

Supplementary Material

Paenidigyamycin A, Potent Antiparasitic Imidazole Alkaloid from the Ghanaian *Paenibacillus* sp. DE2SH

Enoch Osei ^{1,+}, Samuel Kwain ^{1,+}, Gilbert Tetevi Mawuli ¹, Abraham Kwabena Anang ², Kofi Baffour-Awuah Owusu ², Mustafa Camas ³, Anil Sazak Camas ³, Mitsuko Ohashi ⁴, Cristina-Nicoleta Alexandru-Crivac ⁵, Hai Deng ⁵, Marcel Jaspars ⁵ and Kwaku Kyeremeh ^{1,*}

- ¹ Marine and Plant Research Laboratory of Ghana, Department of Chemistry, School of Physical and Mathematical Sciences, University of Ghana, P.O. Box LG 56, Legon-Accra, Ghana; kofiosei0591@gmail.com (E.O.); kwainsamuel75@gmail.com (S.K.); gilberttet@gmail.com (G.T.M.)
- ² Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon-Accra, Ghana; aanang@noguchi.ug.edu.gh (A.K.A.); kbaowusu@gmail.com (K.B.A.O.)
- ³ Department of Bioengineering, Munzur University, 62000 Tunceli, Turkey; mustafacamas@gmail.com (M.C.); anilsazak@gmail.com (A.S.C.)
- ⁴ Section of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan; mikkvip@tmd.ac.jp
- ⁵ Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, UK; r01cna14@abdn.ac.uk (C.N.A.C.); h.deng@abdn.ac.uk (H.D.); m.jaspars@abdn.ac.uk (M.J.)
- + These authors contributed equally to this paper
- * Correspondence: kkyeremeh@ug.edu.gh; Tel.: +233-20-789-1320

Contents

Figure S1. Paenibacillus sp. DE2SH growing on ISP2 pH 5.5 agar plate3
Figure S2. Schematic representation of feasible fragmentation pathway for Paenidigyamycin A (1) under HRESI-LC-MS conditions3
Figure S3. HRESI-LC-MS shows chromatogram that confirms the fragmentation pathway for Paenidigyamycin A (1)4
Figure S4. HRESI-LC-MS for crude FM extracts of strain DE2SH4
Figure S5. Effect of different concentrations of compound 1 on the viability of Schistosoma mansoni cercariae. 5
Table S1a. Full 1D and 2D NMR Spectroscopic data for Paenidigyamycin A (1) in CD3OD,in ppm
Table S1b6
Figure S6. ¹ H NMR spectrum (500 MHz) of Paenidigyamycin A (1) in CD ₃ OD7
Figure S7. DEPT135° spectrum of Paenidigyamycin A (1) in CD ₃ OD8
Figure S8. HSQC spectrum (500 MHz) of Paenidigyamycin A (1) in CD ₃ OD9
Figure S9. COSY spectrum (500 MHz) of Paenidigyamycin A (1) in CD ₃ OD10
Figure S10. 2D-TOCSY spectrum (500 MHz) of Paenidigyamycin A (1) in CD ₃ OD11
Figure S11. HMBC spectrum (500 MHz) of Paenidigyamycin A (1) in CD ₃ OD12
Figure S12. NOESY spectrum (500 MHz) of Paenidigyamycin A (1) in CD ₃ OD13
Figure S13. Modified Kupchan solvent partitioning of the crude extract of <i>Paenibacillus</i> sp. DE2SH gives FH, FD, FM and WB fractions14
Figure S14. Sephadex LH-20 Chromatography of FM fraction followed by Semi-preparative HPLC gives pure Paenidigyamycin A (1) 15
Figure S15. Schematic representation of a feasible fragmentation pathway for possible Paenidigyamycin A (1) analogue under HRESI-LC-MS-MS conditions
Figure S16. HRESI-LC-MS shows the possible presence of a Paenidigyamycin A (1) analogue17
Figure S17. HPLC Chromatogram of Paenidigyamycin A (1) with UV profile

Figure S1. Paenibacillus sp. DE2SH growing on ISP2 pH 5.5 agar plate.

Chemical Formula: C₃₆H₅₂N₄⁺ Exact Mass: 540.4186

Chemical Formula: C₁₈H₂₇N₂ Exact Mass: 271.2174

Chemical Formula: C₁₈H₂₇N₂ Exact Mass: 271.2174

Chemical Formula: C₁₃H₁₇N₂ Exact Mass: 201.1392

Chemical Formula: C₁₀H₁₉N₂⁺ Exact Mass: 167.1543

Chemical Formula: C₇H₁₂N₂ Exact Mass: 124.1000

Figure S2. Schematic representation of feasible fragmentation pathway for Paenidigyamycin A (1) under HRESI-LC-MS conditions.

Figure S3. HRESI-LC-MS shows chromatogram that confirms the fragmentation pathway for Paenidigyamycin A (1).

Figure S4. HRESI-LC-MS for crude FM extracts of strain DE2SH.

Figure S5. Effect of different concentrations of compound 1 on the viability of *Schistosoma mansoni* cercariae.

#	δ ¹³ C (ppm)	¹³ C mult	δн Mult (J Hz)	¹ H- ¹ H COSY	¹ H- ¹ H TOCSY	NOESY	HMBC
1-N		-	-	-	-	-	
2	135.4	С	-	-	-	-	8, 10
3-N		-	-	-	-	-	
4	128.4	С	-	-	-	-	10, 6
5	128.4	С	-	-	-	-	8, 7
6	8.1	CH ₃	2.27, s	-	-	10, 11	
7	8.1	CH ₃	2.22, s	-	-	8, 9	
8	49.7	CH ₂	4.40, t (6.8)	9	9	7, 2', 6', 9	9
9	36.7	CH ₂	3.12, t (6.7)	8	8	8, 7, 2', 6'	8, 2', 6'
10	46.4	CH ₂	4.03, m	11	11, 13, 14	13, 14, 11, 6	12, 11
11	39.5	CH ₂	1.57, m	10	10, 13, 14	10, 6	13, 14, 10, 12
12	26.5	CH	1.48, n (6.8)	13, 14 13, 14		13, 14, 10	
13	22.5	CH ₃	0.96, d (6.6)	12	12, 11, 10	10	14
14	22.5	CH ₃	0.96, d (6.6)	l (6.6) 12 12, 11, 10 10		10	13
1'	137.8	С	-				9, 8, 3', 5'
2'	130.0	CH	7.10, m	3', 4'	3', 4'	8, 9	9, 4', 3', 5'
3'	130.0	CH	7.31, m	2'	2'		2', 6'
4'	128.4	CH	7.29, m	2', 6'	2', 6'		2', 6'
5'	130.0	CH	7.31, m	6'	6'		2', 6'
6'	130.0	СН	7.10 m	5' 4'	5' 4'	89	9 4' 3' 5'

Table S1a. Full 1D and 2D NMR Spectroscopic data for Paenidigyamycin A (**1**) in CD₃OD, δ in ppm.

6 of 18

Table S1b. Full 1D and 2D NMR S	pectroscopic data for Paenidigyamycir	A (1) in CD ₃ OD, δ in ppm (Cont.).

#	δ ¹³ C (ppm)	¹³ C mult	δн Mult	$^{1}\mathrm{H}\text{-}^{1}\mathrm{H}$	$^{1}\mathrm{H}\text{-}^{1}\mathrm{H}$	NOESY	НМВС	
	e e(pp)	e mun	(J Hz)	COSY	TOCSY			
1'-N	-	-	-	-	-	-	-	
2'	135.5	С	-	-	-	-	8', 10'	
3'-N	-	-	-	-	-	-	-	
4'	128.5	С	-	-	-	-	10', 6'	
5'	128.5	С	-	-	-	-	8', 7'	
6'	8.2	CH ₃	2.31, s	-	-	10', 11'		
7'	8.0	CH ₃	2.06, s	-	-	8', 9'		
8'	49.2	CH ₂	4.33, t (6.9)	9'	9'	2'', 6'', 7', 9'	9'	
9'	37.1	CH ₂	3.04, t (6.9)	8'	8'	2'', 6'', 8', 7'	8'	
10'	46.6	CH ₂	4.13, m	11'	11', 13', 14'	13', 14', 12', 11', 6'	12', 11'	
11'	39.5	CH ₂	1.73, m	10'	10', 13', 14'	10', 6'	13', 14', 12', 10'	
12'	26.9	CH	1.67, n (6.8)	13', 14'	13', 14'	10'	13', 14', 11', 10'	
13'	22.5	CH ₃	1.02, d (6.5)	12'	12', 11', 10'	10'	14'	
14'	22.5	CH ₃	1.02, d (6.5)	12'	12', 11', 10'	10'	13'	
1"	137.8	С	-				3", 5", 9', 8'	
2''	130.0	CH	7.10, m	3", 4"	3'', 4''	9', 8'	4", 3", 5", 9'	
3''	130.0	CH	7.31, m	2''	2''		2", 6"	
4''	128.4	CH	7.29, m	2", 6"	2", 6"		2", 6"	
5''	130.0	CH	7.31, m	6''	6''		2", 6",	
6''	130.0	CH	7.10, m	5", 4"	5", 4"	9', 8'	4", 3", 5", 9'	

Figure S6. ¹H NMR spectrum (500 MHz) of Paenidigyamycin A (1) in CD₃OD.

Figure S8. HSQC spectrum (500 MHz) of Paenidigyamycin A (1) in CD₃OD.

Figure S9. COSY spectrum (500 MHz) of Paenidigyamycin A (1) in CD₃OD.

Mar. Drugs 2018, 16, 9

Figure S10. 2D-TOCSY spectrum (500 MHz) of Paenidigyamycin A (1) in CD₃OD.

Figure S11. HMBC spectrum (500 MHz) of Paenidigyamycin A (1) in CD₃OD.

Figure S12. NOESY spectrum (500 MHz) of Paenidigyamycin A (1) in CD₃OD.

Figure S13. Modified Kupchan solvent partitioning of the crude extract of *Paenibacillus* sp. DE2SH gives FH, FD, FM, and WB fractions.

Figure S14. Sephadex LH-20 Chromatography of FM fraction followed by Semi-preparative HPLC gives pure Paenidigyamycin A (1).

Figure S15. Schematic representation of a feasible fragmentation pathway for possible Paenidigyamycin A (1) analogue under HRESI-LC-MS-MS conditions.

Figure S16. HRESI-LC-MS shows the possible presence of a Paenidigyamycin A (1) analogue.

Figure S17. HPLC Chromatogram of Paenidigyamycin A (1) with UV profile.