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Abstract: Marine sponges are a prolific source of bioactive compounds. In this work, the putative 
antiangiogenic potential of a series of synthetic precursors of Solomonamide A, a cyclic peptide 
isolated from a marine sponge, was evaluated. By means of an in vitro screening, based on the 
inhibitory activity of endothelial tube formation, the compound Solo F–OH was selected for a 
deeper characterization of its antiangiogenic potential. Our results indicate that Solo F–OH is able 
to inhibit some key steps of the angiogenic process, including the proliferation, migration, and 
invasion of endothelial cells, as well as diminish their capability to degrade the extracellular matrix 
proteins. The antiangiogenic potential of Solo F–OH was confirmed by means of two different in 
vivo models: the chorioallantoic membrane (CAM) and the zebrafish yolk membrane (ZFYM) 
assays. The reduction in ERK1/2 and Akt phosphorylation in endothelial cells treated with Solo F–
OH denotes that this compound could target the upstream components that are common to both 
pathways. Taken together, our results show a new and interesting biological activity of Solo F–OH 
as an inhibitor of the persistent and deregulated angiogenesis that characterizes cancer and other 
pathologies. 
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1. Introduction 

Marine sponges are considered as a rich source of new potential bioactive compounds. In living 
sponges, these compounds are mainly secondary metabolites, whose natural functions include 
defense against predators and competition with other sessile species. The increasing interest for 
sponge-isolated compounds in biomedical and pharmaceutical research derives from the potential 
clinical applications exhibited by them, according to their antitumoral, anti-inflammatory, 
antiangiogenic, and/or antimicrobial properties reported [1–7]. 

Several compounds isolated from the marine sponge Theonella swinhoei have been studied 
because of their interesting bioactive properties. Such is the case of the potent anti-inflammatory 



Mar. Drugs 2019, 17, 228 2 of 18 

 

octacyclopeptides perthamides [8,9] and swinholides, with antifungal effect [10] and antiproliferative 
activity against a number of tumor cells by the disruption of actin cytoskeleton [11]. Together with 
them, solomonamide A (1) and B (2) are two bioactive compounds that have been recently isolated 
from T. swinhoei and described as exerting a dose-dependent anti-inflammatory activity in  
vivo [12,13].  

Structurally, solomonamides are cyclic peptides that present in their structures an unusual 
peptide with non-proteinogenic amino acids. Thus, an extensive spectroscopic study allowed their 
structural determination, revealing the presence of three conventional amino acids (D-Ala, Gly, and 
L-Ser) and an unprecedented 4-amino(2-amino-4-hydroxyphenyl)-3,5-dihydroxy-2-ethyl-6- 
oxohexanoic acid (ADMOA) and its corresponding 5-deoxy derivative (AHMOA) for 
solomonamides A and B, respectively. These peptide structures provide protection against 
peptidases and constitute a scaffold for new compounds with better biological activities [14,15]. 

The development of marine compounds may be hampered by a “problem of supply” [16]. As in 
the case of other bioactive compounds isolated from marine sponges, the limitation for a deeper study 
of the properties of solomonamides derives from the difficulty of accessing enough biomass for its 
purification. Indeed, the particular geographical niche of T. Swinhoei, which was collected at the 
Solomon Islands, South Pacific, worsens this limitation. In order to easily obtain solomonamides, 
different strategies were developed to chemically synthesize them, and very recently, the total 
syntheses of solomonamides A and B was reported by Reddy et al. [13]. Previously, in an effort to 
reach the complete synthesis of the solomonamides, a new synthetic strategy directed toward these 
natural products was designed by our group [17]. The synthetic strategy developed in that work was 
based on a ring-closing metathesis (RCM) to construct the macrocyclic core via acyclic precursor 3, 
followed by a subsequent oxidation phase to install all the functional groups contained in the 
solomonamides (Figure 1A). These synthetic studies gave us the opportunity to generate a set of 
analogues (Figure 1B), which were evaluated for their bioactivity in vitro by the measurement of their 
cytotoxicity profile against a panel of different cell lines, including endothelial and tumor cells [17]. 

Angiogenesis involves the generation of new capillaries by the sprouting of pre-existing vessels. 
Although in a healthy situation this process is tightly regulated by a balance of stimulators and 
inhibitors, being restricted to specific situations such as embryonic development, endometrial 
regulation, reproductive cycle, and wound repair, a persistent and deregulated angiogenesis is 
related to the course of many pathologies [18,19] and is considered one of the hallmarks of  
cancer [20]. In consequence, the pharmacological regulation of angiogenesis emerges as an attractive 
strategy for the treatment of cancer and other angiogenesis-dependent diseases [21–23]. Attending to 
this evidence, the active search for new compounds that are able to modulate angiogenesis is a crucial 
research strategy in order to discover potential antiangiogenic drugs with possible clinical 
applications. Our group is actively involved in the identification and characterization of new natural 
bioactive compounds and synthetic derivatives with multitarget antiangiogenic effects [24–28].  

In the present study, we analyzed the antiangiogenic potential of a series of synthetic 
solomonamide intermediates (Figure 1B). As a result of a primary screening in vitro, one of those 
compounds (Solo F–OH) was selected and subjected to a more in-depth assessment of its 
antiangiogenic activity both in vitro and in vivo. The results presented here are the first experimental 
evidence showing the antiangiogenic potential of the synthetic precursors of the solomonamides. 
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Figure 1. (A) Molecular structures of solomonamides A and B and synthetic strategy via ring-closing 
metathesis (RCM). (B) Chemical structures of the solomonamide precursors synthesized in Cheng-
Sánchez et al. [17] and screened in this study for antiangiogenic activity. 

2. Results 

2.1. Effects of Solomonamide A Analogues in Tubular-Like Structures’ Formation of Endothelial Cells 

In [17], we previously reported the IC50 values (determined at 72 h of treatment) of the different 
solomonamide precursors in bovine aortic endothelial cells (BAEC) growth (Table 1). To in vitro 
evaluate the possible antiangiogenic activity of these series of synthetic solomonamide precursors, 
we performed a primary screening based on the analysis of their capability to inhibit the formation 
of endothelial tubular-like structures on Matrigel, using staurosporine 2 µM as a positive control. We 
tested all the intermediates in this assay establishing their minimum inhibitory concentration (MIC). 
For most of the tested compounds, MIC values were equal to or higher than 50 µM (doses higher than 
50 µM were not considered for the study) (Table 1 and Figure 2A). Interestingly, in this primary 
screening, we identified the compound Solo F–OH, which exhibited an MIC value of 1 µM (Table 1 
and Figure 2A), which is a concentration that is markedly low compared to the MIC determined for 
the rest of solomonamide analogues tested, and 18-fold lower than its IC50 in BAEC (Table 1). The 
potent activity of Solo F–OH to inhibit the formation of endothelial tubular-like structures on 
Matrigel prompted us to select this compound for the further analysis of its antiangiogenic potential. 
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Table 1. Summary of the results obtained in the primary in vitro screening assays for the complete 
series of synthetic solomonamide precursors. BAEC: bovine aortic endothelial cells, MIC: minimum 
inhibitory concentration. 

Compound IC50 1 (μM) in BAEC 
[17] 

MIC Tubular Like-Structures Formation 
(μM) 

MIC Wound-Healing Assay 
(μM) 

Solo-1 >100 >50 >50 
Solo-2 43.8 ± 1.2 >50 >50 
Solo-3 >100 >50 >50 
Solo-4 69.6 ± 12.5 50 >50 
Solo-5 >100 >50 >50 
Solo-6 >100 >50 >50 

Solo F–OH 18.1 ± 2.2 1 10 
Solo F–Bz >100 >50 >50 

1 IC50 values were determined after 72 h of treatment with Solo F–OH in proliferating conditions. 

2.2. Solo F–OH Does Not Produce Disruption of Endothelial Tubular-Like Structures Formed on Matrigel 

Given the inhibitory effect of Solo F–OH in tubulogenesis in vitro, we studied the capability of 
the compound to target already formed vessels, checking its ability to disrupt the endothelial tubular-
like structures already formed on Matrigel. We used combretastatin A-4 phosphate, which is a well-
known vascular disruptor agent, as a positive control. The obtained results showed that solo F–OH 
is not able to disrupt the tubule-like structures already formed in Matrigel, even at a concentration 
that is 10-fold higher than the MIC value calculated in the tube formation assay (Figure 2B). 

2.3. Solo F–OH Decreases the Migratory Potential of Endothelial Cells 

During angiogenesis, migration is an indispensable step by which activated endothelial cells 
move toward the pro-angiogenic stimuli, making the formation of new vessels possible in the tissue. 
In order to evaluate the possible effect of the solomonamide precursors on endothelial cell migration 
in vitro, wound-healing assay was performed, and MIC values for migration inhibition were 
determined. As shown in Table 1, only the treatment with Solo F–OH decreased the migratory 
potential of endothelial cells, and no effect was observed with the other studied compounds at the 
concentrations tested after 7 h of treatment. Interestingly, the inhibitory effect of Solo F–OH on 
endothelial migration was dose-dependent (Figure 3), and the doses needed to inhibit migration were 
close or even lower to the IC50 value described for this compound in BAEC (Table 1). 



Mar. Drugs 2019, 17, 228 5 of 18 

 

 
Figure 2. Solo F–OH exhibits a strong inhibitory effect on tubulogenesis in vitro, without affecting 
already formed structures. (A) Effect of solomonamide precursors on endothelial tubular-like 
structures formation on Matrigel. BAEC were seeded on Matrigel in presence of the compounds, and 
structures formation was evaluated after 5 h. Vehicle (DMSO) was added to the negative control; 
staurosporine (2 µM) was used as positive inhibition control (scale bar = 1000 µm). (B) Vascular 
disruption assay in vitro. Compounds were added to already formed BAEC tubular-like structures 
on Matrigel. Effects were evaluated after 90 min. Combretastatin A-4 phosphate (CA4P, 0.2 µM) was 
used as a positive control (scale bar = 1000 µm). Each experimental condition was conducted in 
duplicates, and three independent assays were performed in each case. 

 
Figure 3. Solo F–OH decreases endothelial cell migration capability. (A) Representative photographs 
of wound-healing assay after 7 h of treatment with Solo F–OH. Vehicle (DMSO) was added to control 
condition. Discontinued lines point the free-cell area at time 0 h in each experimental condition. (Scale 
bar = 500 µm). (B) Quantification of the non-recovered area in the wound-healing assay after 7 h of 
treatment with Solo F–OH. Data are shown as percentages of the free-cell area at time 0 h, and are 
expressed as the mean ± SD of three independent experiments (*p < 0.05, **p < 0.01). 



Mar. Drugs 2019, 17, 228 6 of 18 

 

2.4. Solo F–OH Inhibits the Invasive Capability of Endothelial Cells 

Additionally to the acquisition of migratory potential, during angiogenesis, activated 
endothelial cells must be able to degrade extracellular matrix components in order to allow the 
invasion through the tissue. The possible effect of Solo F–OH on the invasive capability of endothelial 
cells was studied by means of the invasion assay on Matrigel-coated transwells. As shown in Figure 
4A,B, Solo F–OH was able to significantly inhibit the invasive potential of BAEC in a dose–response 
manner, reaching a 50% of inhibition at a concentration close to 5 μM.  

 

Figure 4. Solo F–OH inhibits endothelial cell invasion and extracellular matrix (ECM) degradation 
capability. (A) Representative photographs of invading endothelial cells through Matrigel‑coated 
transwells after 16 h of treatment (Scale bar = 500 µm). (B) Quantification of the cell invasion assay. 
The number of invading cells stained in the control stimulated with fetal bovine serum (FBS) was 
considered as 100% of invasion. (C) Representative gelatin zymography and the quantification of 
MMP‑2 presence in conditioned media and cell extracts of BAEC treated with Solo F–OH. (D) 
Representative gelatin zymographies and quantifications of MMP‑9 and MMP‑2 presence in 
conditioned media and cell extracts of HT1080 treated with Solo F–OH. E) Representative gelatin 
zymography of untreated BAEC conditioned media, and the quantification of MMP‑2 activity in the 
absence or presence of 20 μM of Solo F–OH added to the incubation buffer. For all the quantifications, 
data are the mean ± SD of at least three independent experiments (n.s., not significant; p < 0.05, ** p < 
0.01, *** p < 0.001, **** p < 0.0001). MMPs: matrix metalloproteinases. 

In addition, we studied the effect of Solo F–OH on the capability of endothelial cells to degrade 
the proteins of the extracellular matrix (ECM) by means of matrix metalloproteinases (MMPs). 
Gelatin zymography showed that the presence of MMP-2, the main MMP expressed in endothelial 
cells, was reduced both in cell extracts and in the conditioned media of BAEC treated with Solo F–
OH at 20 μM (Figure 4C). These results supported the observed inhibitory effect of this compound 
on endothelial cell invasion. In order to study the cell specificity of the protease modulation by this 
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compound, the effect of Solo F–OH on the proteolytic potential of HT1080 tumor cells was examined. 
While endothelial cells only express one gelatin degrading MMP, HT1080 cells express both 
gelatinases: MMP-2 and MMP-9. As shown in Figure 4D, both MMP activities were decreased when 
these cells were treated with Solo F–OH, suggesting that the inhibitory effect of Solo F–OH on the 
ECM-degrading potential is not specific for endothelial cells. In order to better understand the effect 
of Solo F–OH on ECM degradation capability, the in situ inhibition of MMP-2 activity was studied. 
Conditioned media of untreated BAEC were subjected to zymographic assays, and gelatinase activity 
was measured in the gel in the absence or presence of the compound added to the incubation buffer. 
Degradation bands were unaffected when gels were incubated in the presence of 20 μM of Solo F–
OH (Figure 4E), indicating that this compound was not a direct inhibitor of MMP-2.  

2.5. Solo F–OH Inhibits Angiogenesis In Vivo 

The inhibitory activity of Solo F–OH on key steps of angiogenesis observed in vitro prompted 
us to study the in vivo effect of this compound by means of two different animal models. Firstly, Solo 
F–OH was tested in the chick CAM assay. In this assay, the presence of Solo F–OH into the 
methylcellulose discs clearly affected the normal development of vasculature in a dose-dependent 
manner, either inhibiting the ingrowth of new vessels in the area covered by the disc, or inducing 
rebounds of the peripheral ones (Figure 5A). As shown in Table 2, a dose-dependent effect of this 
compound on the neovascularization of the chorioallantoic membrane was observed, with a 50% of 
inhibition been reached at doses lower than 1 nmol/CAM.  

 

Figure 5. Solo F–OH shows a potent antiangiogenic effect in vivo. (A) Representative photographs of 
chorioallantoic membrane (CAM) assay testing Solo F–OH. Negative control condition containing 
vehicle (DMSO) and positive control condition containing aeroplysinin-1 (3 nmol/CAM) were used 
in the assay. Circles show the locations of the methyl cellulose discs. (B) Representative photographs 
of ZFYM assay. The response of subintestinal vessels of zebrafish embryos to fibroblast growth factor 
2 (FGF-2)-induced angiogenesis in the presence of Solo F–OH was evaluated. Zebrafish embryos were 
stained for alkaline phosphatase activity. Dashes lines delimit a subintestinal vessels basket; 
arrowheads point to the FGF-2 injection site, and asterisks mark the angiogenic response to FGF-2. 
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Table 2. Inhibition of in vivo angiogenesis in the CAM assay by Solo F–OH. The table summarizes 
the evaluation of the effect of different doses of the compound in the CAM of chicken embryos. The 
CAM was scored positive when angiogenesis inhibition was observed. 

CAM Assay 
Solo F–OH (nmol/CAM) Positive/Total % Inhibition 

0 0/11 0 
0.1 1/7 14 
0.5 2/7 29 
1 6/9 67 
5 9/12 75 

10 10/10 100 

The in vivo Solo F–OH antiangiogenic activity was confirmed by using the zebrafish yolk 
membrane (ZFYM) assay. In this assay, we evaluated the in vivo effect of Solo F–OH in a background 
of fibroblast growth factor 2 (FGF-2)-induced angiogenesis. As shown in Figure 5B and summarized 
in Table 3, the treatment of embryos with different doses of Solo F–OH decreased the angiogenic 
response of subintestinal vessels (SIVs) toward the FGF-2 injection site. Indeed, the number of FGF-
2-responsive embryos (both those exhibiting strong and mild response) was markedly reduced in 
presence of Solo F–OH. In parallel, the number of FGF-2-unresponsive embryos was increased with 
the treatments (Table 3). 

Table 3. Inhibition of in vivo angiogenesis in the zebrafish yolk membrane (ZFYM) assay by Solo F–
OH. The table summarizes the observed effect of different doses of the compound in FGF-2-induced 
angiogenesis on the subintestinal vessels (SIVs) of zebrafish embryos. Embryos were scored as – (no 
response to FGF-2), + (mild response) or ++ (strong response). 

ZFYM Assay 

FGF-2 
Induction Solo F–OH (µM) 

Score (%) 

– / Total(%) + / Total(%) ++ / Total(%) 

None 0 20/20 (100) 0/20 (0) 0/20 (0) 

2 ng 0 5/21 (23.8) 10/21 (47.6) 6/21 (28.6) 

2 ng 5 9/19 (47.4) 7/19 (36.8) 3/19 (15.8) 

2 ng 10 13/23 (56.5) 9/23 (39.1) 1/23 (4.3) 

2.6. Solo F–OH Interferes with the Activation of ERK1/2 and Akt Pathways 

Cellular processes related to angiogenesis are controlled by a complex network of signaling 
pathways in endothelial cells. Since PI3K/Akt and ERK–MAPK are two of the main signaling cascades 
implicated in the transduction of pro-angiogenic signals [29], we studied the effect of Solo F–OH in 
the activation of Akt and ERK1/2. Starved BAEC were induced with serum in the presence or absence 
of different doses of Solo F–OH, and the activation of Akt and ERK1/2 was measured by Western 
blot. As shown in Figure 6, the induction of BAEC with serum strongly increased Akt and ERK1/2 
phosphorylation, indicating an effective activation of both pathways. In contrast, the 
phosphorylation of Akt and ERK1/2 in the presence of serum was substantially reduced when BAEC 
were treated with 20 μM of Solo F–OH (Figure 6). 
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Figure 6. Solo F–OH inhibits AKT serine/threonine kinase (Akt) and extracellular signal-regulated 
kinase 1/2 (ERK1/2) phosphorylation in endothelial cells. A) Representative Western blots of 
phosphorylated Akt, total Akt, phosphorylated ERK1/2, total ERK1/2, and alpha-tubulin in protein 
extracts from BAEC induced with serum in the absence or presence of Solo F–OH. Two independent 
experiments were performed with similar results. 

2.7. Solo F–OH Does Not Inhibit the Tyrosine Kinase Activity of VEGFR2 

Vascular endothelial growth factor receptor 2 (VEGFR2) plays a pivotal role in the deregulated 
connection of the “angiogenic switch”, which is characteristic of many angiogenesis-dependent 
diseases. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated. 
Most of the clinically approved antiangiogenic drugs with low molecular weight inhibit the activation 
of VEGFR2, typically by inhibition of the receptor tyrosine kinase (TK) activity needed to initiate the 
VEGF signaling pathway [19,30]. In order to better characterize the molecular mechanism of action 
of Solo F–OH, we explored the effect of this compound on the TK enzymatic activity of the human 
recombinant VEGFR2 by means of a luminescent assay, which was designed to measure the 
remaining activity of the enzyme after 45 min of reaction at 30 °C in the absence or presence of tested 
compounds. Our results showed that the presence of Solo F–OH 20 μM did not significantly decrease 
the activity of the VEGFR2 TK activity in this assay (the remaining kinase activity relative to a vehicle 
control-DMSO was of 84.5 ± 3.3%, which was expressed as mean ± SD, results from four independent 
measures, t-test value versus control 0.16253). Sunitinib, a well-known inhibitor of VEGFR2 TK 
activity with a reported IC50 value of 0.08 μM in in vitro biochemical assays [31,32], was used as a 
positive control in these experiments, yielding a total inhibition of the kinase activity (0% of 
remaining activity) at a dose of 1 μM. 

3. Discussion 

Marine sponges produce a wide variety of singular metabolites that allow them to adapt and 
survive in their natural environment. Pharmacological interest in such metabolites mainly consists in 
the potential biomedical applications exhibited by many of them [1–7,33,34]. In this regard, several 
of these sponge-derived compounds or their synthetic analogues have been described as 
angiogenesis inhibitors [3,7,35,36]. 

The discovery of solomonamides in 2011 and the subsequent characterization of the potent anti-
inflammatory activity of solomonamide A in vivo [12] opened the way to better decipher this and 
other possible bioactivities of the compounds. Despite this first report, the bioactivity of natural 
solomonamide A has not been further explored in our knowledge. The principal explanation to the 
lack of studies with such interesting compounds may be the shortage of natural resources needed for 
the molecule purification. Therefore, in the particular case of the solomonamides, the scarce 
availability of T. swinhoei clearly conditioned the further characterization of the compounds’ 
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bioactivities. In the last years, different studies toward the synthesis of solomonamides have been 
reported, mainly by Reddy et al. [15,17,37–41]. In fact, very recently, the total syntheses of 
solomonamides A and B have been reported [13], which led to their stereochemical revision with 
respect to that initially proposed, and confirmed the anti-inflammatory activities reported for the 
natural products.  

Previously to the publication of the total synthesis, and due to the promising biological activity 
of solomonamide A, our group developed a chemical strategy aimed to explore the construction of 
the macrocycle core of the unprecedented cyclopeptide through an RCM reaction [17]. As a result of 
this study, different synthetic solomonamide precursors were obtained and further characterized in 
vitro for their cytotoxicity profile in a panel of endothelial and cancer cell lines. Their IC50 values 
showed that only one of those compounds (Solo F–OH in the present work) had a relevant cytotoxic 
activity in the totality of cell lines tested at the low micromolar range [17]. The promising results 
reported for Solo F–OH, together with our ongoing interest in the discovery and characterization of 
new antiangiogenic compounds [24–28], prompted us to evaluate the antiangiogenic potential of the 
complete series of solomonamide precursors in a primary screening in vitro for the inhibition of 
endothelial tubular-like structures formation on Matrigel.  

As for the growth inhibitory effect of this family of compounds [17], Solo F–OH displayed a 
highlighted inhibitory activity in endothelial tubular-like structure formation. This confirmed the 
unique bioactivity of this compound compared with the rest of the solomonamide precursors studied. 
In addition, the low MIC value exhibited in this assay by Solo F–OH (1 µM), which was around 20-
fold lower than the dose required to inhibit BAE cell growth [17], points to a mechanism of action 
independent of its growth inhibitory activity in endothelial cells. Current approaches to target tumor 
vessels include antiangiogenic drugs, inhibiting the formation of new blood vessels following the 
activation of the endothelial cells, and tumor vascular disrupting drugs, in which the pre-existing 
vasculature is compromised and destroyed [42]. Our results show that Solo F–OH is not able to 
disrupt already formed endothelial tubular-like structures in vitro, discarding the possible vascular 
disrupting activity of this compound. 

During the formation of the new vessel, endothelial cells activate their migratory and invasive 
potential, allowing the movement across the tissue toward the proangiogenic signal. Interestingly, 
Solo F–OH significantly reduced the migratory and invasive capabilities of BAEC in vitro at not-toxic 
doses. As a remark, the inhibition of endothelial cell migration showed by Solo F–OH in the wound-
healing assay was determined after 7 h, which was a short time lapse at which cell proliferation is not 
relevant, suggesting that the antiproliferative activity of this compound is not playing a role in the 
inhibition of migration. Diminished endothelial cell invasion in the presence of Solo F–OH may be 
derived not only from the defective migratory capability observed after the treatment with the 
compound, but also its effect preventing endothelial ECM degradation by decreasing MMP-2, both 
in conditioned medium and cell extracts, in a dose-dependent manner. Our data showed that Solo F–
OH is not a direct inhibitor of MMP-2 gelatinase activity, suggesting that the decrease in the 
degradative potential exerted by this compound could be due to an effect on the MMP-2 expression. 
MMP-2 is involved in angiogenesis regulation [43–45], and the decrease in secreted MMP-2 activity 
has been suggested to play a role in the inhibition of tubular-like structure formation and the 
reduction of endothelial cell migration by antiangiogenic natural compounds [46–48]. Such evidences 
could support the inhibitory effect observed for Solo F–OH in the formation of endothelial tubular-
like structures and in cell migration. 

In addition to the in vitro evidence of the inhibitory activity of Solo F–OH in different 
angiogenesis-related processes, the antiangiogenic potential of this compound was evaluated in vivo 
in two different models of angiogenesis: the CAM and the ZFYM assays. Firstly, the CAM assay 
allowed us to evaluate the effects of Solo F–OH in a context of physiological angiogenesis, which 
occurs during the development of the chick embryo. Our in vivo results derived from the CAM assay 
demonstrated that Solo F–OH was able to inhibit angiogenesis in a dose-dependent manner between 
0.1–10 nmol/CAM, which is a very low concentration range in comparison with those reported for 
other known antiangiogenic compounds [49–53]. Secondly, the ZFYM assay allowed us to evaluate 
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the ability of Solo F–OH to inhibit the angiogenesis induced by the exogenous injection of FGF-2 in 
the zebrafish embryo, mimicking a pathological situation. As shown in this work, Solo F–OH 
diminished the angiogenic response of subintestinal vessels to exogenous FGF-2 in zebrafish, which 
was manifested by a decreased number of embryos that presented a strong or mild angiogenic 
response and an increased number of embryos that were unresponsive to FGF-2 stimulus. Taken 
together, our in vivo results suggest that Solo F–OH is capable of interfering not only with 
physiological angiogenesis, but also with the angiogenic response of the pre-existing vasculature 
toward an exogenous source of proangiogenic molecules, which could mimic a pathological 
activation of angiogenesis. 

In response to proangiogenic molecules, quiescent endothelial cells transform into the so-called 
angiogenic phenotype, which is characterized by the activation of different cellular processes that 
culminate in the formation of the new vessel. The transduction of extracellular angiogenesis-
activating signals is defined by a complex network of signaling pathways, which finally controls the 
response of the endothelial cell to proangiogenic stimulus. The pharmacological intervention on this 
signaling system constitutes a very interesting strategy in order to design new therapeutic 
approaches [29]. The PI3K/Akt pathway plays an essential role in the regulation of many of the 
processes related to the angiogenic phenotype in endothelial cells, such as proliferation, migration, 
differentiation, and morphogenesis [29,54,55]. Our data reveal that Solo F–OH prevents Akt 
phosphorylation in response to serum induction, therefore inhibiting the activation of the pathway. 
In addition, we show that Solo F–OH inhibits the phosphorylation of ERK1/2, which is the main 
proliferative pathway activated in endothelial cells in response to proangiogenic signals [29]. These 
results shed some light about the mechanism of action of Solo F–OH, pointing to the upstream 
components of these pathways as the major targets of the compound. Interestingly, both PI3K/Akt 
and ERK-MAPK pathways are implicated in the transduction of signals elicited by VEGF/VEGFR2 
and FGF-2/FGFR, which are two master signaling systems that trigger the angiogenic response [29]. 
Our results suggest that Solo F–OH could inhibit angiogenesis by targeting these signaling systems, 
although additional studies are needed to clarify this point.  

In vitro studies about the possible interference of Solo F–OH with the VEGFR2 TK activity 
performed in our laboratory indicated that the maximal dose of the compound used in this work  
(20 μM) did only produce a modest and non-significant reduction of this activity, in contrast with the 
complete inhibition reached by Sunitinib 1 μM, which is a well-known characterized TK  
inhibitor [56]. This slight effect is not sufficient to explain the potent antiangiogenic activity in vivo 
reported in this work (50% of positive CAM at doses lower than 1 nmol/CAM). Nevertheless, these 
results reveal that Solo F–OH is not a direct inhibitor of VEGFR2 TK activity, without excluding the 
possibility of Solo F–OH to interfere with this receptor at other different levels. Additionally, in vivo 
ZFYM assay showed that Solo F–OH is able to inhibit the angiogenic response driven by FGF-2. 
Although not directly assessed in our work, these results suggest that Solo F–OH could interfere with 
the FGF-2/FGFR pathway, which is a well-known angiogenic signaling pathway.  

As a conclusion, in this work we evaluated for the first time a series of synthetic precursors of 
the solomonamides as candidates for antiangiogenic compounds, showing that Solo F–OH exhibits a 
potent antiangiogenic effect in vitro and in vivo. The activity of this compound to inhibit several key 
steps of angiogenesis suggests that the molecular structure of Solo F–OH could be an interesting 
starting point for the rational design and chemical synthesis of new molecules exhibiting more potent 
and specific antiangiogenic properties. Although additional studies are needed to investigate the 
exact molecular mechanism underlying the antiangiogenic activity of Solo F–OH, the interference of 
this compound with the activation of the ERK–MAPK and PI3K/Akt pathways indicates that this 
compound could target upstream components that are common to both signaling cascades. The 
results presented here suggest the potential therapeutic application of solomonamide derivatives and 
reinforce the value of marine products as drug candidates for the treatment of angiogenesis-related 
malignances. 
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4. Materials and Methods  

4.1. Materials 

Solomonamide precursors were synthesized as described in Cheng-Sánchez et al. [17]. Cell 
culture media, penicillin/streptomycin, and amphotericin B were purchased from BioWhittaker 
(Walkersville, MD, USA) and fetal bovine serum (FBS) was purchased from BioWest (Kansas City, 
KS, USA). Plastics for cell culture were supplied by Thermo Scientific Nunc (ThermoFisher Scientific; 
Waltham, MA, USA). Matrigel was purchased from Corning (New York, NY, USA). Chemicals not 
listed in this section were obtained from Sigma-Aldrich (MERK) (Darmstadt, Germany). Fertilized 
chick eggs were purchased from Granja Santa Isabel (Córdoba, Spain). The zebrafish (Danio rerio) 
breeding colony (wild‐type AB strain) was maintained at 28 °C as described in [57]. 

4.2. Cell Cultures 

Bovine aortic endothelial cells (BAEC) were isolated as previously described [51] and 
maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing glucose (1 g/L) and 
supplemented with 10% FBS (DMEM/10% FBS). Human fibrosarcoma cell line HT-1080 was obtained 
from the American Type Culture Collection (ATCC; Manassas, VA, USA) and maintained in Eagle's 
Minimum Essential Medium (EMEM) supplemented with 10% FBS. Both culture media were 
supplemented with glutamine (2 mM), penicillin (50 IU/mL), streptomycin (0.05 mg/mL), and 
amphotericin B (1.25 mg/L). All the cell lines were maintained at 37 °C and humidified 5% CO2 
atmosphere.  

4.3. Tubular-Like Structures Formation on Matrigel 

Cellular suspensions of 5 × 104 BAE cells in serum-free DMEM were added to a 96-well plate 
coated with 50 µL of Matrigel (10.5 mg/mL) in the presence of the indicated treatments for 5 h and 
photographed with a microscope camera Nikon DS-Ri2 coupled to a Nikon Eclipse Ti microscope 
(Nikon, Tokyo, Japan). Each concentration was tested in duplicate, and staurosporine 2 µM was used 
as a routine positive assay control [58]. For the disruption assay, tubular-like structures were formed 
following the same protocol for the control conditions; then, the indicated concentrations of Solo F–
OH were added. After a further incubation time of 90 min, cultures were observed and 
photographed. Combretastatin-4-phosphate (CA4P) was used as positive control of the disruptor 
antiangiogenic drug [59].  

4.4. Wound Healing Assay 

Confluent BAEC monolayers in six-well plates were wounded with pipet tips with two 
perpendicular diameters, giving rise to two acellular 1 mm-wide lanes per well. Then, complete 
medium in the absence (controls) or presence of different concentrations of Solo F–OH was added. 
Wounded areas were observed and photographed after 0 h, 4 h, and 7 h of incubation with a 
microscope camera Nikon DS-Ri2 coupled to a Nikon Eclipse Ti microscope (Nikon, Tokyo, Japan). 
The migration of BAEC into the cell-free area was quantified by Image J software and represented as 
the percentage of wounded area in the correspondent time normalized to the initial wounded area 
(time 0) for each experimental condition.  

4.5. Cell Invasion Assay 

The invasion of endothelial cells was assayed by using 8.0-μm pore size transwell inserts coated 
with 100 µL of Matrigel 0.12 mg/mL solution. 105 BAE cells, in the absence or presence of the indicated 
concentrations of Solo F–OH, were added to the upper chamber of the transwells in the absence of 
serum, and the lower chamber was filled with 20% FBS DMEM. After 16 h of incubation, invading 
cells were fixed in 4% paraformaldehyde and stained with a 1% crystal violet solution in 2% ethanol. 
Cells were photographed with a microscope camera Nikon DS-Ri2 coupled to a Nikon Eclipse Ti 
microscope (Nikon, Tokyo, Japan). 
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4.6. Zymographic Assays for MMP-2 and MMP-9 Detection 

Zymographies for matrix metalloproteinases MMP-2 and MMP-9 activities were performed in 
both conditioned media and cellular extracts of endothelial (BAEC) and tumor (HT1080) cell lines as 
described in Fajardo et al. [60]. Briefly, cells seeded in six-well plates were incubated in serum-free 
culture medium with 0.1% BSA containing 200 KIU of aprotinin/mL and the correspondent 
treatment. After 24 h of incubation, conditioned media were collected, and cell lysates were obtained. 
Duplicates were used to determine the cell number, and samples were normalized for equal loading. 
In order to detect the gelatinolytic activity of MMP-9 and MMP-2, samples were loaded in non-
reducing SDS/PAGE gels containing gelatin (1 mg/mL). After electrophoresis, gels were incubated 
overnight at 37 °C in a substrate buffer (50 mM of Tris/HCl, pH 7.4, supplemented with 1% Triton X-
100, 5 mM CaCl2, and 0.02% Na3N) and stained with Coomassie blue R-250. The bands of gelatinase 
activity could be detected as non-stained bands in a dark, stained background. The size and intensity 
of the bands were quantified using Image J software. 

A variant of this method was used to obtain complementary information about the direct 
inhibition of the tested compound on MMP-2 gelatinase activity: samples of conditioned media of 
untreated BAEC were subjected to gelatin zymography and, after electrophoresis, 20 μM of Solo F–
OH was added to the substrate buffer. Detection of the degrading bands and quantification were 
performed as described above. 

4.7. Chick Chorioallantoic Membrane (CAM) Assay  

Fertilized chick eggs were incubated horizontally at 38 °C in a humidified incubator, windowed 
by day 3 of incubation, and processed by day 8. Solo F–OH was added to a 1.2% solution of 
methylcellulose in water, and 10-μL drops were dried on a Teflon-coated surface under a laminar 
flow hood. Then, methylcellulose discs were implanted onto the CAM, and the eggs were sealed with 
adhesive tape and returned to the incubator for 48 h. Negative controls were always made with 
DMSO mixed with the methylcellulose, and aeroplysinin-1 (3 nmol/CAM) was used as a routine 
positive control of antiangiogenic compound [47]. After the incubation, the CAM was examined 
under a stereomicroscope and photographed with a Nikon DS-Ri2 camera. The results were analyzed 
by two different observers, and the assay was scored positive when both of them reported a 
significant reduction of vessels in the treated area.  

4.8. FGF-2 Induced Angiogenesis Zebrafish Yolk Membrane (ZFYM) Assay 

For the FGF-2 induced angiogenesis zebrafish yolk membrane (ZFYM) [61], 24 hpf embryos were 
exposed to 1-phenyl-2-thiourea (PTU) to prevent the pigmentation. At 48 hpf, embryos were 
manually dechorionated with forceps, anesthetized with tricaine (0.016%), and injected into the 
perivitelline space with 2 mL FGF-2 (1 mg/mL). The injection was performed in the proximity of 
developing subintestinal vessels (SIVs) using borosilicate needles and a Picospritzer microinjector 
(Eppendorf, Hamburg, Germany). After injection, embryos were incubated for 24 h more in the 
absence or the presence of Solo F–OH. Finally, embryos were fixed in 4% paraformaldehyde (PFA), 
stained for endogenous alkaline phosphatase (AP) activity, and photographed under a Leica MZ16 F 
stereomicroscope equipped with a DFC480 digital camera and ICM50 software (Leica, Wetzlar, 
Germany). Evaluation of the angiogenic response was performed by assigning negative (–, no 
response to FGF-2 injection), positive (+, mild response), or very positive (++, strong response) scores 
to the embryos. 

4.9. Western Blot Analysis  

BAE cells were starved in serum-free for 16 h. After one-hour treatment with Solo F-OH at 10 
and 20 µM in the same conditions, cells were induced with 10% of FBS for 10 min. Protein lysates 
were obtained in radioimmunoprecipitation assay buffer (RIPA) (50 mM of Tris, pH 7.4, 150 mM of 
NaCl, 1% Triton X-100, 0.25% sodium deoxycholate, 1 mM of EDTA) containing phosphatase activity 
inhibitors (30 mM of sodium fluoride, 1 mM of sodium orthovanadate, 30 mM of β-glycerophosphate) 
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and protease activity inhibitors (Complete mini, Roche, Mannheim, Germany). Protein concentration 
was determined using the Lowry method. Samples were subjected to SDS-PAGE electrophoresis and 
transferred to nitrocellulose membranes. After blocking in TBS-T containing 10% non-fatty dry milk, 
membranes were hybridized with primary antibodies overnight at 4 °C (cell signaling; rabbit anti-
Phospho-Akt (Ser473) #9271; rabbit anti-Akt #9272; rabbit anti-Phospho-p44/42 MAPK (ERK1/2) 
(Thr202/Tyr204) (clone D13.14.4E) #4370; rabbit anti-p44/42 MAPK (ERK1/2) (137F5) #4695; mouse 
anti-α-Tubulin (DM1A) #3873). Following one hour of incubation with horseradish peroxidase-
conjugated secondary antibodies (MERK; goat anti-rabbit IgG HRP Linked Whole Antibody 
#NA934V; goat anti-mouse IgG (whole molecule)–Peroxidase antibody #A4416) at room temperature, 
immunoreactive bands were detected with SuperSignal West Pico Chemiluminescent Substrate 
(Pierce, Rockford, USA) and quantified by ImageJ software. The phosphorylated/total protein ratios 
were expressed as the percentage of the ratio in serum-stimulated samples in the absence of Solo F–
OH.  

4.10. In Vitro Measure of VEGFR2 TK Activity 

VEGFR2 TK activity was measured in vitro using the VEGFR2 (KDR) Kinase Assay Kit (BPS 
Bioscience, San Diego, CA, USA). Solo F–OH was tested at 20 μM according to the manufacturer’s 
instructions, determining the percentage of remaining TK activity after 45 min of incubation at 30 °C. 
Sunitinib 1 μM was used as positive control of inhibition in the same experimental conditions.  

4.11. Ethical Statement 

The animal procedures considered in this project were performed in strict compliance with the 
European Communities Council Directive 2010/63/EU regulating the use and care of laboratory 
animals. Experimental procedures with chick embryos were performed at the University of Málaga 
(Spain) and were conducted in accordance with the Spanish Legislation in compliance with European 
Community regulation. The protocols were approved by the Ethics Committee for Animal 
Experiments of the University of Málaga. Zebrafish (Danio rerio) breeding colony (wild‐type AB 
strain) was maintained at the Zebrafish Facilities of the University of Brescia (Italy). Experimental 
procedures with zebrafish embryos were performed at the University of Brescia and were conducted 
in accordance with the Italian legislation for the animal experimentation. Efforts were made to reduce 
the number of animals used and minimize animal suffering. Furthermore, animals were anesthetized 
when it was likely they could be subjected to pain, and they were killed by a method that ensured 
the least effect on their welfare.  

4.12. Statistical Analysis 

Results are expressed as the mean ± SD of three independent experiments. Data sets were 
checked to follow a normal distribution, and statistical significance was determined using the two-
sided unpaired Student t-test (SPSS software). Values of p < 0.05 were considered to be statistically 
significant. Significance was indicated as follows: ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. 
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