Supplementary Materials

Cyclonerane Derivatives from the Algicolous Endophytic Fungus *Trichoderma asperellum* A-YMD-9-2

Yin-Ping Song 1,2,3, Feng-Ping Miao 1,3, Xiang-Hong Liu 1,2,3, Xiu-Li Yin 1,3 and Nai-Yun Ji 1,3,*

- ¹ Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China; ypsong@yic.ac.cn (Y.-P.S.); fpmiao@yic.ac.cn (F.-P.M.); xianghongliu@yic.ac.cn (X.-H.L.); xlyin@yic.ac.cn@yic.ac.cn (X.-L.Y.)
- ² University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- ³ Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- * Correspondence: nyji@yic.ac.cn; Tel.: +86-535-210-9176

Contents

Figure S1. ¹H NMR spectrum of compound 1 in CDCl₃.

- Figure S2. ¹³C NMR and DEPT spectra of compound 1 in CDCl₃.
- Figure S3. HSQC spectrum of compound 1 in CDCl₃.
- Figure S4. HMBC spectrum of compound 1 in CDCl₃.
- Figure S5. COSY spectrum of compound 1 in CDCl₃.
- Figure S6. NOESY spectrum of compound 1 in CDCl₃.
- Figure S7. HREIMS spectrum of compound 1.
- Figure S8. ¹H NMR spectrum of compound 2 in CDCl₃.
- Figure S9. ¹³C NMR and DEPT spectra of compound 2 in CDCl₃.
- Figure S10. HSQC spectrum of compound 2 in CDCl₃.
- Figure S11. HMBC spectrum of compound 2 in CDCl₃.
- Figure S12. COSY spectrum of compound 2 in CDCl₃.
- Figure S13. NOESY spectrum of compound 2 in CDCl₃.
- Figure S14. HRESI⁺MS spectrum of compound 2.
- Figure S15. ¹H NMR spectrum of compound 3 in CDCl₃.
- Figure S16. ¹³C NMR and DEPT spectra of compound 3 in CDCl₃.
- Figure S17. HSQC spectrum of compound 3 in CDCl₃.
- Figure S18. HMBC spectrum of compound 3 in CDCl₃.
- Figure S19. COSY spectrum of compound 3 in CDCl₃.
- Figure S20. NOESY spectrum of compound 3 in CDCl₃.
- Figure S21. HREIMS spectrum of compound 3.
- Figure S22. ¹H NMR spectrum of compound 4 in CDCl₃.
- Figure S23. ¹³C NMR and DEPT spectra of compound 4 in CDCl₃.
- Figure S24. HSQC spectrum of compound 4 in CDCl₃.
- Figure S25. HMBC spectrum of compound 4 in CDCl₃.
- Figure S26. COSY spectrum of compound 4 in CDCl₃.
- Figure S27. NOESY spectrum of compound 4 in CDCl₃.
- Figure S28. HREIMS spectrum of compound 4.
- Figure S29. ¹H NMR spectrum of compound 5 in CDCl₃.
- Figure S30. ¹³C NMR and DEPT spectra of compound 5 in CDCl₃.
- Figure S31. HSQC spectrum of compound 5 in CDCl₃.
- Figure S32. HMBC spectrum of compound 5 in CDCl₃.

- Figure S33. COSY spectrum of compound 5 in CDCl₃.
- Figure S34. NOESY spectrum of compound 5 in CDCl₃.
- Figure S35. HREIMS spectrum of compound 5.
- Figure S36. ¹H NMR spectrum of compound 6 in CDCl₃.
- Figure S37. ¹³C NMR and DEPT spectra of compound 6 in CDCl₃.
- Figure S38. HSQC spectrum of compound 6 in CDCl₃.
- Figure S39. HMBC spectrum of compound 6 in CDCl₃.
- Figure S40. COSY spectrum of compound 6 in CDCl₃.
- Figure S41. NOESY spectrum of compound 6 in CDCl₃.
- Figure S42. HREIMS spectrum of compound 6.
- Figure S43. ¹H NMR spectrum of compound 7 in CDCl₃.
- Figure S44. ¹³C NMR and DEPT spectra of compound 7 in CDCl₃.
- Figure S45. HSQC spectrum of compound 7 in CDCl₃.
- Figure S46. HMBC spectrum of compound 7 in CDCl₃.
- Figure S47. COSY spectrum of compound 7 in CDCl₃.
- Figure S48. NOESY spectrum of compound 7 in CDCl₃.
- Figure S49. HREIMS spectrum of compound 7.

Qualitative Analysis Report

Data Filename	181121ESIA4.d		Sample Name	compound 2			
Sample Type	Sample		Position				
Instrument Name	Agilent G6230 TOF	MS	User Name	KIB			
Acq Method	ESI.m		Acquired Time	11/21/2018 9:39:20 AM			
IRM Calibration Stat	us Success		DA Method	ESI.m			
Comment							
Sample Group		Info.					
Acquisition SW	6200 series TOF/6500 series						
Version	Q-TOF B.05.01 (B5125.2)						

User Spectra

Frag	200	Vo	ltage		Collisi	on Energy 0	1	Ioniz	ESI					
×10 6	+ Scar	1 (2	.359	min) 181	121ES	8IA4.d								
1.2							2	97.2037						
1														
0.8-														
0.6-														
0.4 -														
0.2-														
0						-								
				297	.2036	5 Cou	nts vs	297.20 . Mass-to	37 >-Charge (m/z)	297.20375			
Peak Lis	t									,				
m/z		z	Abu	nd		Formula			Ion					
297.2037		1	1295	95062.75		C15 H30 Na O4		M+						
298.2073	3	1	1968	30.22		C15 H30 Na O4		M+						
310.1265	;	1	1726	31.41										
322.1268	3	1	6516	517.13										
338.2304	ł)	1	1591	.40.7										
344.1088	3	1	1664	44.25										
571.4188	3	1	1124	473.88										
572.4223	8	1	3604	50.06										
575.356		1	1562	04.05										
687.4812	2	1	1893	09.59										
Formula	Calcu	ate	or Ele	ement Li	mits									
C			0	200	1									
с	-		0	400	1									
0			0	10	1									
Na	-		1	1	1									
Formula	Calcu	ate	or Re	sults	1									
Formula	1			Calculat	edMa	55	Mz		Diff.(mDa)		Diff. (ppm)		DBE	
C15 H30	Na 04					297.2042	2	97.2037		0.5		1.6		0.5

--- End Of Report ---

Figure S14. HRESI⁺MS spectrum of compound **2**.

Figure S16. ¹³C NMR and DEPT spectra of compound 3 in CDCl₃.

Figure S18. HMBC spectrum of compound 3 in CDCl₃.

Figure S20. NOESY spectrum of compound 3 in CDCl₃.

Figure S21. HREIMS spectrum of compound 3.

1,98328 1,983263 1,94709 1,94709 1,94709 1,93499 1,93499036 1,931647 1,931647 1,931647 1,931647 1,87192 1,87192 1,87192 1,87192 1,87192 1,87192 1,875084 1,17093664 1,1365324 1,1365324 1,1365324 1,13653264 1,13653264 1,13653264 1,13653264 1,13653264 1,13653264 1,13653264 1,13653264 1,13653264 1,13653264 1,13653264 1,1365642 1,13662

4.09282 4.08467 4.0717 4.07717 4.07717 4.07075 4.06371 -3.67172 -3.65959 -3.65018 -3.63805

-3.62465 -3.61644 -3.60312 -3.59492

Figure S35. HREIMS spectrum of compound 5.

Figure S36. ¹H NMR spectrum of compound 6 in CDCl₃.

Figure S42. HREIMS spectrum of compound 6.

Figure S44. ¹³C NMR and DEPT spectra of compound 7 in CDCl₃.

Figure S49. HREIMS spectrum of compound 7.