [D-Asp <sup>3</sup> , MeSer <sup>7</sup> ]MC-LR | -   | -   | <1  |    |
| Microcystis aeruginosa  | FCY-28     | Ni                                              | Ni  | Ni  | Ni  | 10 |
| Microcystis aeruginosa  | FCY-26     | Ni                                              | Ni  | Ni  | Ni  | 10 |
| Microcystis aeruginosa  | UV027      | MC-RR                                           | Arg | -   | 100 | 11 |
| Microcystis aeruginosa  | K139       | [Dha <sup>7</sup> ]MC-LR                        | -   | -   | 76  | 12 |
|                         |            | [Asp <sup>3</sup> , Dha <sup>7</sup> ]MC-LR     | -   | -   | 24  |    |
| Microcystis aeruginosa  | DIANCHI905 | Ni                                              | Ni  | Ni  | Ni  | 13 |
| Microcystis aeruginosa  | PCC 9807   | Ni                                              | Ni  | Ni  | Ni  | 14 |
| Microcystis aeruginosa  | PCC 7941   | Ni                                              | Ni  | Ni  | Ni  | 14 |

| Microcystis aeruginosa | PCC 9443 | Ni                                                               | Ni          | Ni | Ni  | 14 |
|------------------------|----------|------------------------------------------------------------------|-------------|----|-----|----|
| Microcystis aeruginosa | NIES-843 | MC-RR                                                            | Arg         | -  | 50  | 15 |
| v c                    |          | MC-LR                                                            | -           | -  | 41  |    |
|                        |          | MC-YR                                                            | Tyr         | -  | 10  |    |
| Microcystis aeruginosa | SPC777   | [L-Ser <sup>7</sup> ] MC-RR                                      | Arg         | -  | 100 | 16 |
| Microcystis viridis    | NIES 102 | MC-HilR                                                          | Hil         | -  | 19  | 4  |
|                        |          | [Adda/DMAdda <sup>5</sup> ]MC-LR                                 | Leu/Hi<br>l | -  | 15  |    |
|                        |          | MC-RR                                                            | Arg         | -  | 10  |    |
|                        |          | MC-YR                                                            | Tyr         | -  | 9   |    |
|                        |          | [X, D-Asp <sup>3</sup> ]MC-HilR                                  | Hil         | -  | 6   |    |
|                        |          | MC-WR                                                            | Trp         | -  | 5   |    |
|                        |          | [D-Asp <sup>3</sup> ]MC-LR                                       | -           | -  | 2   |    |
|                        |          | [D-Asp <sup>3</sup> ]MC-YR                                       | Tyr         | -  | 2   |    |
|                        |          | MC-FR                                                            | Phe         | -  | 2   |    |
|                        |          | MC-HtyR                                                          | Hty         | -  | 2   |    |
|                        |          | MC-XR                                                            | Х           | -  | 2   |    |
|                        |          | MC-XR                                                            | Х           | -  | 2   |    |
|                        |          | MC-XR                                                            | Х           | -  | 1   |    |
|                        |          | [D-Asp <sup>3</sup> ]MC-WR                                       | Trp         | -  | <1  |    |
|                        |          | [D-Asp <sup>3</sup> ]MC-RR                                       | Arg         | -  | <1  |    |
|                        |          | [D-Asp <sup>3</sup> ]MC-XR                                       | x Ŭ         | -  | <1  |    |
|                        |          | [Ser <sup>1</sup> , D-Asp <sup>3</sup> , Dha <sup>7</sup> ]MC-LR | -           | -  | <1  |    |
|                        |          | [X, MeSer <sup>7</sup> ]MC-(Hil)R                                | Hil         | -  | <1  |    |
|                        |          | [Dha <sup>7</sup> ]MC-LR                                         | -           | -  | <1  |    |
|                        |          | [X, D-Asp <sup>3</sup> ]MC-HilR                                  | Hil         | -  | <1  |    |
|                        |          | [D-Asp <sup>3</sup> ]MC-XR                                       | X           | -  | <1  |    |
|                        |          | MC-XR                                                            | Х           | -  | <1  |    |
|                        |          | MC-XR                                                            | Х           | -  | <1  |    |
|                        |          | MC-XR                                                            | Х           | -  | <1  |    |
|                        |          | MC-XR                                                            | Х           | -  | <1  |    |
|                        |          | MC-XR                                                            | х           | -  | <1  |    |
|                        |          | MC-XR                                                            | х           | -  | <1  |    |
|                        |          | MC-XR                                                            | Х           | -  | <1  |    |
|                        |          | MC-XR                                                            | Х           | -  | <1  |    |
|                        |          | MC VP                                                            | Y           |    | ~1  |    |

| MC-XR | Х | - | <1 |  |
|-------|---|---|----|--|
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
| MC-XR | Х | - | <1 |  |
|       |   |   |    |  |

X. MC contains an unknown amino acid or the overall amino acid content is not known. \* % MC. Amounts of microcystin detected. Ni. No information.

¤ References:

- 1. Shishido TK, Kaasalainen U, Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, Fiore MF, Yunes JS, Rikkinen J, Sivonen K. 2013. Convergent evolution of [D-Leucine<sup>1</sup>] microcystin-LR in taxonomically disparate cyanobacteria. *BMC Evol. Biol.* 13:86.
- 2. Izaguirre G, Jungblut AD, Neilan BA. 2007. Benthic cyanobacteria (Oscillatoriaceae) that produce microcystin-LR, isolated from four reservoirs in southern California. Water Res. 41(2):492-498.
- 3. Christiansen G, Molitor C, Philmus B, Kurmayer R. 2008. Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol. Biol. Evol. 25(8):1695–1704.
- 4. Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, Laakso K, Wang H, Sivonen K. 2007. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. *BMC Evol Biol.* **7:1**83.
- 5. Tooming-Klunderud A, Sogge H, Rounge TB, Nederbragt AJ, Lagesen K, Glöckner G, Hayes PK, Rohrlack T, Jakobsen KS. 2013. From green to red: horizontal gene transfer of the phycoerythrin gene cluster between *Planktothrix* strains. *Appl Environ Microbiol*. 79(21): 6803–6812.
- 6. Rounge TB, Rohrlack T, Nederbragt AJ, Kristensen T, Jacobsen KS. 2009. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a *Planktothrix rubescens* strain. BMC Genomics. 10:396.
- 7. Sivonen, K, Namikoshi M, Evans WR, Fardig M, Carmichael WW, Rinehart KL. 1992. Three new microcystins, cyclic heptapeptide hepatotoxins, from *Nostoc* sp. strain 152. Chem. Res. Toxicol. 5:464–469.
- 8. Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K. 2004. Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium *Nostoc* sp. strain IO-102-I. Appl Environ Microbiol. 70(10): 5756–5763.

- 9. Calteau A, Fewer DP, Latifi A, Coursin T, Laurent T, Jokela J, Kerfeld CA, Sivonen K, Piel J, Gugger M. 2014. Phylum-wide comparative genomics unravel the diversity of secondary metabolism in Cyanobacteria. *BMC Genomics*. 15: 977.
- 10. Rhee J-S, Dahms H-U, Choi B-S, Lee J-S, Choi I-Y. 2012. Identification and analysis of whole microcystin synthetase genes from two Korean strains of the cyanobacterium *Microcystis aeruginosa*. Genes & Genomics. 34(4), 435-439.
- 11. Tooming-Klunderud A, Fewer DP, Rohrlack T, Jokela J, Rouhiainen L, Sivonen K, Kristensen T, Jakobsen KS. 2008. Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evol Biol. 8:256.
- 12. Harada K-I, Ogawa K, Matsuura K, Nagai H, Murata H, Suzuki M, Itezono Y, Nakayama N, Shirai M, Nakano M. 1991. Isolation of two toxic heptapeptide microcystins from an axenic strain of *Microcystis aeruginosa*, K-139. Toxicon 29: 479–489.
- 13. Yang C, Lin F, Li Q, Li T, Zhao J. 2015. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed *Microcystis aeruginosa*, a freshwater bloom-forming cyanobacterium. Front Microbiol. 2015; 6: 394.
- 14. Humbert J-F, Barbe V, Latifi A, Gugger M, Calteau A, Coursin T, Lajus A, Castelli V, Oztas S, Samson G, Longin C, Medigue C, de Marsac NT. 2013. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium *Microcystis aeruginosa*. PLoS One. 8: e70747.
- 15. Srivastava A, Choi GG, Ahn CY, Oh HM, Ravi AK, Asthana RK. 2012. Dynamics of microcystin production and quantification of potentially toxigenic *Microcystis* sp. using real-time PCR. Water Res. 46:817-27.
- 16. Sant'Anna CL, de Carvalho LR, Fiore MF, Silva-Stenico ME, Lorenzi AS, Rios FR, Konno K, Garcia C, Lagos N. 2011. Highly toxic *Microcystis aeruginosa* strain, isolated from São Paulo-Brazil, produce hepatotoxins and paralytic shellfish poison neurotoxins. Neurotox Res. 19(3):389-402.