Supplementary Materials

Discovery of Stealthin Derivatives and Implication of the Amidotransferase FlsN3 in the Biosynthesis of Nitrogen-containing Fluostatins

Chunshuai Huang ^{1,2}, Chunfang Yang ¹, Zhuangjie Fang ^{1,2}, Liping Zhang ¹, Wenjun Zhang ¹, Yiguang Zhu ¹, Changsheng Zhang ^{1,2,*}

- ¹ CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; 15969592400@163.com (C.H.); chunfangy@126.com (C.Y.); 991653913@qq.com (Z.F.); 461977340@qq.com (L.Z.); wzhang@scsio.ac.cn (W.Z.); zhuyiguang2003@163.com (Y.Z.)
- ² University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- * Correspondence: czhang2006@gmail.com; Tel.: +86-20-8902-3038 (C.Z.)

Table of contents

Figure S1. Construction <i>flsN3</i> inactivation mutant Δ <i>flsN3</i>	
Figure S2. Chiral HPLC analysis of 9–12	S5
Figure S3. UV and LC-MS analysis of the analogue related to salinipyrone A (8)	S6
Figure S4. HPLC traces of the methylation of stealthin C (7)	
Figure S5. HRESIMS (a), UV (b), IR (c) of stealthin D (9)	S8
Figure S6. The ¹ H NMR spectrum of stealthin D (9) in DMSO- d_6	S9
Figure S7. The ¹³ C and DEPT 135 NMR spectra of stealthin D (9) in DMSO- d_6	
Figure S8. The ¹ H- ¹ H COSY spectrum of stealthin D (9) in DMSO- d_6	S11
Figure S9. The HSQC spectrum of stealthin D (9) in DMSO- <i>d</i> ₆	
Figure S10. The HMBC spectrum of stealthin D (9) in DMSO-d ₆	
Figure S11. The HRESIMS spectrum of stealthin E (10)	
Figure S12. The ¹ H NMR spectrum of stealthin E (10) in DMSO- d_6	
Figure S13. The ¹³ C NMR and DEPT 135 spectra of stealthin E (10) in DMSO- d_6	S16
Figure S14. The ¹ H- ¹ H COSY spectrum of stealthin E (10) in DMSO- d_6	S17
Figure S15. The HSQC spectrum of stealthin E (10) in DMSO- d_6	
Figure S16. The HMBC spectrum of stealthin E (10) in DMSO- d_6	S19
Figure S17. HRESIMS (a), UV (b), IR (c) of stealthin F (11)	S20
Figure S18. The ¹ H NMR spectrum of stealthin F (11) in DMSO- d_6	S21
Figure S19. The ¹³ C NMR and DEPT 135 spectra of stealthin F (11) in DMSO- d_6	S22
Figure S20. The ¹ H- ¹ H COSY spectrum of stealthin F (11) in DMSO- d_6	S23
Figure S21. The HSQC spectrum of stealthin F (11) in DMSO- <i>d</i> ₆	S24
Figure S22. The HMBC spectrum of stealthin F (11) in DMSO-d ₆	S25
Figure S23. HRESIMS (a), UV (b), IR (c) of stealthin G (12)	S26
Figure S24. The ¹ H NMR spectrum of stealthin G (12) in DMSO- d_6	S27
Figure S25. The ¹³ C NMR and DEPT 135 spectra of stealthin G (12) in DMSO- d_6	S28
Figure S26. The ¹ H- ¹ H COSY spectrum of stealthin G (12) in DMSO- d_6	S29

Figure S27. The HSQC spectrum of stealthin G (12) in DMSO- <i>d</i> ₆
Figure S28. The HMBC spectrum of stealthin G (12) in DMSO- d_6
Figure S29. The HRESIMS spectrum of trimethylstealthin C (13)
Figure S30. The ¹ H NMR spectrum of trimethylstealthin C (13) in DMSO- d_6
Figure S31. The ¹³ C NMR and DEPT 135 spectra of trimethylstealthin C (13) in DMSO- d_6 S34
Figure S32. The ¹ H- ¹ H COSY spectrum of trimethylstealthin C (13) in DMSO- d_6
Figure S33. The HSQC spectrum of trimethylstealthin C (13) in DMSO- d_6
Figure S34. The HMBC spectrum of trimethylstealthin C (13) in DMSO- d_6
Table S1. Strains, plasmids and primers used in this study S38
Table S2. Crystal data and structure refinement for stealthin D (9) S39
Table S3. Crystal data and structure refinement for stealthin F (11) S40
References

Figure S1. Construction *flsN3* inactivation mutant $\Delta flsN3$

- (a) Description of *flsN3* inactivation. FLS23 was constructed by replacing a 1149 bp internal *flsN3* fragment with a 1369 bp DNA fragment containing *oriT* and *acc3(IV)* in pCSG5028, resulting from a double cross-over recombination event. The location of the diagnostic PCR primers were indicated. Sizes of PCR products were also indicated: 1415 bp for the wild type strain *M. rosaria* SCSIO N160 and 1635 bp for the mutant FLS23.
- (b) Gel electrophoresis of PCR products. DNA templates were from: ddH₂O (negative control, lane 1), pCSG5001 (negative control, lane 2), pCSG5017 (positive control, lane 3), $\Delta flsN3$ clone #1 (lane 4), $\Delta flsN3$ clone #2 (lane 5) and DNA marker D2000 (GenStar, lane M).

Figure S2. Chiral HPLC analysis of 9-12

The chiral HPLC analysis was performed on an Agilent 1260 Infinity series instrument with a Chiral ND 5u $(4.6 \times 250 \text{ mm})$ chiral column (Phenomenex, Washington, CD, USA). The elution process runs the following program: 5% B to 80% B (linear gradient, 0–20 min), 80% B to 100% B (20–21 min), 100% B (isocratic elution, 21–24 min), 100% B to 5% B (24–25 min), 5% B (isocratic elution, 25–30 min). The solvent system comprises solvent A (10% acetonitrile in water supplemented with 0.08% formic acid) and B (90% acetonitrile in water). The monitoring wavelength at 430 nm.

a UV comparison of salinipyrone A (8) with the product with the symbol "*"; **b** Negative mode ESI-MS data for the product with the symbol "*".

Figure S4. HPLC traces of the methylation of stealthin C (7)

a Stealthin C (7) standard; b 7 was treated with methyl iodide.

Figure S5. HRESIMS (a), UV (b), IR (c) of stealthin D (9) (a). HR-ESI-MS

(c). IR

Figure S7. The ${}^{13}C$ and DEPT 135 NMR spectra of stealthin D (9) in DMSO- d_6

Figure S8. The ¹H-¹H COSY spectrum of stealthin D (9) in DMSO-*d*₆

Figure S9. The HSQC spectrum of stealthin D (9) in DMSO-d₆

ĝ

ppm

· 80 ·100

-120 -140

ppm

WID Day

ĝ

0 0 0 0

Figure S11. The HRESIMS spectrum of stealthin E (10)

10

Figure S12. The ¹H NMR spectrum of stealthin E (10) in DMSO- d_6

Figure S13. The 13 C NMR and DEPT 135 spectra of stealthin E (10) in DMSO- d_6

10

Figure S14. The ¹H-¹H COSY spectrum of stealthin E (10) in DMSO-*d*₆

Figure S15. The HSQC spectrum of stealthin E (10) in DMSO-*d*₆

Figure S16. The HMBC spectrum of stealthin E (10) in DMSO-*d*₆

+MS, 0.4min #24 Intens. x10⁴ 6 1+ 378.1334 4 2 400.1148 370 405 390 395 400 m/z 375 385 380 mSigma 13.1 38.7 18.7 err [ppm] err [mDa] -0.5 -0.2 1.8 0.7 1.3 1.0 e⁻ Conf N-Rule even ok even ok even ok m/z 378.133599 400.115543 755.259922 rdb 13.5 13.5 26.5 Meas. m/z 378.133429 400.114831 755.258947 Ion Formula C22H20NO5 C22H19NNaO5 C44H39N2O10 Score 100.00 100.00 100.00 # 1 1 (b). UV 2.00 1.5 Abs. 1.0 0.50 -0.10 400.00 nn. (c). IR 105 %Т 90 75 358 348 60 -45· 500 1/cm 1000 4000 3500 3000 2500 2000 1750 1500 1250 750

Figure S17. HRESIMS (a), UV (b), IR (c) of stealthin F (11) (a). HR-ESI-MS

Figure S19. The 13 C NMR and DEPT 135 spectra of stealthin F (11) in DMSO- d_6

11a/11b

Figure S21. The HSQC spectrum of stealthin F (11) in DMSO- d_6

Figure S22. The HMBC spectrum of stealthin F (11) in DMSO-*d*₆

Figure S23. HRESIMS (a), UV (b), IR (c) of stealthin G (12) (a). HR-ESI-MS

S26

12a/12b

12a/12b

12a/12b

Figure S28. The HMBC spectrum of stealthin G (12) in DMSO-d₆

Figure S29. The HRESIMS spectrum of trimethylstealthin C (13)

trimethylstealthin C (13)

Figure S30. The ¹H NMR spectrum of trimethylstealthin C (13) in DMSO-*d*₆

trimethylstealthin C (13)

Figure S31. The 13 C NMR and DEPT 135 spectra of trimethylstealthin C (13) in DMSO- d_6

trimethylstealthin C (13)

Figure S32. The ¹H-¹H COSY spectrum of trimethylstealthin C (13) in DMSO-*d*₆

Figure S33. The HSQC spectrum of trimethylstealthin C (13) in DMSO-d₆

Strains/Plasmids	Characteristic(s)	Sources		
E.coli				
BW25113	Host strain for PCR targeting	[1]		
ET12567	Donor strain for conjugation	[2]		
DH5a	Host strain for cloning	Invitrogen		
M. rosaria SCSIO N160	The producing strain of fluostatins			
FLS23	A mutant of <i>M. rosaria</i> SCSIO N160 where the <i>flsN3</i> gene was inactivated	This study		
Plasmids				
pUZ8002	Km ^r , includeing <i>tra</i> for conjugation	[3]		
pIJ773	Apr ^r , source of <i>aac(3)IV</i>			
pCSG5001	A cosmid of SuperCos1-based genomic library of strain SCSIO N160			
pCSG5028	pCSG5001 derivative where <i>flsN3</i> was replaced with <i>aac(3)IV</i> by	This study		
	insertional mutagenesis			
Primers	Sequences			
For <i>flsN3</i> disruption and confirmation of mutants' genotype				
flsN3DF	AAGGCCATCGCCGAGCGCGATCCGGCCCTGCGTGCCTTCattccggggatccgtcgacc			
flsN3DR	CAGCAACTGGTCGCCGGCCGGCCCGACCAACTGGCCtgtaggctggagctgcttc			
flsN3DTF	CGGTGGAAGGAATGCCCGTT			
flsN3DTR	CGGGTGAACATGTCGACATC			

Table S1. Strains, plasmids and primers used in this study

Identification code	1887925
Empirical formula	C ₂₁ H ₁₇ NO ₅
Formula weight	363.36
Temperature/K	100.00 (10)
Crystal system	triclinic
Space group	P-1
a/Å	7.77070(10)
b/Å	8.6632(2)
c/Å	13.5470(2)
α/°	92.2060(10)
β/°	103.699(10)
$\gamma^{\prime \circ}$	109.139(2)
Volume/Å ³	830.33(3)
Z	2
$\rho_{calc}g \ cm^{-3}$	1.453
μ/mm ⁻¹	0.865
F(000)	380.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.1
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	10.898 to 148.476
Index ranges	$-9 \le h \le 9, -10 \le k \le 10, -16 \le l \le 15$
Reflections collected	17405
Independent reflections	$3294 [R_{int} = 0.0272, R_{sigma} = 0.0182]$
Data/restraints/parameters	3294/0/248
Goodness-of-fit on F ²	1.057
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0359, \mathrm{wR}_2 = 0.0971$
Final R indexes [all data]	$R_1 = 0.0383, wR_2 = 0.0990$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.26

Table S2. Crystal data and structure refinement for stealthin D (9)

Identification code	1887926
Empirical formula	C ₂₂ H ₁₉ NO ₅
Formula weight	377.38
Temperature/K	150.00 (10)
Crystal system	triclinic
Space group	P-1
a/Å	9.7527(2)
b/Å	14.4380(2)
c/Å	26.1676(4)
α/°	77.566(10)
β/°	83.3470(10)
$\gamma/^{\circ}$	86.362(10)
Volume/Å ³	3571.17(11)
Z	8
$\rho_{calc}g/cm^3$	1.404
µ/mm ⁻¹	0.825
F(000)	1584.0
Crystal size/mm ³	0.45 imes 0.3 imes 0.03
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	6.956 to 149.474
Index ranges	$-12 \le h \le 11, -18 \le k \le 18, -32 \le l \le 32$
Reflections collected	66899
Independent reflections	14380 [$R_{int} = 0.0294, R_{sigma} = 0.0198$]
Data/restraints/parameters	14380/0/1049
Goodness-of-fit on F ²	1.034
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0398, wR_2 = 0.1048$
Final R indexes [all data]	$R_1 = 0.0440, wR_2 = 0.1078$
Largest diff. peak/hole / e Å ⁻³	0.27/-0.28

Table S3. Crystal data and structure refinement for stealthin F (11)

References

- Datsenko, K. A.; Wanner, B. L., One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. U. S. A.* 2000, 97, 6640-6645.
- Macneil, D. J.; Gewain, K. M.; Ruby, C. L.; Dezeny, G.; Gibbons, P. H.; Macneil, T., Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. *Gene* 1992, 111, 61-68.