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Abstract: In the work, water-soluble proteins of red stingray (Dasyatis akajei) cartilages were extracted
by guanidine hydrochloride and hydrolyzed using trypsin. Subsequently, four antioxidant peptides
(RSHP-A, RSHP-B, RSHP-C, and RSHP-D) were isolated from the water-soluble protein hydrolysate
while using ultrafiltration and chromatographic techniques, and the amino acid sequences of RSHP-A,
RSHP-B, RSHP-C, and RSHP-D were identified as Val-Pro-Arg (VPR), Ile-Glu-Pro-His (IEPH),
Leu-Glu-Glu–Glu-Glu (LEEEE), and Ile-Glu-Glu-Glu-Gln (IEEEQ), with molecular weights of 370.46
Da, 494.55 Da, 647.64 Da, and 646.66 Da, respectively. VPR, IEPH, LEEEE, and IEEEQ exhibited
good scavenging activities on the DPPH radical (EC50 values of 4.61, 1.90, 3.69, and 4.01 mg/mL,
respectively), hydroxyl radical (EC50 values of 0.77, 0.46, 0.70, and 1.30 mg/mL, respectively),
superoxide anion radical (EC50 values of 0.08, 0.17, 0.15, and 0.16 mg/mL, respectively), and ABTS
cation radical (EC50 values of 0.15, 0.11, 0.19, and 0.18 mg/mL, respectively). Among the four isolated
antioxidant peptides, IEPH showed the strongest reducing power and lipid peroxidation inhibition
activity, but LEEEE showed the highest Fe2+-chelating ability. The present results suggested that VPR,
IEPH, LEEEE, and IEEEQ might have the possibility of being an antioxidant additive that is used in
functional food and pharmaceuticals.
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1. Introduction

Superfluous reactive oxygen species (ROS) are produced under oxidative stress conditions and
they can destroy all types of macromolecules, which further lead to many health disorders, such as
cancer, diabetes mellitus, and inflammatory diseases [1–3]. In addition, oxidative decomposition of
unsaturated lipids causes food rancidity and shortens the shelf-life of food products [4–7]. Antioxidant
peptides (APs) from food resources usually contain 2–20 amino acid residues and they can donate
hydrogen, trap lipid-derived free radicals, and/or activate antioxidant enzymes in cells [5–10]. Therefore,
APs can convert ROS, including superoxide anion radicals (O−2 •) and hydroxyl radicals (HO•) into
stable molecular structure to inhibit the propagation of peroxidizing chain reaction [5–10]. FWKVV
and FMPLH were isolated from the protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle
and exhibited strong reducing power, lipid peroxidation inhibition ability, and radical scavenging
activity [9]. The AP fractions of CPF1 (molecular weight (MW) < 1 kDa) and CPF2 (1 < MW <
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3 kDa) from corn gluten exhibited cytoprotective effect and intracellular ROS scavenging activity
in H2O2-damaged HepG2 cells because they could positively affect the activities of the intracellular
antioxidant enzymes [11]. These studies suggested that APs could effectively enhance human health
and/or protect food quality by reducing the oxidative stress [12]. In addition, APs can serve as
ingredients of functional foods due to their nutritional and biological properties [1,13].

Collagens and peptides from porcine and cow cartilages can provide an adequate nutrient for
repairing cartilage, maintain the overall health of subchondral bone and articular cartilage, and
improve the joint flexibility and mobility in Osteoarthritis (OA) patients [14,15]. However, these
ingredients that were used in food and medical products have caused anxiety among some consumers
due to frequent outbreaks of infectious disease [15]. Therefore, cartilages from Chondrichthyes, such
as sharks, skates, and rays, are thought to be one of the alternatives of porcine and cow cartilages,
because they contain analogous bioactive substances, such as active proteins (angiogenesis inhibitors),
proteoglycan, collagen, bioactive peptides, and elastin fibers [16–23]. Furthermore, peptides from
protein and collagen hydrolysates of fish cartilages showed a variety of biological activities [15,18,19].
The polypeptide (PG155) with molecular weight (MW) of 15.500 kDa from the cartilages of Prionace
glauca can significantly reduce the growth of subintestinal vessels (SIVs) in the zebrafish embryos
model. PG155 also can inhibit vascular endothelial growth factor (VEGF) induced the migration
and tubulogenesis of HUVECs [17]. FIMGPY, IVAGPQ, and IVAGPQ from Raja porosa cartilages
exhibited high lipid peroxidation inhibiting power and radical scavenging activities [20,21]. In
addition, FIMGPY could induce the apoptosis of HeLa cells by upregulating the Bax/Bcl-2 ratio and
activating caspase-3 [21]. GAERP, GEREANVM, and AEVG from protein hydrolysate of Sphyrna lewini
cartilages exhibited good radical scavenging activities, similar inhibiting ability on lipid peroxidation
with butylated hydroxytoluene (BHT), and protection on H2O2-damaged HepG2 cells by decreasing
the content of malonaldehyde (MDA) and increasing the levels of antioxidant enzymes [22]. The
cartilage collagens and peptides showing significant pharmacological effects on repairing cartilage
and maintaining the overall health of subchondral bones and articular cartilage collagens is more
noteworthy [15,19,23].

Red stingray (Dasyatis akajei), which mainly resides in the northwestern Pacific Ocean, is a common
species of stingray in the Dasyatidae family. In previous studies, some active substances, including
proteins (angiogenesis inhibitors), polysaccharides, collagens, and collagen hydrolysates, were prepared
from its cartilages [16,24,25]. Luo et al. reported that an angiogenesis inhibitor (DCAI-1) with a MW
of 62 kDa from red stingray cartilages could inhibit the formation of the blood vessels of the chick
embryo chorioallantoic membrane in a dose-dependent manner [24,26]. The mucopolysaccharides
from red stingray cartilages could significantly reduce the values of total cholesterol, triglyceride, and
low-density lipoprotein of blood serum, but increase the value of high-density lipoprotein cholesterol
in hyperlipidaemia rabbits [27]. Chi et al. isolated and characterized the acid-soluble collagen (ASC)
from red stingray cartilages, and the results indicated that the ASC was comprised of type I and II
collagens. In addition, the properties of cartilage collagen hydrolysates from D. akjei, S. lewini, and
R. porosa indicated that the antioxidant activities of collagen hydrolysates were negatively correlated
with the logarithm of their average MWs [25]. However, there is no report on the APs from red
stingray cartilages. Therefore, in the present study, peptides from water-soluble protein hydrolysates
of red stingray cartilages were purified and characterized, and their in vitro antioxidant activities were
then evaluated.

2. Results and Discussion

2.1. Isolation of APs from Water-Soluble Protein Hydrolysate (RSH) of Red Stingray Cartilages

2.1.1. Fractionation of RSH by Ultrafiltration

Bioactive peptides are inactive in the sequence of their parent proteins and they can be released by
enzymatic hydrolysis either during gastrointestinal digestion in the body or during food processing [2].
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Bioactive peptides may act as regulatory compounds with diverse biological activities once they are
liberated from protein sources by proteolysis, such as antioxidant, antihypertensive, and enhancing
immunity activities [1]. Subsequently, water-soluble proteins of red stingray cartilages were hydrolyzed
using trypsin in the experiment.

Three fractions RSH-I (MW < 3 kDa), RSH-II (3 < MW < 10 kDa), and RSH-III (MW >

10 kDa) were prepared from protein hydrolysate (RSH) of red stingray cartilages using 3 and
10 kDa ultrafiltration membranes, and their radical scavenging activities are shown in Figure 1. The
2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and HO• scavenging rates of RSH-I were 40.12 ± 1.57%
and 51.43 ± 1.88% at the concentration of 10 mg protein/mL, which were significantly (p < 0.05) higher
than those of RSH, RSH-II, and RSH-III at the same concentration. Short chain peptides easily access
free radicals and act as electron donors to convert them into the stable state and inhibit the chain
reactions [25,28]. The results were in agreement with previous reports that fractions from protein
hydrolysates with low molecular size had high antioxidant activities, such as fractions from protein
hydrolysates of miiuy croaker muscle [9], cod muscle [29], skate cartilage [21], bluefin leatherjacket
head [30], and blue mussel [2,31]. Therefore, RSH-I was chosen for the preparation of APs with
high activity.
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Figure 1. 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and hydroxyl radical (HO•) scavenging
activity of protein hydrolysate (RSH) and its three fractions by ultrafiltration at the concentration of 10
mg protein/mL. All data were presented as mean ± standard deviation (SD, n = 3). a–d or A–D, Values
with same letters indicated no significant difference of different samples on DPPH• or HO• scavenging
activity (p > 0.05).

2.1.2. Anion-Exchange Chromatography of RSH-I

Figure 2A showed that four fractions (RSH-I-1 to RSH-I-4) were separated from RSH-I using a
DEAE-52 cellulose column. Among them, RSH-I-1 was eluted using deionized water (DW); RSH-I-2
and RSH-I-3 were eluted using 0.1 M NaCl; and, RSH-I-4 was eluted using 0.5 M NaCl. Figure 2B
indicated that the DPPH• and HO• scavenging activities of RSH-I-4 were 70.2 ± 1.8% and 82.4 ± 3.20%
at the concentration of 10 mg protein/mL, which were significantly (p < 0.05) higher than those of
RSH-I, RSH-I-1, RSH-I-2, and RSH-I-3 at the same concentration. Acidic and hydrophobic amino acid
residues in peptides can be easily adsorbed to the anion exchange resins, and the interaction strength is
closely related to the number and location of the charges on the molecule structure [25,30]. The results
indicated that RSH-I-4 might contain some APs, with acidic and hydrophobic amino acid residues.
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Figure 2. Elution profile of RSH-I through DEAE-52 cellulose anion-exchange chromatography (A)
and DPPH• and HO• scavenging activities of RSH-I and its fractions at the concentration of 10
mg protein/mL (B). All data were presented as mean ± SD (n = 3). a–f or A–F, Values with same
letters indicated no significant difference of different samples on DPPH• and HO• scavenging activity
(p > 0.05).

2.1.3. Gel filtration Chromatography of RSH-I-4

As shown in Figure 3A, RSH-I-4 was subsequently separated into two subfractions (Frac.1 and
Frac.2) by a Sephadex G-15 column. The radicals scavenging rates of Frac.1 on DPPH• and OH• were
81.1 ± 1.98% and 89.5 ± 2.37% at the concentration of 10 mg protein/mL, which were significantly
(p < 0.05) higher than those of RSH-I-4 and Frac.2 (Figure 3B). Smaller peptide fractions generally
exhibited a stronger antioxidant activity than their larger counterparts [32,33]. However, Frac.1 with
bigger MW showed a higher activity than Frac.2 did, which indicated that some other factors, such as
amino acid residue composition and spatial conformation, also played important roles in the bioactivity
of APs.
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Figure 3. Elution profile of RSH-I-4 using Sephadex G-15 column (A) and DPPH• and OH• scavenging
activities of subfractions (Frac.1 and Frac.2) from RSH-I-4 at the concentration of 10 mg protein/mL
(B). All data were presented as mean ± SD (n = 3). a–e or A–E, Values with same letters indicated no
significant difference of different samples on DPPH• and HO• scavenging activity (p > 0.05).

2.1.4. Isolation of APs from Frac.1 by RP-HPLC

Finally, Frac.1 with high DPPH• and HO• scavenging activities was purified by RP-HPLC while
using a linear gradient of acetonitrile (CAN) (Figure 4). All of the chromatographic peaks were collected
on their chromatographic peaks and their purities were analyzed. Finally, four APs (RSHP-A, RSHP-B,
RSHP-C, and RSHP-D) with retention times of 9.434, 13.435, 14.137, and 18.610 min. had high purities
and met the requirement of sequence determination (Table 1). Therefore, RSHP-A, RSHP-B, RSHP-C,
and RSHP-D were pooled and lyophilized, and their sequences and activities were determined in the
following experiment.
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Table 1. Retention time (min), amino acid sequences, molecular masses, and radical scavenging
activities of four antioxidant peptides (APs) (RSHP-A~D) from water-soluble protein hydrolysate of
red stingray (D. akajei) cartilages.

RSHP-A RSHP-B RSHP-C RSHP-D

Retention time (min) 9.434 13.435 14.137 18.610
Amino acid sequence VPR IEPH LEEEE IEEEQ

Theoretical mass/
observed mass (Da)

370.44/
370.46

494.52/
494.55

647.69/
647.64

646.62/
646.66

EC50
(mg/mL)

DPPH• 4.61 0.77 0.08 0.15
HO• 1.90 0.46 0.17 0.11
O−2 • 3.69 0.70 0.15 0.19

ABTS+
• 4.01 1.30 0.16 0.18

2.2. Amino Acid Sequence and Mass Spectrometry Analysis of APs (RSHP-A~D)

Using a Protein/Peptide Sequencer and electrospray ionization mass spectrometer (ESI-MS), the
amino acid sequences of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were determined to be Val-Pro-Arg
(VPR), Ile-Glu-Pro-His (IEPH), Leu-Glu-Glu–Glu-Glu (LEEEE), and Ile-Glu-Glu-Glu-Gln (IEEEQ),
respectively. The measured MWs of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were 370.46 Da ([M + H]+

371.68 Da), 494.55 Da ([M + H]+ 495.96 Da), 647.64 Da ([M + H]+ 648.72 Da), and 646.66 Da ([M + H]+

647.29 Da) (Figure 5 and Table 1), which agreed well with their theoretical masses of 370.44 Da, 494.52
Da, 647.69 Da, and 646.62 Da, respectively.
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2.3. Antioxidant Activity

2.3.1. Radical Scavenging Activity

DPPH• Scavenging Activity

The activity curves on DPPH• scavenging of four isolated APs (RSHP-A~D) are shown in
Figure 6A, and a positive correlation between the APs concentrations and their radical-scavenging
activities was observed. The EC50 value of RSHP-B was 1.90 mg/mL, which was significantly (p < 0.05)
higher than those of RSHP-A (4.61 mg/mL), RSHP-C (3.69 mg/mL), and RSHP-D (4.01 mg/mL),
respectively (Table 1). Furthermore, the EC50 value of RSHP-B was lower than those of the APs from
protein hydrolysates of croceine croaker muscle (YLMSR: 2.74 mg/mL; MILMR: 5.01 mg/mL) [34],
loach (PSYV: 17.0 mg/mL) [35], blue mussel (TTANIEDRR: 2.50 mg/mL) [31], salmon (FLNEFLHV:
4.95 mg/mL) [3], bluefin leatherjacket head (WEGPK: 4.44 mg/mL; GVPLT: 4.54 mg/mL) [30], grass carp
skin (GFGPL: 2.25 mg/mL; VGGRP: 2.94 mg/mL) [36], skate cartilage (FIMGPY: 2.60 mg/mL; GPAGDY:
3.48 mg/mL; IVAGPQ: 3.93 mg/mL) [21], and scalloped hammerhead muscle (WDR: 3.63 mg/mL;
PYFNK: 4.11 mg/mL; LDK: 3.06 mg/mL) [37,38]. However, the EC50 value of RSHP-B was higher than
those of APs from protein hydrolysates of miiuy croaker swim bladder (FPYLRH: 0.51 mg/mL; GIEWA:
0.78 mg/mL) [39], blue mussel (PIIVYWK: 0.71 mg/mL; FSVVPSPK: 0.94 mg/mL) [31], skipjack tuna
bone (GADIVA: 0.57 mg/mL; GAEGFIF: 0.30 mg/mL) [40], grass carp skin (PYSFK: 1.58 mg/mL) [36],
and bluefin leatherjacket skin (GSGGL: 0.41 mg/mL; GPGGFI: 0.19 mg/mL; FIGP: 0.12 mg/mL) [41].
The radical-quenching activities of APs are due to their ability to participate in the single electron
transfer reaction [1]. The present results illustrated that RSHP-B have a strong ability to act as a free
radical scavenger or hydrogen donor to transform DPPH• into harmless compounds and to prevent
the single electron transfer reaction.
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HO• Scavenging Activity

The HO• scavenging activity of four isolated APs (RSHP-A~D) was dose-dependent at the test
concentrations (Figure 6B). RSHP-B exhibited the highest HO• scavenging activity, with an EC50 value
of 0.45 mg/mL, which was significantly (p < 0.05) stronger than those of RSHP-A (0.76 mg/mL), RSHP-C
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(0.70 mg/mL), and RSHP-D (1.30 mg/mL), respectively (Table 1). The EC50 value of RSHP-B was
lower than those of APs from the protein hydrolysates of conger eel (LGLNGDDVN: 0.69 mg/mL) [42],
weatherfish loach (PSYV: 2.64 mg/mL) [35], miiuy croaker muscle (FWKVV: 0.97 mg/mL; FMPLH:
0.80 mg/mL) [9], mussel sauce (HFGDPFH: 0.50 mg/mL) [43], blue mussel (YPPAK 0.23 mg/mL) [2],
hairtail muscle (KA: 1.74 mg/mL; AKG: 2.38 mg/mL; IYG: 2.50 mg/mL) [44], grass carp (PSKYEPFV:
2.86 mg/mL; PYSFK: 2.28 mg/mL; GFGPL: 1.61 mg/mL; VGGRP: 2.06 mg/mL) [36,45], miiuy croaker
swim bladder (FPYLRH: 0.68 mg/mL; GIEWA: 0.71 mg/mL) [39], giant squid (NADFGLNGLEGLA:
0.61 mg/mL) [43], and skate cartilage (FIMGPY: 3.04 mg/mL; GPAGDY: 3.92 mg/mL; IVAGPQ:
5.03 mg/mL) [21]. However, the EC50 value of RSHP-B was higher than those of the APs from protein
hydrolysates of scalloped hammerhead muscle (PYFNK: 0.24 mg/m; LDK: 0.17 mg/mL) [37,38], skipjack
tuna bone (GADIVA: 0.25 mg/mL; GAEGFIF: 0.32 mg/mL) [40], blue mussel (YPPAK: 0.23 mg/mL) [3],
bluefin leatherjacket skin (GSGGL: 0.18 mg/mL; GPGGFI: 0.09 mg/mL; FIGP: 0.07 mg/mL) [41], and
giant squid (NGLEGLK: 0.31 mg/mL) [43]. HO• is one of the most deleterious intracellular ROS and it
can cause severe damage to biomacromolecules, including carbohydrates, nucleic acids (mutations),
lipids (lipid peroxidation), and amino acids (e.g., conversion of Phe to m-Tyrosine and o-Tyrosine),
which further causes a series of chronic diseases [46]. In addition, HO• cannot be eliminated by
an enzymatic reaction, and scavenging it from organisms using antioxidants, such as glutathione,
sulforaphane, a-tocopherol, curcumin, and ascorbic acid is the only mean to protect important cellular
structures from its damage [22,47]. Therefore, four isolated APs, especially RSHP-B, showed a high
scavenging ability on HO• and it might have the possibility to serve as a scavenger to weaken the
HO• damage in biological systems.

O−2 • Scavenging Activity

The O−2 • scavenging activities of four isolated APs (RSHP-A~D) were studied, and the dose-effect
relations were observed when their concentrations gradually increased from 0.1 to 5.0 mg/mL (Figure 6C).
The EC50 values of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were 0.08, 0.17, 0.15, and 0.16 mg/mL,
respectively (Table 1). RSHP-A showed stronger O−2 • scavenging activity than RSHP-B, RSHP-C, and
RSHP-D did. The EC50 value of RSHP-A was lower than those of APs from protein hydrolysates of
skipjack tuna bone (GADIVA: 0.52 mg/mL; GAEGFIF: 0.48 mg/mL) [40], miiuy croaker swim bladder
(FPYLRH: 0.34 mg/mL; GIEWA: 0.30 mg/mL) [39], hairtail muscle (KA: 2.08 mg/mL; AKG: 2.54 mg/mL;
IYG: 1.36 mg/mL) [44], mussel sauce (HFGDPFH: 0.20 mg/mL) [43], Mytilus coruscus (SLPIGLMIAM:
0.32 mg/mL) [48], round scad (HDHPVC: 0.27 mg/mL; HEKVC: 0.24 mg/mL) [49], miiuy croaker
muscle (FWKVV: 0.29 mg/mL; FMPLH: 0.15 mg/mL) [9], croceine croaker muscle (YLMR: 0.45 mg/mL;
VLYEE: 0.69 mg/mL; MILMR: 0.99 mg/mL) [34,50], and skate cartilage (FIMGPY: 1.61 mg/mL; GPAGDY:
1.66 mg/mL; IVAGPQ: 1.82 mg/mL) [21]. However, the EC50 value of RSHP-A was higher than those of
the APs from protein hydrolysates of blue mussel (YPPAK: 0.072 mg/mL) [3] and monkfish muscle
(LMGQW: 0.042 mg/mL) [51]. O−2 • is the most common free radical that is generated in vivo, and it
can promote oxidative reaction to generate hydrogen peroxide and hydroxyl radical [22]. O−2 • and its
derivative radicals seriously threaten the bioactive biomacromolecules and cause different diseases
of vital organs of the human body [1,30]. For example, O−2 • plays crucial roles in cardiovascular and
neurodegenerative diseases, as well as in cancer [47]. In organism, SOD can timely catalyze O−2 • into
uninjurious hydrogen peroxide and oxygen under normal conditions. Subsequently, RSHP-A, RSHP-B,
RSHP-C, and RSHP-D have high O−2 • scavenging activity and might be applied to eliminate the O−2 •
damage together with SOD in biological systems.

ABTS+
• Scavenging Activity

The abilities of four isolated APs (RSHP-A~D) to scavenge ABTS+
• in comparison with ascorbic

acid were investigated, and dose-related effects were observed at peptide concentrations that ranged
from 0.1 to 5.0 mg/mL (Figure 6D). The EC50 values of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were
0.15, 0.11, 0.19, and 0.18 mg/mL, respectively (Table 1). RSHP-B showed the strongest scavenging
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activity among four isolated APs at all tested concentrations. The EC50 value of RSHP-B was lower
than those of APs from the protein hydrolysates of croceine croaker muscle (VLYEE: 0.31 mg/mL;
YLMSR: 0.42 mg/mL; MILMR: 0.89 mg/mL) [34], hairtail muscle (KA: 1.65 mg/mL; AKG: 0.83 mg/mL;
IYG: 0.59 mg/mL) [44], scalloped hammerhead muscle (WDR: 0.34 mg/mL; LDK (0.19 mg/mL) [37,38],
salmon (FLNEFLHV: 1.55 mg/mL) [3], grass carp skin (GFGPL: 0.33 mg/mL; VGGRP: 0.47 mg/mL) [36],
skipjack tuna bone (GADIVA: 0.41 mg/mL; GAEGFIF: 0.21 mg/mL) [40], bluefin leatherjacket head
(WEGPK: 5.41 mg/mL; GPP: 2.47 mg/mL; GVPLT: 3.12 mg/mL) [30], and skate cartilage (FIMGPY:
1.04 mg/mL; GPAGDY: 0.77 mg/mL; IVAGPQ: 1.29 mg/mL) [20]. ABTS+

• scavenging assay has been
successfully used to evaluate the capacity of dietary antioxidant ingredients, such as polyphenols,
polysaccharides, and peptides based on the special chemical properties of formed free radicals [22,38].
In the assay, blue ABTS+

•with an absorption maximum of 734 nm is inactivated to its colorless neutral
form, when it meets an antioxidant compound. The present results indicated that RSHP-A, RSHP-B,
RSHP-C, and RSHP-D could act as electrons or hydrogen atoms donator to inactivate ABTS+

•.

2.3.2. Fe2+-Chelating Ability

Figure 7 showed that four isolated APs (RSHP-A~D) chelated Fe2+ in a dose-effect manner at
concentrations that ranged from 0 to 1.0 mg/mL, and RSHP-C showed the highest chelating ability on
Fe2+ among four isolated APs (RSHP-A~D). Transition metals, such as Fe2+ and Cu2+, can serve as
catalysts that accelerate the generation of ROS, which further oxidize unsaturated lipids and initiate
the oxidative chain reaction [52]. In recent years, some metal chelating peptides have been identified
from different food protein resources, such as oyster, anchovy, whey, soybean, and mungbean [53].
Lapsongphon and Yongsawatdigul reported that side chains, including carboxyl (Glu, Asp) and amino
groups (Lys, His, Arg), can serve as metal chelators to reduce the available amount of transition metals,
causing the inhibition of radical-mediated oxidative chain reactions [42]. Cruz-Huerta et al. have
reported that Asp, Glu, and Pro were the most abundant amino acids in the iron-binding peptides
from whey protein [54]. GPAGPHGPPGKDGR, AGPHGPPGKDGR, and AGPAGPAGAR from gelatin
tryptic hydrolysates of pacific cod skin exhibit high affinity to ferrous ions. Among the groups of the
three peptides, the amino and carboxylate terminal groups and peptide bond from peptide backbone,
as well as the amino and imine from Arg side chain, are involved in the complexation. In addition,
several amino acid side chain groups of GPAGPHGPPGKDGR and AGPHGPPGKDGR, including
amino (Lys), imine (His), and carboxylate (Asp), supplied additional iron binding sites [53]. The four
isolated APs (RSHP-A~D), especially RSHP-B~D, are rich in acid and basic amino acids. Therefore,
they showed higher Fe2+-chelating ability than the positive control of GSH.
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2.3.3. Reducing Power

As shown in Figure 8, four isolated APs (RSHP-A~D) exhibited dose-dependent reducing power
at the tested concentrations, and RSHP-B showed the highest capacity to reduce Fe3+ to Fe2+ among the
four isolated APs (RSHP-A~D). In organisms, the antioxidants act as reducing agents to be oxidized for
inhibiting the ongoing oxidation reactions. Subsequently, the reducing power is an important indicator
to provide information on the potential of samples to serve as antioxidant agents [9,55].Mar. Drugs 2019, 17, 263 9 of 16 
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Yang et al. reported that QNDER, KS, KA, AKG, TKA, VK, MK, and IYG from protein hydrolysate
of hairtail muscle showed high reducing power, and the absorbance at 700 nm of these eight antioxidant
peptides was less than 0.7 at the concentration of 2.5 mg/mL [44]. The data indicated that the reducing
power of RSHP-B was stronger than those of the APs from the protein hydrolysate of hairtail muscle at
the same concentration. He et al. reported that the absorbance of pentapeptide (FMPLH) from the
protein hydrolysate of miiuy croaker muscle at 700 nm was approximate 0.9 at the concentration of
2.5 mg/mL, which was slightly higher than those of RSHP-A~D [9]. The present data indicated that
RSHP-B might be applied as a reducing power agent to terminate the in vivo oxidation reactions that
are in progress.

2.3.4. Lipid Peroxidation Inhibition Ability

Lipid peroxidation is a complex process that involves the formation and propagation of lipid
radicals and lipid hydroperoxides in the presence of oxygen [2]. Each assay, such as DPPH, hydroxyl,
superoxide anion, and ABTS cation radical scavenging assays measured an antioxidant property that
represents a different mechanism, which could not reflect the multiple mechanisms, by which the
sample acted as an antioxidant to inhibit lipid oxidation in a food system and living organisms [51].
Therefore, the activities of RSHP-A, RSHP-B, RSHP-C, and RSHP-D against the peroxidation of linoleic
acid were investigated and compared to that of the positive control (GSH) and negative control (without
antioxidant) in this section (Figure 9). The inhibiting ability of RSHP-B was higher than those of
RSHP-A, RSHP-C, and RSHP-D. However, the inhibiting ability of four isolated APs (RSHP-A~D)
was lower than that of the positive control of GSH. The result of lipid peroxidation inhibition assay
suggested that RSHP-B might inhibit the lipid peroxidation propagation cycle through reacting with
peroxyl radicals. In addition, the activity of RSHP-B on lipid peroxidation inhibition slightly less than
GSH can be compensable by increasing the dose.
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3. Discussion

The structural characteristics of APs provide guides for the evaluation of food-derived proteins as
potential precursors of APs and predict the possible release of APs from various proteins while using
appropriate proteases [1].

Acidic and basic amino acid residues play critical roles in the metal ion chelating activity, which
is related to the carboxyl and amino groups in their side chains [56]. The carboxyl residues of acidic
amino acids are deprotonated for rendering the complex formation with metal ions, and the amino
nitrogen loses its proton nitrogen to allow for unshared pairs of electrons of nitrogen to bind with
metal ions [53]. Memarpoor-Yazdi et al. reported similar results, who found that the basic (Arg) and
acidic (Asp and Glu) amino acid residues in the sequences of NTDGSTDYGILQINSR and LDEPDPLI
were critical to their antioxidant activities [57]. Díaz et al. found that Glu residue is an effective cation
chelator that forms complexes with calcium and zinc ions and it may contribute to the antioxidant
activity [58]. Therefore, the Glu residue in RSHP-B, RSHP-C and RSHP-D, and Arg residue in RSHP-A
might be favorable for their antioxidant activities.

Mirzaei et al. reported that the pyrrolidine ring of Pro residue can interact with the secondary
structure of the peptide, thereby increasing the flexibility, and it is also capable of quenching singlet
oxygen due to its low ionization potential [59]. Samaranayaka and Li-Chan reported that Pro residue
played an important role in the activity of AP that was purified from Saccharomyces cerevisiae protein
hydrolysate [60]. Therefore, the Pro residue in the amino acid sequences of RSHP-A and RSHP-B
should enhance their radical-scavenging activities.

Aromatic amino acid residues, such as Phe, Tyr, His, and Trp, and hydrophobic amino acid
residues, including Ala, Val, and Leu, have been reported as critical to the activities of APs [1]. The
results from Guo et al. indicated that hydrophobic amino acid residues (e.g., Val, Ile, and Leu) and
aromatic amino acid residues (Phe, His, Tyr, and Trp) can enhance the radical-scavenging abilities
of APs from Chinese cherry seeds [61]. Therefore, the presence of aromatic and hydrophobic amino
acid residues in RSHP-A (Val), RSHP-B (Ile and His), RSHP-C (Leu), and RSHP-D (Ile) should have a
positive impact on their radical-scavenging and lipid peroxidation inhibitory activities.

In addition, the activities of APs are dependent on their molecular size. Short peptides with
2–10 amino acid residues have stronger radical-scavenging and lipid peroxidation inhibition activities
than their parent native proteins or long-chain peptides [1]. RSHP-A~D exhibited good antioxidant
activities, which suggested that they could more effectively and easily interact with free radicals and
inhibit the propagation cycles of lipid peroxidation [33]. However, RSHP-B showed the strongest
radical scavenging activity (DPPH•, HO•, and ABTS+

•), reducing power, and lipid peroxidation
inhibition activities, RSHP-A showed the strongest O−2 • scavenging activity and RSHP-C showed
the highest Fe2+-chelating ability among the four isolated APs. There was no consistent trend in the
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different tested assays. Therefore, more detailed study should be performed to clarify the relationship
between the activity and structure of the four isolated APs (RSHP-A~D).

4. Experimental Section

4.1. Materials

Red stingray (D. akajei) was purchased from Nanzhen Market in Zhoushan city of China and
its cartilages were manually removed with a filleting knife, washed with cold DW, cut into small
pieces (about 0.5 cm2), and then stored at −20 ◦C. Bovine serum albumin (BSA), DEAE-52 cellulose,
D101 macroporous resin, and Sephadex G-15 were purchased from Shanghai Source Poly Biological
Technology Co., Ltd. (Shanghai, China). CAN of LC grade and trifluoroacetic acid (TFA) were purchased
from Thermo Fisher Scientific Co., Ltd. (Shanghai, China). Four APs (VPR, IEPH, LEEEE, and IEEEQ)
with a purity higher than 98% were synthesized in Shanghai Apeptide Co., Ltd. (Shanghai, China).

4.2. Preparation of Water-Soluble Proteins and Hydrolysate from Red Stingray Cartilages

The preparation of water-soluble proteins: The small pieces of cartilages (about 0.5 cm2) were
broken using a hammer, minced to homogenate, and then soaked in 1.0 M guanidine hydrochloride with
a solid to solvent ratio of 1:5 (w/v) for 48 h, and the liquid supernatant was collected by centrifugation
at 4 ◦C, 12,000× g for 10 min and then dialyzed (MW 1 kDa) against 25 volumes of DW for 12 h
with solution change every 4 h. Finally, the resulted dialysate (water-soluble proteins) was collected
and freeze-dried.

Enzymatic hydrolysis of water-soluble proteins: The freeze-dried water-soluble proteins was
dissolved (5 % w/v) in 0.2 M phosphate buffer solution (PBS, pH 8.0) and hydrolyzed while using
trypsin with a total enzyme dose of 2.5% at 40 ◦C for 4 h. The process was terminated by heating the
hydrolysate to 95 ◦C for 10 min. Finally, the hydrolysate was centrifuged at 9000× g for 15 min, and the
supernatant (RSH) was desalted using D101 macroporous resin, freeze-dried, and stored at −20 ◦C.
The concentrations of RSH and its fractions were expressed as mg protein/mL and determined by the
dye binding method of Bradford (1976), with BSA as the standard protein

4.3. Isolation of Peptides from RSH

RSH was fractionated into three fractions, termed as RSH-I (MW < 3 kDa), RSH-II (3 < MW <

10 kDa), and RSH-III (MW > 10 kDa), by 3 and 10 kDa ultrafiltration membranes in the Labscale TFF
System of Millipor Ltd. (Billerica, MA, USA).

The RSH-I solution (5 mL, 40.0 mg protein/mL) was injected into a DEAE-52 cellulose column
(1.6 × 80 cm) pre-equilibrated with DW, and then stepwise eluted with 150 mL DW, 0.1 M, 0.5 M,
and 1.0 M NaCl solution at a flow rate of 1.0 mL/min, respectively. Each eluted fraction (5 mL) was
collected and measured at 280 nm. Finally, four fractions (RSH-I-1 to RSH-I-4) were pooled on their
chromatographic peaks and lyophilized.

RSH-I-4 solution (5 mL, 10.0 mg protein/mL) was fractionated on a Sephadex G-15 column
(2.6 × 160 cm) eluted with DW at a flow rate of 0.6 mL/min. Each elate (3 mL) was monitored at 280 nm
and then collected on the chromatographic peaks, and two fractions (Frac.1 and Frac.2) were prepared
and lyophilized.

A Thermo C-18 column (4.6 × 250 mm, 5µm) (Thermo Co., Ltd., Yokohama, Japan) attached to an
Agilent 1260 HPLC system (Agilent Ltd., Santa Rosa, CA, USA) further purified Frac.1. The sample
(20 µL) was injected into the HPLC column, eluted with a linear gradient of ACN (0–40% in 0–25 min)
in 0.1% TFA at a flow rate of 0.8 mL/min, and monitored at 280 nm. Finally, four APs (RSHP-A~D)
were isolated and lyophilized.
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4.4. Amino Acid Sequence and Molecular Mass Analysis

Amino acid sequences and molecular masses of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were
measured on the previous method [51]. The amino acid sequences of RSHP-A, RSHP-B, RSHP-C, and
RSHP-D were determined on an Applied Biosystems 494 protein sequencer (Perkin Elmer/Applied
Biosystems Inc., Foster City, CA, USA). Edman degradation was performed according to the standard
program that was supplied by Applied Biosystems.

Molecular masses of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were determined using a Q-TOF
mass spectrometer (Micromass, Waters, Milford, MA, USA), coupled with an electrospray ionization
(ESI) source. Ionization was carried out in a positive mode with a capillary voltage of 3500 V. Nitrogen
was maintained at 40 psi for nebulization and 9 L/min at 350 ◦C for the evaporation temperature. Data
were collected in centroid mode from m/z 100 to 2000.

4.5. Antioxidant Activity

4.5.1. Radical Scavenging Activity

The radical scavenging and lipid peroxidation inhibition assays were measured on the previous
method [38], and the half elimination ratio (EC50) was defined as the concentration where a sample
caused a 50% decrease of the initial concentration of DPPH•, HO•, O−2 •, and ABTS+

•, respectively.

4.5.2. Fe2+-Chelating Assay

The Fe2+-chelating assay was performed in accordance with the previous report [62,63]. In brief,
the mixed reaction solution (1815 µL DW, 450 µL sample (0, 0.25, 0.5, 0.75, and 1.0 mg/mL) and 45 µL
FeSO4 (2 mM)) was energetically shaken and maintained for 0.5 h. After that, 90 µL of ferrozine (5 mM)
were added into reaction solution, mixed well, and determined the absorbance at 562 nm. DW was
given as the blank control. The Fe2+-chelating ability was calculated using the following formula:
Fe2+-chelating ability (%) = [(Absorbance of blank control − Absorbance of sample)/Absorbance of
blank control] × 100.

4.5.3. Reducing Power Assay

The reducing power assay was carried out following the previous method [64]. 2.5 mL of 1%
K3Fe(CN)6 solution was blend with 2.0 mL of peptide solution and incubated at 50 ◦C for 0.5 h. After
that, 1.5 mL of 10% trichloroacetic acid was added into the mixed solution. Finally, 2.0 mL of the upper
layer, 0.5 mL of 0.1% aqueous FeCl3, and 2.0 mL of DW were mixed, and the absorbance at 700 nm was
applied to record the reaction mixture.

4.5.4. Lipid Peroxidation Inhibition Assay

The lipid peroxidation inhibition capacities of APs were measured in a linoleic acid model system,
according to the previous methods [65,66]. Briefly, a sample (5.0 mg) was dissolved in 10 mL of
PBS (50 mM, pH 7.0) and added to 0.13 mL of a linoleic acid solution and 10 mL of 99.5% ethanol.
Subsequently, the total volume was adjusted to 25 mL with DW. The mixture was incubated in a conical
flask with a screw cap at 40 ◦C in a dark room, and the degree of oxidation was evaluated by measuring
the Fe(SCN)3 values. The reaction solution (100 µL), incubated in the linoleic acid model system, was
mixed with 4.7 mL of 75% ethanol, 0.1 mL of 30% NH4SCN, and 0.1 mL of 20 mM FeCl2 solution in
3.5% HCl. After 3 min, the thiocyanate value was measured at 500 nm following color development
with FeCl2 and thiocyanate at different intervals during the incubation period at 40 ◦C.
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4.6. Statistical Analysis

All data are expressed as the mean ± standard deviation (SD, n = 3). An ANOVA test using SPSS
19.0 (Statistical Program for Social Sciences, SPSS Corporation, Chicago, IL, USA) was used to analyze
the experimental data. A p-value of less than 0.05 was considered to be statistically significant.

5. Conclusions

In the experiment, four APs (RSHP-A~D) were isolated from water-soluble protein hydrolysate
of red stingray (D. akajei) cartilages using ultrafiltration and chromatographic methods, and their
amino acid sequences were identified as VPR, IEPH, LEEEE, and IEEEQ, respectively. Among the
four isolated APs, IEPH showed the strongest scavenging activity on DPPH•, HO•, and ABTS+

•,
reducing power, and lipid peroxidation inhibition activities; VPR showed the strongest O−2 • scavenging
activity; and, LEEEE showed the highest Fe2+-chelating ability. Subsequently, APs (RSHP-A~D) from
water-soluble protein hydrolysate of red stingray cartilages may be possible to serve as antioxidant
candidates for new functional foods. Further studies will be done to purify and identify more APs
from Frac.1, and more detailed studies on the safety, stability, and structure-activity relationship of the
purified APs will also be needed.
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