Supplementary Materials

Chlorophyll derivatives from marine cyanobacteria with lipid reducing activities

Sara Freitas ^{1,2,+,*}, Natália Gonçalves Silva ^{1,+,*}, Maria Lígia Sousa ¹, Tiago Ribeiro ¹, Filipa Rosa ¹, Pedro N. Leão ¹, Vitor Vasconcelos ^{1,2}, Mariana Alves Reis ¹ and Ralph Urbatzka ^{1,2,*}

- ¹ Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; <u>sfreitas@ciimar.up.pt</u> (S.F.), <u>nsilva@ciimar.up.pt</u> (N.G.S.), <u>msousa@ciimar.up.pt</u> (M.L.S.), <u>tribeiro@ciimar.up.pt</u> (T.R.), <u>frosa@ciimar.up.pt</u> (F.R.), <u>pleao@ciimar.up.pt</u> (P.N.L.), <u>vmvascon@fc.up.pt</u> (V.V.), <u>mareis@ciimar.up.pt.com</u> (M.R.), <u>rurbatzka@ciimar.up.pt</u> (R.U.)
- ² FCUP, Faculty of Science, Department of Biology, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal;
- + Joint first authors: sfreitas@ciimar.up.pt (S.F.); nsilva@ciimar.up.pt (N.G.S.);
- * Correspondence: rurbatzka@ciimar.up.pt; Tel.: +351 223 401 818

Received: date; Accepted: date; Published: date

List of Contents

Figure S1. ¹H NMR spectrum of 13²-hydroxy-pheophytin a, compound 1, in DMSO-d6 (400 MHz).

Figure S2. ¹³C NMR spectrum of 13²-hydroxy-pheophytin a, compound **1**, in DMSO-*d6* (400 MHz).

Figure S3. HSQC spectrum of 13²-hydroxy-pheophytin a, compound 1, in DMSO-d6 (400 MHz).

Figure S4. HMBC spectrum of 13²-hydroxy-pheophytin a, compound 1, in DMSO-d6 (400 MHz).

Figure S5. ¹H-¹H COSY spectrum of 13²-hydroxy-pheophytin a, compound **1**, in DMSO-*d6* (400 MHz).

Figure S6. Full LC-ESI-HRMS spectrum of 13²-hydroxy-pheophytin *a*, compound **1**, in the positive mode.

Figure S7. LC-ESI-HRMS/MS spectrum of 13^2 -hydroxy-pheophytin a, compound **1**, in the positive mode, showing the major fragments m/z 869.5542 [M – OH] +, m/z 609.2696 [M – phytol] +, m/z 591.2602 [M – OH-phytol]+.

Figure S8. ¹H NMR spectrum of 13²-hydroxy-pheofarnesin a, compound 2, in CDCl₃ (600 MHz).

Figure S9. ¹³C NMR spectrum of 13²-hydroxy-pheofarnesin a, compound 2, in CDCl₃ (600 MHz).

Figure S10. HSQC spectrum of 13²-hydroxy-pheofarnesin a, compound 2, in CDCl₃ (600 MHz).

Figure S11. HMBC spectrum of 13²-hydroxy-pheofarnesin a, compound 2, in CDCl₃ (600 MHz).

Figure S12. ¹H-¹H COSY spectrum of 13²-hydroxy-pheofarnesin a, compound **2**, in CDCl₃ (600 MHz).

Figure S13. ROESY spectrum 13²-hydroxy-pheofarnesin a, compound 2, in DMSO-d6 (600 MHz).

Figure S14. Full LC-ESI-HRMS spectrum of 13²-hydroxy-pheofarnesin a, compound **2**, in the positive mode.

Figure S15. LC-ESI-HRMS chromatogram of 13^2 -hydroxy-pheofarnesin a, compound **2**, in the positive mode, showing major fragments m/z 840.4339 [M + H + Na]⁺, 609.2697 [M +2H – farnesyl]⁺, 591.2604 [M – OH – farnesyl]⁺.

Figure S16. 3T3-L1 organoids without differentiation induction (upper images) and after differentiation induction (lower images). Differentiated organoids were formed during 5 days in DMEM medium and then exposed for 3 days to a differentiated medium, containing 10 μ g/ml of insulin, 250 nM dexamethasone and 500 μ M of isobutylmethylxanthine. After this step, an exposure assay to 1 or 2 can take place. Not differentiation organoids were cultured as differentiated organoids but without the differentiation medium.

Figure S17. LC-ESI-HRMS/MS chromatogram comparing compound **1** in 5 different alga- plantbased materials, as well as standard compound. Samples were prepared at 0.2 mg/ml in MeOH (100%). Presence of the major fragments of **1** in all samples confirm its presence in the alga- plantbased materials (HR-ESI-MS/MS *m*/*z* 869.5542 [M – OH] +, *m*/*z* 609.2696 [M – phytol] +, *m*/*z* 591.2602 [M – OH-phytol]+).

Figure S 1 - ¹H NMR spectrum of 13²-hydroxy-pheophytin a, compound **1**, in DMSO-*d6* (400 MHz).

Figure S 2 - ¹³C NMR spectrum of 13²-hydroxy-pheophytin a, compound **1**, in DMSO-*d6* (400 MHz).

Figure S 3 - HSQC spectrum of 13²-hydroxy-pheophytin a, compound **1**, in DMSO-d6 (400 MHz).

Figure S 4 - HMBC spectrum of 13²-hydroxy-pheophytin a, compound **1**, in DMSO-*d*6 (400 MHz).

Figure S 5 - ¹H-¹H COSY spectrum of 13²-hydroxy-pheophytin a, compound **1**, in DMSO-*d*6 (400 MHz).

Figure S 6 - Full LC-ESI-HRMS spectrum of 13²-hydroxy-pheophytin a, compound **1**, in the positive mode.

Figure S 7 - LC-ESI-HRMS/MS spectrum of 13²-hydroxy-pheophytin a, compound **1**, in the positive mode, showing the major fragments m/z 869.5542 [M – OH] +, m/z 609.2696 [M – phytol] +, m/z 591.2602 [M – OH – phytol]⁺.

Figure S 8 - 1H NMR spectrum of 132-hydroxy-pheofarnesin a, compound 2, in CDCl3 (600 MHz).

Figure S 9 - ¹³C NMR spectrum of 13²-hydroxy-pheofarnesin a, compound 2, in CDCl₃ (600 MHz).

Figure S 10 - HSQC spectrum of 13²-hydroxy-pheofarnesin a, compound 2, in CDCl₃ (600 MHz).

Figure S 11 - HMBC spectrum of 13²-hydroxy-pheofarnesin a, compound **2**, in CDCl₃ (600 MHz).

Figure S 12 - ¹H-¹H COSY spectrum of 13²-hydroxy-pheofarnesin a, compound **2**, in CDCl₃ (600 MHz).

Figure S 13 - ROESY spectrum 13²-hydroxy-pheofarnesin a, compound **2**, in DMSO-*d6* (600 MHz).

Figure S 14 - Full LC-ESI-HRMS spectrum of 13²-hydroxy-pheofarnesin a, compound **2**, in the positive mode.

Figure S 15 - LC-ESI-HRMS chromatogram of 13²-hydroxy-pheofarnesin a, compound **2**, in the positive mode, showing major fragments m/z 840.4339 [M + H + Na]⁺, 609.2697 [M + 2H – farnesyl]⁺, 591.2604 [M – OH – farnesyl]⁺.

Figure S 16 - 3T3-L1 organoids without differentiation induction (upper images) and after differentiation induction (lower images). Differentiated organoids were formed during 5 days in DMEM medium and then exposed for 3 days to a differentiated medium, containing 10 μ g/ml of insulin, 250 nM dexamethasone and 500 μ M of isobutylmethylxanthine. After this step, an exposure assay to 1 or 2 can take place. Not differentiation organoids were cultured as differentiated organoids but without the differentiation medium.

Figure S 17 – LC-ESI-HRMS/MS chromatogram comparing compound **1** in 5 different alga- plant- based materials, as well as standard compound. Samples were prepared at 0.2 mg/ml in MeOH (100%). Presence of the major fragments of **1** in all samples confirm its presence in the alga- plant- based materials (HR-ESI-MS/MS *m*/*z* 869.5542 [M – OH]⁺, *m*/*z* 609.2696 [M – phytol]⁺, *m*/*z* 591.2602 [M – OH – phytol]⁺).