Supplementary Materials:

- 2 Dereplication by High-Performance Liquid 3 Chromatography (HPLC) with Quadrupole-Time-of-4 Flight Mass Spectroscopy (qTOF-MS) and Antiviral
- 5 Activities of Phlorotannins from *Ecklonia cava*
- 6 Hyo Moon Cho^{1,†}, Thi Phuong Doan^{1,†}, Thi Kim Quy Ha¹, Hyun Woo Kim¹, Ba Wool

7 Lee ¹, Ha Thanh Tung Pham ¹, Tae Oh Cho ² and Won Keun Oh ^{1,*}

Marine Bio Research Center, Department of Life Science, Chosun University, Gwangju 501-759,
 Korea; tocho@chosun.ac.kr

- 14 * Correspondence: <u>wkoh1@snu.ac.kr</u>; Tel.: +82-02-880-7872
- 15 † These authors contributed equally.

Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; <u>chgyans@naver.com</u> (H.M.C.); phuongdoan@snu.ac.kr (T.P.D.); <u>htkquy@ctu.edu.vn</u> (T.K.Q.H.); <u>kimkami2@snu.ac.kr</u> (H.W.K.); paul36@snu.ac.kr (B.W.L.); <u>thtungdl@gmail.com</u> (H.T.T.P.)

17	Contents
18	Figure S1. HRESIMS spectrum of compound 1 Error! Bookmark not defined.
19	Figure S2. IR spectrum of compound 1
20	Figure S3 . ¹ H NMR spectrum of compound 1 (800 MHz, DMSO- <i>d</i> ₆)6
21	Figure S4 . ¹³ C NMR spectrum of compound 1 (200 MHz, DMSO- <i>d</i> ₆) Error! Bookmark
22	not defined.
23	Figure S5. HSQC spectrum of compound 1 (800 MHz, DMSO- <i>d</i> ₆)Error! Bookmark not
24	defined.
25	Figure S6 . HMBC spectrum of compound 1 (800 MHz, DMSO- <i>d</i> ₆) 10
26	Figure S7 . ROESY spectrum of compound 1 (800 MHz, DMSO- <i>d</i> ₆) Error! Bookmark
27	not defined.
28	Figure S8. HRESIMS spectrum of compound 211
29	Figure S9. IR spectrum of compound 2 12
30	Figure S10 . ¹ H NMR spectrum of compound 2 (850 MHz, DMSO- d_6)
31	Figure S11 . ¹³ C NMR spectrum of compound 2 (212.5 MHz, DMSO- d_6)
32	Figure S12 . HSQC spectrum of compound 2 (850 MHz, DMSO- d_6)
33	Figure S13 . HMBC spectrum of compound 2 (850 MHz, DMSO- <i>d</i> ₆)
34	Figure S14 . ROESY spectrum of compound 2 (850 MHz, DMSO- <i>d</i> ₆)

35	Figure S15. Relationships between ion masses (m/z value) in negative ion mode and RMD
36	values for compounds detected by HPLC-qTOFMS in the EC70 fraction
37	Figure S16. HPLC-qTOFMS measurement for twelve isolated compounds in negative ion
38	mode at collision energy of 50 eV
39	Figure S17. MS/MS spectra and fragment ions analysis of isolated compounds. HPLC-
40	qTOFMS spectroscopic data of these single compounds were measured in negative mode
41	at collision energy of 50 eV20
42	Figure S18. Effects of compound 11, 12, 13, and 14 on the viral protein synthesis at a
43	concentration of 20 µM; original uncropped blots21
44	Figure S19. Inhibitory effects of compound 12 on the viral proteins synthesis in a
45	concentration-dependent manner; original uncropped blots
46	Figure S20. (A) Key HMBC correlations of compounds 1 and 2. (B) Key ROESY
47	correlations on 3D structure of compounds 1 and 2 24
48	Figure S21. Physicochemical properties of isolated known compounds from <i>E. cava</i> .25-28
49	Table S1 . List of species in <i>Ecklonia</i> genus from website World Register of Marine Species
50	(http://www.marinespecies.org)
51	Table S2. The inhibitory effects of compounds 11, 12, 13, and 14 against the H1N1
52	A/PR/8/34 virus in a cytopathic effect and cytotoxicity assays
53	Table S3. ¹ H and ¹³ C NMR spectroscopic data of compounds 1 and 2 in DMSO- d_6 (δ in
54	ppm)31
55	Scheme S1. Extraction and fractionation procedure of <i>E. cava</i>

57 Figure S1. HRESIMS spectrum of compound 1.

Qualitative Compound Report

(M+HCOO)-[-H2O] 771.0737 771.0839 -13.23 -1 277 C37 H23 O19 (M+CI)-779.0483 779.0657 22.35 -1 1008 C36 H24 CI O18 (M+HCOO)-789.0926 789.0945 -2.36 -1 2191 C37 H25 O20 (2M-H)-1487.1826 1487.1853 -1.8 -1 892 C72 H47 O36

58 --- End Of Report ---

Figure S3. ¹H NMR spectrum of compound **1** (800 MHz, DMSO- d_6).

Figure S4. ¹³C NMR spectrum of compound **1** (200 MHz, DMSO- d_6).

Figure S7. ROESY spectrum of compound 1 (800 MHz, DMSO-*d*₆).

77 Figure S8. HRESIMS spectrum of compound 2.

Qualitative Compound Report

Data File Sample Type Instrument Name Acq Method IRM Calibration Status Comment	EC2-3-2-6_5.d Sample Instrument 1 DIP method-0p.m Success	Sample Name Position User Name Acquired Time DA Method	EC2-3-2-6 p1f1 6530-PC\admin 11/8/2018 9:50:42 AM Default.m
Sample Group Stream Name LC 1	Info.		

Compound Table

Compound Label	RT Mass Abund Formula		Tgt Mass	(ppm)		
Cpd 1: C54H34O27	0.166	1114.1285	41944	CS4H34O27	1114.1287	-0.18

Compound Label	RT	Algorithm	Mass
Cpd 1: C54H34O27	0.166	Find By Formula	1114.1285

MS Spectrum Peak List

M3 Spectru	no specialiti reak list									
m/z	Calc m/z	Diff(ppm)	Z	Abund	Formula	Ion				
557.0617	557.0649	-5.71	-2	3347	C54 H34 O27	M-2				
1095.0915	1095.1109	-17.76	-1	569	C54 H31 O26	(M-H)-[-H2O]				
1096.1575	1096.1187	35.38	-1	248	C54 H32 O26	M*-[-H2O]				
1113.1215	1113.1215	0.01		41944	C54 H33 O27	(M-H)-				
1114.1237	1114.1249	-1.04		25939	C54 H33 O27	(M-H)-				
1115.129	1115.1276	1.26		10241	C54 H33 O27	(M-H)-				
1131.1	1131.0876	10.99	-1	60	C54 H32 CI O26	(M+CI)-[-H2O]				
1141.1303	1141.1164	12.2	-1	302	C55 H33 O28	(M+HCOO)-[-H2O]				
1149.1163	1149.0981	15.77	-1	624	C54 H34 CI O27	(M+CI)-				
1159.1174	1159.1269	-8.28	-1	407	C55 H35 O29	(M+HCOO)-				

Figure S10. ¹H NMR spectrum of compound 2 (850 MHz, DMSO- d_6).

Figure S11. ¹³C NMR spectrum of compound **2** (212.5 MHz, DMSO- d_6).

Figure S13. HMBC spectrum of compound **2** (850 MHz, DMSO-*d*₆).

Figure S14. ROESY spectrum of compound **2** (850 MHz, DMSO-*d*₆).

- 92 **Figure S15**. Relationships between ion masses (*m/z* value) in negative ion mode and RMD values for compounds detected by HPLC-qTOFMS in
- 93 the EC70 fraction.
- 94

- 96 Figure S16. HPLC-qTOFMS measurement of twelve isolated compounds in negative ion
- 97 mode at collision energy of 50 eV.

Compound 1	
Compound 2	
Compound 6	
Compound 7	
Compound 10	
Compound 11	
Compound 12	
Compound 13	
Compound 14	
Compound 15	
Compound 16	
Compound 18	

100 Figure S17. MS/MS spectra and fragment ions analysis of isolated compounds. HPLC-101 qTOFMS spectroscopic data of these single compounds were measured in negative mode at collision energy of 50 eV. 102

105 **Figure S18.** Effects of compound **11**, **12**, **13**, and **14** on the viral protein synthesis at a 106 concentration of $20 \mu M$; original uncropped blots.

107 The viral-infected cells were exposed to compounds 11, 12, 13, and 14 (20 µM) and 108 ribavirin (20 µM) as a positive control. After 1 day of incubation, the cell lysates were 109 collected and target proteins were measured using Western blotting method. Equal amounts 110 of proteins were loaded on SDS-polyacrylamide gels. After transferred to PVDF 111 membranes, they were firstly incubated with neuraminidase antibody overnight. For 112 removing bound primary and secondary antibodies, the membranes were incubated with a RestoreTM Western blot stripping buffer (Thermo Sci.) and they were then detected the β -113 114 actin protein using a LAS4000 luminescent image analyzer. Sample names were from 1-7 115 as follows: uninfected ctrl, viral-infected (vi) ctrl, vi + ribavirin (20 µM), vi + 11, 12, 13, 116 and 14 (20 µM), respectively. Data were included in the final analysis in Figure 4A.

Figure S179. Inhibitory effects of compound 12 on the viral proteins synthesis in aconcentration-dependent manner; original uncropped blots.

120 The procedure of Western blot experiment was successfully carried as above described in 121 Figure S18. The membranes were firstly detected neuraminidase or hemagglutinin proteins. 122 Using a stripping buffer (Thermo Sci.) for removing bound primary and secondary 123 antibodies, the membranes were then incubated with β -actin antibody. (A) Sample names 124 were from 1-7 as follows: uninfected ctrl, viral-infected (vi) ctrl, vi + ribavirin (20 µM), vi 125 + 12 (5, 10, 20, and 40 μ M), respectively. (B) Sample names were from 1-6 as follows: 126 uninfected ctrl, vi ctrl, vi + ribavirin (20 μ M), vi + **12** (5, 10, and 20 μ M), respectively. (C) 127 Sample names were from 1-12 as follows: uninfected ctrl-1; vi ctrl-1; vi + ribavirin (20 128 μ M)-1, -2; vi + **12** (10 μ M)-1, -2; vi + **12** (20 μ M)-1, -2; vi + **12** (40 μ M)-1, -2; vi ctrl-2; 129 uninfected ctrl-2; respectively. Figure 4B was included in the final analysis.

131

Figure S20. (A) Key HMBC correlations of compounds 1 and 2. (B) Key ROESY
correlations on 3D structure of compounds 1 and 2.

144 **Figure S21**. Physicochemical properties of isolated known compounds from *E. cava*.

145

146 Eckol (6)

- 147 Brown powder; UV (MeOH) λ_{max} nm (log ε) 210 (2.70), 235 (2.75); ESI-MS m/z 371 [M –
- 148 H]⁻; ¹H NMR (DMSO- d_6 , 300 MHz): δ 6.16 (1H, s, H-3), 5.97 (1H, d, J = 2.4 Hz, H-8),
- 149 5.80 (1H, d, *J* = 2.4 Hz, H-6), 5.79 (1H, t, *J* = 2.4 Hz, H-4'), 5.71 (2H, d, *J* = 2.1 Hz, H-2',
- 150 H-6'); ¹³C NMR (DMSO-*d*₆, 75 MHz): *δ* 160.3 (C-1'), 158.8 (C-3', C-5'), 153.0 (C-7), 146.1
- 151 (C-9), 146.0 (C-2), 142.5 (C-5a), 141.9 (C-4), 137.1 (C-10a), 123.1 (C-1), 122.5 (C-9a),
- 152 122.0 (C-4a), 98.4 (C-8), 98.1 (C-3), 96.2 (C-4'), 93.7 (C-6), 93.6 (C-2', C-6').
- 153

154 7-Phloroeckol (**7**)

- 155 Brown powder; UV (MeOH) λ_{max} nm (log ε) 210 (2.34), 230 (2.27); ESI-MS m/z 495 [M –
- 156 H]⁻; ¹H NMR (DMSO- d_6 , 300 MHz): δ 6.14 (s, H-3), 6.00 (1H, d, J = 2.9, H-8), 5.77 (1H,
- 157 d, J = 2.9, H-6), 5.80 (1H, d, J = 1.9 Hz, H-4'), 5.86 (1H, d, J = 2.4 Hz, H-2', H-6'); ¹³C
- 158 NMR (DMSO-*d*₆, 75 MHz): δ 122.2 (C-1), 146.0 (C-2), 98.4 (C-3), 141.9 (C-4), 123.2 (C-
- 159 4a), 142.9 (C-5a), 93.4 (C-6), 154.6 (C-7), 98.1 (C-8), 146.1 (C-9), 124.0 (C-9a), 137.1 (C-
- 160 10a), 160.3 (C-1'), 93.6 (C-2'), 159.0 (C-3'), 96.3 (C-4'), 159.0 (C-5'), 93.7 (C-6'), 122.9 (C-
- 161 1"), 151.3 (C-2"), 94.9 (C-3"), 154.9 (C-4"), 94.9 (C-5"), 151.3 (C-6")
- 162
- 163 6,6'-Bieckol (**10**)
- 164 Brown powder; UV (MeOH) λ_{max} nm (log ε) 210 (2.34), 230 (2.27); ESI-MS *m*/*z* 743 [M +
- 165 H]⁺, 741 [M H]⁻; ¹H NMR (DMSO- d_6 , 300 MHz): δ 6.09 (s, H-3), 6.04 (1H, s, H-8), 5.80
- 166 (1H, d, J = 1.8 Hz, H-4'), 5.74 (1H, d, J = 2.1 Hz, H-2', H-6'); ¹³C NMR (DMSO- d_6 , 75
- 167 MHz): δ 160.5 (C-1'), 158.9 (C-3', C-5), 151.3 (C-7), 145.4 (C-2), 144.5 (C-9), 141.9 (C-

- 4), 141.4 (C-5a), 137.2. (C-10), 123.6 (C-1), 122.7 (C-9a), 122.0 (C-4a), 99.7 (C-6), 97.8
 (C-8), 97.8 (C-3), 96.2 (C-4'), 93.7 (C-2', C-6').
- 170
- 171 Dieckol (11)
- 172 Brown powder; UV (MeOH) λ_{max} nm (log ε) 210 (2.70), 235 (2.75); ESI-MS m/z 743 [M +
- 173 H]⁺, 741 [M H]⁻; ¹H NMR (DMSO-*d*₆, 300 MHz): δ 6.16 (1H, s, H-1"), 6.14 (1H, s, H-
- 174 3), 6.01 (1H, d, *J* = 2.2 Hz, H-8), 6.99 (1H, d, *J* = 2.2 Hz, H-8"), 5.94 (1H, s, H-2"', H-6"'),
- 175 5.82 (1H, br d, *J* = 2.7 Hz, H-6), 5.81 (1H, br d, *J* = 2.8 Hz, H-6"), 5.79 (1H, t-like, H-4'),
- 176 5.71 (1H, br d, H-2', H-6'); ¹³C NMR (DMSO-*d*₆, 75 MHz): *δ* 160.3 (C-1'), 158.8 (C-2', C-
- 177 5'), 155.9 (C-1"'), 154.2 (C-7), 153.1 (C-7"), 151.2 (C-3"', C-5"'), 146.1 (C-2), 146.1 (C-
- 178 9"), 146.0 (C-9), 145.9 (C-2"), 142.6 (C-5a"), 142.4 (C-5a), 142.0 (C-4"), 141.9 (C-4),
- 179 137.2 (C-10a), 137.0 (C-10a"), 124.2 (C-1"), 124.0 (C-9a), 123.2 (C-4a") 123.1 (C-4),
- 180 122.5 (C-9a"), 122.2 (C-1"), 122.1 (C-1).
- 181

182 Phlorofucofuroeckol A (12)

183 Brown powder; UV (MeOH) λ_{max} nm (log ε) 210 (3.17), 225 (3.16); ESI-MS m/z 601 [M –

184 H]⁻; ¹H NMR (DMSO-*d*₆, 300 MHz): δ 6.72 (1H, s, H-13), 6.43 (1H, s, H-9), 6.30 (1H, s,

- 185 H-3), 5.83 (2H, br t, *J* = 1.6 Hz, H-4', H-4"), 5.76 (2H, d, *J* = 2.0 Hz, H-2', H-6'), 5.72 (2H,
- 186 d, J = 2.0 Hz, H-2', H-6'); ¹³C NMR (DMSO- d_6 , 75 MHz): δ 160.2 (C-1'), 160.0 (C-1''),
- 187 159.0 (C-3", C-5"), 158.9 (C-3', C-5'), 150.8 (C-12a), 150.4 (C-10), 149.5 (C-11a), 147.0
- 188 (C-2), 146.5 (C-8), 144.8 (C-14), 142.1 (C-4), 136.8 (C-15a), 134.0 (C-5a), 126.3 (C-14a),
- 189 122.5 (C-1), 122.4 (C-4a), 120.1 (C-11), 103.4 (C-7), 103.2 (C-6), 99.1 (C-9), 98.3 (C-3),
- 190 96.3 (C-4, C-4"), 94.8 (C-13), 93.7 (C-2', C-6'), 93.5 (C-2", C-6").
- 191
- 192 Dibenzo [1,4]dioxine-2,4,7,9-tetraol (**13**)

193 Brown powder; UV (MeOH) λ_{max} nm (log ε) 228 (1.59), 278 (0.79); ESI-MS m/z 247 [M –

194 H]⁻; ¹H NMR (DMSO- d_6 , 300 MHz): δ 5.96 (2H, d, J = 2.7 Hz, H-3, H-8), 5.78 (2H, d, J =

- 195 2.7 Hz, H-1, H-6); ¹³C-NMR (DMSO-*d*₆, 75 MHz): *δ* 152.8 (C-2, C-7), 145.8 (C-4, C-9),
- 196 142.8 (C-5a, C-10), 122.9 (C-4a C-9a), 98.3 (C-3, C-8), 93.9 (C-1, C-6).
- 197
- 198 Dioxinodehydroeckol (14)
- 199 Brown powder; UV (MeOH) λ_{max} nm (log ε) 235 (2.85); ESI-MS m/z 369 [M H]⁻; ¹H
- 200 NMR (DMSO- d_6 , 300 MHz): δ 6.10 (1H, s, H-7), 6.05 (1H, d, J = 2.7 Hz, H-2), 6.02 (1H,
- 201 d, J = 2.7 Hz, H-10), 5.84 (1H, d, J = 2.7 Hz, H-4), 5.82 (1H, d, J = 2.7 Hz, H-12); ¹³C
- 202 NMR (DMSO-*d*₆, 75 MHz): δ 153.3 (C-3), 153.0 (C-11), 146.1 (C-1), 145.9 (C-9), 142.0
- 203 (C-4a), 141.7 (C-12a), 140.1 (C-6), 137.1 (C-7a), 131.5 (C-13b), 122.6 (C-8), 122.5 (C-
- 204 13a), 122.2 (C-14a), 98.8 (C-2, C-10), 97.9 (C-7), 93.9 (C-4, C-12).
- 205
- 206 6,8'-Bieckol (15)
- 207 Brown powder; UV (MeOH) λ_{max} nm (log ε) 210 (2.34), 230 (2.27); ESI-MS m/z 743 [M +
- 208 H]⁺, 741 [M H]⁻; ¹H NMR (DMSO- d_6 , 300 MHz): δ 6.13 (1H, s, H-8), 6.03 (1H, s, H-3'),

209 6.00 (1H, s, H-3), 5.92 (1H, s, H-6'), 5.75 (2H, t, *J* = 1.6 Hz, H-4", H-4"'), 5.71 (2H, d, *J* =

- 210 2.4 Hz, H-2"', H-6"'), 5.68 (2H, J = 1.6 Hz, H-2", H-6"); ¹³C NMR (DMSO- d_6 , 75 MHz): δ
- 211 160.0(C-1", C-1""), 158.0 (C-3"", C-5""), 158.0 (C-3", C-5"), 151.5 (C-7, C-7'), 145.8 (C-2),
- 212 145.5 (C-2'), 144.9 (C-9), 144.4 (C-9'), 141.9 (C-4), 141.4 (C-4'), 141.7 (C-5a), 140.0 (C-
- 213 5a'), 137.3 (C-10a), 137.2 (C-10a'), 123.6 (C-1), 123.4 (C-1'), 123.0 (C-9a), 122.9 (C-9a'),
- 214 122.4 (C-4a), 122.0 (C-4a'), 104.5 (C-8'), 99.5 (C-6), 98.2 (C-8), 97.0 (C-3), 97.0 (C-3'),
- 215 96.3 (C-4"), 93.9 (C-2", C-6"), 93.8 (C-2", C-6"), 93.7 (C-6').
- 216
- 217 Fucofuroeckol A (16)

218 Brown powder; UV (MeOH) λ_{max} nm (log ϵ) 208 (2.10), 224 (2.33), 300 (1.63); ESI-MS

219 m/z 477 [M – H]⁻; ¹H NMR (DMSO- d_6 , 300 MHz) δ 6.72 (1H, s), 6.47 (1H, s), 6.29 (1H,

220 s), 6.25 (1H, d, *J* = 1.8 Hz, H-9), 5.83 (1H, t, *J* = 2.1 Hz, H-4'), 5.76 (2H, d, *J* = 2.1 Hz, H-

221 2', H-6')

- 222
- 223 974-A (**18**)

224 Brown powder; UV (MeOH) λ_{max} nm (log ε) 208 (2.10), 224 (2.33), 300 (1.63); ESI-MS 225 m/z 973 [M – H]⁻; ¹H NMR (DMSO- d_6 , 300 MHz) δ 6.15 (1H, d, J = 2.1 Hz, H-4'), 6.01 226 (1H, d, *J* = 2.1 Hz, H-6'), 6.26 (1H, s, H-3), 6.72 (1H, s, H-6), 6.44 (1H, s, H-10), 6.73 (2H, 227 d, J = 1.8 Hz, H-2", H-6"), 5.83 (1H, dt, J = 1.8, 2.1 Hz, H-4"), 6.11 (1H, d, J = 1.2 Hz, 228 H4"'), 5.75 (1H, d, J = 1.5 Hz, H-6"'), 5.86 (2H, s, H-3""', H-5""'); ¹³C-NMR (DMSO- d_6 , 229 75 MHz): δ 157.9 (C-1'), 120.1 (C-2'), 157.7 (C-3'), 99.2 (C-4'), 158.8 (C-5'), 95.9 (C-6'), 230 136.9 (C-1), 146.6 (C-2), 103.4 (C-3), 146.1 (C-4), 141.9 (C-4a), 142.4 (C-15a), 145.9 (C-5a), 92.7 (C-6), 153.1 (C-6), 153.1 (C-6a), 123.5 (C-13), 123.5 (C-13), 144.7 (C-14), 142.0 231 232 (C-14a), 150.1 (C-7a), 126.4 (C-8), 150.4 (C-9), 103.3 (C-10), 149.6 (C-11), 122.9 (C-12), 233 160.3 (C-1"), 96.5 (C-2", C-6"), 160.0 (C-3", C-5"), 98.4 (C-4"), 158.1 (C-1""), 122.1 (C-234 2""), 157.8 (C-3""), 100.7 (C-4""), 159.0 (C-5""), 94.9 (C-6""), 137.1 (C-1""), 151.3 (C-2""), 97.5 (C-3""), 155.8 (C-4""), 93.6 (C-5""), 154.7 (C-6""), 133.9 (C-1"""), 150.9 (C-2"", C-235 236 6"""), 96.9 (C-3""", C-5"""), 154.8 (C-4""").

~ ~-					a		•
237	Table S1 List of s	nicies in <i>Ecklonia</i> a	enus from website	World Register of Mari	ne Snecies (ht	tn·//www marines	necies org)
231				wond negister of main	ne opeeres (m	ip.// w w w.mumbo	

No	Species	Other name	Distribution
1	Ecklonia bicyclis	Eisenia bicyclis Ecklonia wrightii	Pacific Ocean waters (Japan, Korea)
2	Ecklonia biruncinata	Ecklonia exasperata, Ecklonia radiata	Indian Ocean (Australia, Madagascar, Oman, South Africa)
3	Ecklonia brevipes		Australia, New Zealand
4	Ecklonia buccinalis	Ecklonia maxima	South Africa
5	Ecklonia caepaestipes	Durvillaea antarctica	New Zealand
6	Ecklonia cava	Ecklonia latifolia	Japan, Korea
7	Ecklonia fastigiata		South Africa
8	Ecklonia kurome		Japan
9	Ecklonia muratii		Northern hemisphere (Mauritania, Senegal)
10	Ecklonia radicosa	Eckloniopsis radicosa	Japan
11	Ecklonia richardiana		New Zealand
12	Ecklonia stolonifera		Japan, Korea

Table S2. The inhibitory effects of compounds 11,	12, 13 and 14 against the H1N1	1 A/PR/8/34 virus in a cytopathic effect and cy	totoxicity assays.

Comp. No	EC50 (µM)	CC50 (µM)
11	17.34 ± 3.97	> 100
12	13.48 ± 1.93	> 100
13	23.95 ± 2.00	> 100
14	23.41 ± 4.72	> 100
Ribavirin	4.29 ± 1.30	-

248 EC₅₀: Effective concentration; CC₅₀: Cytotoxic concentration

- 258 **Table S3.** ¹H and ¹³C NMR spectroscopic data of compounds **1** and **2** in DMSO- d_6 (δ in
- 259 ppm).

		1 ^a			2 ^b	
Ring	No.	δ_{H} , (Mult. J in Hz)	δc	No.	δ_{H} , (Mult. J in Hz)	δc
	1		122.6	1'		160.1
	2		144.7	2', 6'	5.74 (2H, d, 1.8)	93.7
٨	3	6.12 (1H, s, overlap)	98.1	3', 5'	· · ·	158.9
А	4	1,	142.2	4'	5.81 (1H, brt)	96.4
	4a		123.3			
	10a		137.2			
	5a		142.4	1		123.7
	6	5.81 (1H, d, 2.7)	93.7	2		145.8
	7		153.1	3	5.92 (1H, s)	95.8
В	8	5.97 (1H, d, 2.7)	98.5	4		143.1
	9		146.1	4a		123.8
	9a		122.6	10a		137.2
	OH-7	9.11 (1H, brs)				
	1'		157.9	5a		142.3
	2'	5.99 (1H, d, 1.5)	94.7	6	5.88 (1H, d, 2.2)	93.9
C	3'		157.7	7		153.2
~	4'		100.7	8	6.01 (1H, d, 2.2)	98.7
	5'		158.1	9		146.2
	6'	6.09(1H, brs)	96.8	9a		122.5
	1"		101.4	1"		122.1
	2"		155.7	2", 6"		151.3
5	3"	5.70 (1H, d, 1.5)	93.8	3", 5"	5.87 (2H, s)	94.9
D	4", 6"		157.7	4''		154.7
	5	6.12 (1H, s, overlap)	97.3			
	OH-4"	8.88 91H, brs)				
	OH-6"	9.19 (1H, brs)	100 5	4.111		100 5
	1		123.5	1		123.5
	2		150.0	2		150.1
Б	3	5.54 (1n, d, 2.7)	92.7	3 4'''	5.55 (1H, d, 2.4)	92.7
E	4		155.1	4	= 90(111 + 24)	155.1
	5	5.89 (IH, d, 2.7)	95.8 154.7	5	5.89 (1H, d, 2.4)	95.9 154.9
	о ОЦ 4''' 4'''	9.09(211 hrs)	134.7	0		134.8
	1""	0.90 (211, 015)	122.1	1''''		101 5
	2"" 6""		122.1	1 2''''		101.5
	2,0	5.86 (2H s)	94.9	2 3''''	5.71(1H brs)	93.5
F	4''''	5.00 (211, 5)	154.7	4''''	5.71 (111, 613)	157.8
	OH-4''''	8 89 (1H brs)	104.7	5''''	614 (1H brs)	97.5
	OH-6''''	9.05 (1H, brs)		6''''	0.11 (11.) 010)	155 7
				1""		100.7
				2'''''		
c				3'''''	6.00 (1H, brs)	94.9
G				4'''''	(,)	157.8
				5'''''	6.11 (1H, brs)	96.8
				6'''''		
				1'''''		121.4
				2'''''		136.7
LT				3'''''		122.9
н				4'''''		142.6
				5'''''	6.21 (1H, s)	98.4
				6'''''	4 · · •	145.9
				1'''''		
				2'''''		
т				3'''''		
1				4'''''	6.14 (1H, s)	98.3
				5'''''		
				6''''''		

^a measured in 800 MHz, ^b measured in 850 MHz

261 **Scheme S1.** Extraction and fractionation of *E. Cava*.

