Article

Supporting Information

Zebrafish-Based Discovery of Antiseizure Compounds from the North Sea: Isoquinoline Alkaloids TMC-120A and TMC-120B

Daniëlle Copmans ${ }^{1,+}$, Sara Kildgaard ${ }^{2, \dagger}$, Silas A. Rasmussen ${ }^{2}$, Monika Ślęzak ${ }^{1}$, Nina Dirkx ${ }^{1}$, Michèle Partoens ${ }^{1}$, Camila V. Esguerra ${ }^{1,3}$, Alexander D. Crawford ${ }^{1,4}$, Thomas O. Larsen ${ }^{2, *}$ and Peter A. M. de Witte ${ }^{1, *}$

Page 2. Table S1. NMR spectroscopic data for TMC-120B
Page 2. Table S2. NMR spectroscopic data for TMC-120A and TMC-120B
Page 3. Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}(800 \mathrm{MHz} \mathrm{CDCl} 3$) of TMC-120A
Page 3. Figure S2. ${ }^{13} \mathrm{C}-\mathrm{NMR}(200 \mathrm{MHz} \mathrm{CDCl} 3$) of TMC-120A
Page 4. Figure S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}(800 \mathrm{MHz} \mathrm{CDCl} 3$) of TMC-120B
Page 4. Figure $\mathrm{S}^{2}{ }^{13} \mathrm{C}-\mathrm{NMR}(200 \mathrm{MHz} \mathrm{CDCl} 3$) of TMC-120B
Page 5. Table S3. HRMS, UV/Vis, optical rotations, and NMR spectroscopic data for penicisochroman G, ustusorane B, and TMC-120C

Page 6. Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}(800 \mathrm{MHz} \mathrm{CDCl} 3$) of TMC-120C
Page 6. Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz} \mathrm{CDCl} 3$) of ustusorane B
Page 7. Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz} \mathrm{CDCl} 3$) of penicisochroman G
Page 7. Figure S8. Behavioral antiseizure analysis of positive control valproate in the zebrafish PTZ seizure model

Page 8. Figure S9. Electrophysiological antiseizure analysis of positive control valproate in the zebrafish PTZ seizure model

Table S1. NMR spectroscopic data for TMC-120B.

TMC-120B		
Position	$\boldsymbol{\delta}_{\mathrm{H}}(\mathbf{m u l t}, \mathrm{J})$	$\boldsymbol{\delta}_{\mathrm{c}}$
1	-	-
2	-	145.6
3	-	182.1
3 a	-	119.3
4	$7.81 \mathrm{~d}(8.6)$	124.4
5	$7.36 \mathrm{~d}(8.6)$	120.8
5 a	-	141.3
6	7.53 s	119.8
7	-	156.7
8	-	-
9	9.55 s	146.3
9 a	-	114.6
9 b	-	164.0
10	2.74 s	24.9
11	-	133.7
12	2.42 s	17.6
13	2.24 s	20.5

NMR spectroscopic data (${ }^{1} \mathrm{H}$ NMR data were obtained at 400 MHz in CDCl_{3} and ${ }^{13} \mathrm{C}$ data were obtained at 100 MHz in $\mathrm{CDCl}_{3}, \delta$ in $\mathrm{ppm}, ~ J$ in Hz) for TMC-120B isolated from the crude extract of Aspergillus insuetus IBT 28443.

Table S2. NMR spectroscopic data for TMC-120A and TMC-120B.

.	TMC-120A	TMC-120B		
Position	$\delta_{\mathrm{H}}($ mult, $\boldsymbol{J})$	$\boldsymbol{\delta}_{\mathrm{C}}$	$\boldsymbol{\delta}_{\mathrm{H}}($ mult, $\boldsymbol{J})$	$\boldsymbol{\delta}_{\mathrm{C}}$
1	-	-	-	-
2	$4.85 \mathrm{~d}(4.0)$	91.8	-	145.8
3	-	199.8	-	182.4
3 a	-	117.8	-	119.6
4	$7.71 \mathrm{~d}(8.6)$	124.3	$7.80 \mathrm{~d}(8.6)$	124.4
5	$7.30 \mathrm{~d}(8.6)$	120.3	$7.36 \mathrm{~d}(8.6)$	120.8
5 a	-	142.5	-	141.5
6	7.53 s	119.9	7.53 s	119.8
7	-	157.4	-	156.8
8	-	-	-	-
9	9.55 s	146.6	9.54 s	146.4
9 a	-	115.2	-	114.8
9 b	-	174.1	-	164.2
10	2.75 s	24.7	2.74 s	24.9
11	2.46 m	31.3	-	134.0
12	$0.92 \mathrm{~d}(6.9)$	15.9	2.42 s	17.8
13	$1.23 \mathrm{~d}(6.9)$	19.0	2.24 s	20.6

NMR spectroscopic data (${ }^{1} \mathrm{H}$ NMR data were obtained at 800 MHz in CDCl_{3} and ${ }^{13} \mathrm{C}$ data were obtained at 200 MHz in $\mathrm{CDCl}_{3}, \delta$ in ppm, J in Hz) for TMC-120A and TMC-120B isolated from the crude extract of Aspergillus insuetus IBT 28485.

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}(800 \mathrm{MHz} \mathrm{CDCl} 3$) of TMC-120A.

Figure S2. ${ }^{13} \mathrm{C}-\mathrm{NMR}(200 \mathrm{MHz} \mathrm{CDCl} 3$) of TMC-120A.

Figure S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}(800 \mathrm{MHz} \mathrm{CDCl} 3$) of $\mathrm{TMC}-120 \mathrm{~B}$.

Figure S4. ${ }^{13} \mathrm{C}-\mathrm{NMR}(200 \mathrm{MHz} \mathrm{CDCl} 3$) of TMC-120B.

Table S3. HRMS, UV/Vis, optical rotations, and NMR spectroscopic data for penicisochroman G, ustusorane B, and TMC-120C.

Penicisochroman G			Ustusorane B		TMC-120C	
Position	$\delta_{\text {H }}(\mathrm{mult}, J)$	$\delta \mathrm{c}$	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{~J})$	ठc	$\delta_{\text {H }}(\mathrm{mult}, \mathrm{J})$	ठc
1	-	-		-	-	-
2	$4.39 \mathrm{~d}(3.9)$	90.4	-	144.6	-	110.3
3	-	200.6	-	182.2	-	198.7
3a	-	120.0	-	120.7	-	115.8
4	$7.43 \mathrm{~d}(8.0)$	123.9	$7.52 \mathrm{~d}(8.0)$	122.9	$7.52 \mathrm{~d}(8.2)$	124.5
5	$6.57 \mathrm{~d}(8.0)$	117.0	6.63 d (8.0)	116.2	$6.99 \mathrm{~d}(8.2)$	119.6
5a	-	142.0	-	139.6	-	142.1
6	5.65 s	101.7	5.67 s	100.7	7.14 s	119.6
7	-	160.0	-	158.5	-	156.7
8	-	-	-	-	-	-
9	$\begin{aligned} & 5.20 \mathrm{~d}(13.2) \\ & 5.25 \mathrm{~d}(13.2) \end{aligned}$	62.8	5.26 s	61.5	9.46 s	146.8
9 a	d	108.9	-	107.7	-	114.7
9 b	-	168.3	-	158.9	-	171.6
10	1.95 s	20.1	1.95 s	18.7	2.50 s	23.9
11	2.31 m	31.2		129.9	2.40 m	34.1
12	$0.84 \mathrm{~d}(6.9)$	15.8	2.33 s	16.2	0.96	16.1
13	$1.13 \mathrm{~d}(6.9)$	19.0	2.06 s	19.0	$1.21 \mathrm{~d}(6.6)$	15.7

TMC-120C: slightly pale yellow needles; $[\alpha]_{\mathrm{D}}^{20}-11$ (c 0.14, MeOH); UV (MeCN) $\lambda_{\text {max: }} 215 \mathrm{~nm}, 250 \mathrm{~nm}$, 359 nm ; HRESIMS $m / z 258.1123$ [M+H]+ (calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}, m / z 258.1125, \Delta 0.57$).
penicisochroman G: yellow solid; $[\alpha]_{\mathrm{D}}^{20}+13$ (c 0.20, MeOH); UV (MeCN) $\lambda_{\text {max: }} 213 \mathrm{~nm}, 255 \mathrm{~nm}, 355$ $n m ;$ HRESIMS $m / z 245.1171[\mathrm{M}+\mathrm{H}]^{+}$(calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3}, m / z 240.1172, \Delta 0.5$).
ustusorane B: yellow solid; UV (MeCN) $\lambda_{\text {max }} 225 \mathrm{~nm}, 278 \mathrm{~nm}, 287 \mathrm{~nm}, 368 \mathrm{~nm}$; HRESIMS m/z 243.1014 $[\mathrm{M}+\mathrm{H}]^{+}$(calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3}, m / z$ 243.1016, $\Delta 0.7$).

NMR spectroscopic data for penicisochroman G and ustusorane B (${ }^{1} \mathrm{H}$ NMR data were obtained at 600 MHz in CDCl_{3} and ${ }^{13} \mathrm{C}$ data were obtained at 150 MHz in $\mathrm{CDCl}_{3}, \delta$ in ppm, J in Hz) and TMC$120 \mathrm{C}\left({ }^{1} \mathrm{H}\right.$ NMR data were obtained at 800 MHz in CDCl_{3} and ${ }^{13} \mathrm{C}$ data were obtained at 200 MHz in $\mathrm{CDCl}_{3}, \delta$ in ppm, J in Hz) isolated from the crude extract of Aspergillus insuetus $\operatorname{IBT} 28485$. The ${ }^{13} \mathrm{C}-$ chemical shifts have been determined using the HSQC and HMBC spectra.

Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}(800 \mathrm{MHz} \mathrm{CDCl} 3$) of $\mathrm{TMC}-120 \mathrm{C}$.

Figure S6. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz} \mathrm{CDCl} 3)$ of ustusorane B.

Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz} \mathrm{CDCl} 3$) of penicisochroman G.

Figure S8. Behavioral antiseizure analysis of positive control valproate in the zebrafish PTZ seizure model. Antiseizure activity of valproate in the zebrafish pentylenetetrazole (PTZ) seizure model after 18 h of incubation at its maximum tolerated concentration (MTC), MTC/2, and MTC/4. PTZ-induced seizure-like behavior is expressed as mean actinteg units per $5 \mathrm{~min}(\pm$ SEM) during the 30 -min recording period (A) and over consecutive time intervals (B). Means are pooled from three independent experiments with each 9-10 replicate wells per condition. Statistical analysis: (A) oneway ANOVA with Dunnett's multiple comparison test, (B) two-way ANOVA with Bonferroni posttests (GraphPad Prism 5, San Diego, CA, USA). Significance levels: ${ }^{*} p \leq 0.05 ;{ }^{* *} p \leq 0.01$; ${ }^{* * *} p \leq$ 0.001. Abbreviation: vehicle, VHC.

Figure S9. Electrophysiological antiseizure analysis of positive control valproate in the zebrafish PTZ seizure model. Noninvasive local field potential recordings from the optic tectum of larvae preexposed to vehicle (VHC) and pentylenetetrazole (PTZ), VHC only, valproate and PTZ, or valproate and VHC. Larvae were incubated with either 1 mM valproate or VHC for 18 h , conform with the maximum tolerated concentration and incubation time of valproate used in the behavioral assay. Larvae are considered to possess epileptiform brain activity when three or more epileptiform events occurred during a 10-min recording (A). Epileptiform discharges are quantified by the number (mean \pm SD) (B) and cumulative duration (mean \pm SD) (C) of events per 10-min recording. Number of replicate wells per condition: 19 larvae were used for control conditions (VHC + PTZ and VHC + VHC groups), 18 larvae were used for the condition valproate + PTZ, and 16 larvae were used for the condition valproate + VHC. Statistical analysis: (A) Fisher's exact test with Bonferroni posttest, (B, C) KruskalWallis test with Dunn's multiple comparison test (data did not pass the Shapiro-Wilk normality test) (GraphPad Prism 5, San Diego, CA, USA). Significance levels: ${ }^{*} p \leq 0.05 ;{ }^{* *} p \leq 0.01$; ${ }^{* * *} p \leq 0.001$.

